Teaching

COMP5212

, , 1900

SlidesDateTopicReadingsAssignments
Lecture 031/01 WedIntroduction  
Lecture 102/02 FriMath basics  
Lecture 207/02 WedSupervised learning basics  
Lecture 309/02 FriLogistic regression  
Lecture 414/02 WedGeneralized linear models, classification  
Lecture 516/02 FriKernel methods  
Lecture 621/02 WedSVM  
Lecture 723/02 FriNaive Bayes  
Lecture 828/02 WedMLE, MAP  
Lecture 901/03 FriGradient descent, SGD, Newton’s method  
Lecture 1006/03 WedGeneralization, bias-variance tradeoff  
Lecture 1108/03 FriClustering  
Lecture 1213/03 WedExpectation Maximization  
Lecture 1315/03 FriPCA/ICA  
Lecture 1420/03 Wedmid-term exam  
Lecture 1522/03 FriProbabilistic Graphical Models  
Lecture 1627/03 WedHMM  
 29/03 FriGood Friday holiday  
 03/04 Wedmid-term break  
 05/04 Frimid-term break  
Lecture 1710/04 WedNeural Networks, backprop  
Lecture 1812/04 FriNeural Networks, architectures  
Lecture 1917/04 WedNeural architectures  
Lecture 2019/04 FriVariational autoencoder  
Lecture 2124/04 WedGenerative adversarial networks  
Lecture 2226/04 FriReinforcement Learning  
 01/05 WedLabor day  
Lecture 2303/05 FriLanguge models  
Lecture 2408/05 WedPretraining  
Lecture 2510/05 FriLarge language models  

COMP5212

, , 1900

SlidesDateTopicReadingsAssignments
Lecture 031/01 WedIntroduction  
Lecture 102/02 FriMath basics  
Lecture 207/02 WedSupervised learning basics  
Lecture 309/02 FriLogistic regression  
Lecture 414/02 WedGeneralized linear models, classification  
Lecture 516/02 FriKernel methods  
Lecture 621/02 WedSVM  
Lecture 723/02 FriNaive Bayes  
Lecture 828/02 WedMLE, MAP  
Lecture 901/03 FriGradient descent, SGD, Newton’s method  
Lecture 1006/03 WedGeneralization, bias-variance tradeoff  
Lecture 1108/03 FriClustering  
Lecture 1213/03 WedExpectation Maximization  
Lecture 1315/03 FriPCA/ICA  
Lecture 1420/03 Wedmid-term exam  
Lecture 1522/03 FriProbabilistic Graphical Models  
Lecture 1627/03 WedHMM  
 29/03 FriGood Friday holiday  
 03/04 Wedmid-term break  
 05/04 Frimid-term break  
Lecture 1710/04 WedNeural Networks, backprop  
Lecture 1812/04 FriNeural Networks, architectures  
Lecture 1917/04 WedNeural architectures  
Lecture 2019/04 FriVariational autoencoder  
Lecture 2124/04 WedGenerative adversarial networks  
Lecture 2226/04 FriReinforcement Learning  
 01/05 WedLabor day  
Lecture 2303/05 FriLanguge models  
Lecture 2408/05 WedPretraining  
Lecture 2510/05 FriLarge language models