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Taxonomy of Machine Learning

mochine learning

unsupervised supervised reinforcement
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Supervised Learning



Housing Price Prediction

Given: a dataset that contains n samples

(x®, y®), .. (x®, )

Task: if a residence has x square feet, predict its price?
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Housing Price Prediction

Given: a dataset that contains n samples

(x®, y®), . (x®, )

Task: if a residence has x square feet, predict its price?
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Language Models

We are holding a conference

pNLM (W)

Neural Language Model
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Large Language Models

In a shocking finding, scientist discovered a herd of unicorns living in a remote,
previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

The scientist named the population, after their distinctive horn, Ovid’s
Unicorn. These four-horned, silver-white unicorns were previously unknown
to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and
several companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the valley had

what appeared to be a natural fountain, surrounded by two peaks of rock and
silver snow.

Pérez and the others then ventured further into the valley. “By the time we
reached the top of one peak, the water looked blue, with some crystals on
top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures
could be seen from the air without having to move too much to see them - they
were so close they could touch their horns.
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Large Language Models

Context — Please unscramble the letters into a word, and write that word:
taefed =

Target Completion — defeat

Context — L’analyse de la distribution de fréquence des stades larvaires d’I.
verticalis dans une série d’étangs a également démontré que les larves
mdles étaient & des stades plus avancés que les larves femelles. =

Target Completion — Analysis of instar distributions of larval I. verticalis collected from
a series of ponds also indicated that males were in more advanced instars

than females.

Context — (Q: What is 95 times 457
A:

Target Completion — 4275

Brown et al.’20



Classification

CAT

Labels are discrete
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Logistic Regression

Given a training set {(x{), y()) for i =1,...,n} let y{) € {0,1}.
Want hy(x) € [0,1]. Let's pick a smooth function:

ho(x) = g(0"x) Link Function

There are many options of g....

g 1
g(z) = 1+ e-2 Sigmoid Function

Logistic Function

How do we interpret hg(x)?
0.5

P(y = 1| x;60) = hy(x)
Ply =0| x;0) =1 — hy(x)
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Logistic Regression

Let's write the Likelihood function. Recall:

Py =1 x;0) =hg(x)
Py =0| x;0) =1 — hy(x)

Then,

L(6) =P(y | X:0) = [ [ p(y'” | x17:8)  \We want to express “if-then” logics, how?
=1

n
= [T A0y (1 = ()"
=1
Taking logs to compute the log likelihood ¢(6) we have:

0(0) =log L(6) = "y log hy(x) + (1 — y)log(1 — he(x'))  Maximum likelihood estimation

i=1
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Multi-Label Classification

Given a training set {(x(l),y(l)), cee (x(”),y(”))}, y(i) e{l,2,---,k},
we aim to model the distribution p(y | x; 0)

Categorical distribution, p(y = k|x;0) = ¢,

s.t. i ¢p. =1
i=1
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Softmax Function

Softmax: R¥ — RX

exp(tl)
Z?:l exp(t;)

softmax(ti,...,t) =

exp.(t k)
Z§:1 exp(t;)

The denominator is a normalization constant
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Multi-Label Classification

Let (t1,...,tx) = (0{z,---,0, x)

exp (6, )
P(y =1 ‘ I, 0) Z;’:l exp(HJTa:)
5 = softmax(ty,--- ,tx) = .
Ply=k|xz:6 exp (6, )
( ‘ ) Z?zl exp(BJTa:)
exp(t;) exp(6;' z)

Ply=1i|z;0) = ¢ = Z§:1 exp(¢;) ) 53?—1 exp(; z)
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Multi-Label Classification

k
Zj:l exp(t;) j=1 exp(HjTa:)

n T )
0(0) = Z —log ( exp(@y(i)x ) ) Negative log likelihood
i=1 Z§=1 eXP(QjTiU(i) )

Cross-entropy loss  fe. : RF x {1,...,k} = Ry

exp(? - ' i i
leo((t1, - ., tk),y) = —log ( - p{ty) ) 00) =) Lee((6] 29, ..., 00 2D),y®)
S:j—l exp(¢;) ‘
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Reinforcement Learning
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:0: AlphaGo  Lee Sedol
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Atari Breakout Game

, o=1 3 |
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

Reinforcement Learning

© RL can collect data interactively

Environment

State, Reward Action

20



Train, Validation, Test

Training data is the data we see and use during model development

Validation dataset is another set of pairs { (XD, D), ..., (R $0my)

Does not overlap with training dataset

Test dataset is another set of pairs { (", 31, ..., G, D))
Does not overlap with training and validation dataset
Completely unseen before deployment

Realistic setting
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Neural Networks,
Backpropagation



Logistic Function as a Graph

1
14+ exp(—(wo + >, w; X;))

Output, o(x) = o(wy + Z w; X

Sigmoid Unit

E ner = Z W X - :

11 = =
—0 o = G(netr) "d

Computation Graph
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Neural Networks

* fcan be a non-linear function
* X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

* Neural networks - Represent f by network of sigmoid (more

recently ReLU — next lecture) units :




Multilayer Networks of Sigmoid Units

Output

4000 _ _ .

a hesad
& hid

{ + hod

: * had

] ¢ hawed
1 » heard
| © heed

] < hud

» who'd
~ hood

Hidden ¢
layer

Input
layer

Two layers of logistic units

Highly non-linear decision surface
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Expressive Capabilities of ANNs

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers

[Cybenko 1988].
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Prediction using Neural Networks

Prediction — Given neural network (hidden units and weights), use it to predict
the label of a test point

Forward Propagation —
Start from input layer
For each subsequent layer, compute output of sigmoid unit

Sigmoid unit: O(X) — U(’wo + Z wimi)
1

1-Hidden layer, o(x) = o |wy+ o (1wl i ool
1 output NN: (x) ( O zh: ho (wo z@: i T;)
\—#
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Gradient descent for training NNs

oL
We—Ww-—qo- —
ow

Gradient decent for 1 node:

Sigmoid Unit

{L——0

0 = G(ner) =

-net
|l +e

do  Odo Onet
Ow; Onet Ow;

= o(1 — 0)x;
Chain rule

28



Univariate Chain Rule

@ We've already been using the univariate Chain Rule.

@ Recall: if f(x) and x(t) are univariate functions, then

d df dx
S _ |
1t X)) = -4

Example: 7 — wx+ b
y =0(z2)
1 2
L = 5()’ — t)

Let’'s compute the loss derivatives.

29



Example of Chain Rule

L = %(O'(WX + b) — t)?

oL 0O [1 5
ow ~ ow |27 TR
1 O 5
— 2({)W(a(v\/x—l—b) — t)

= (o(wx + b) — t)o’ (wx + b)aiw(wx + b)
= (o(wx + b) — t)o’ (wx + b)x
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Using Chain Rules

Computing the derivatives:

Computing the loss: a7
_ y 7
z=wx-+b dz i
y = o2 =@
ﬁzg(y—t)z 8_52%)(
ow  dz
oL dL
ob ~ dz

The goal isn’t to obtain closed-form solutions, but to be able to write a
program that efficiently computes the derivatives

31



Univariate Chain Rule

Compute Loss
—_—)

t

-

Compute Derivatives
—

32



A Slightly More Convenient Notation

Use y to denote the derivative dL/dy, sometimes called the error signal

Computing the loss: Computing the derivatives:
z=wx+b y=y—t
y = o(2) z=yo'(z)
1 wW=2ZX
L=(y—t) _
Sy — 1) -

33



Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 17
This requires the multivariate Chain Rule!

< > SOy0) =5 S+
Example:

df Ofdx Of dy

f —= i — = |

xoy)=y+e dt Oxdt Oy dt
x(t) = cost

y(t) = $2 = (ye”)-(—sint) + (1 + xe¥) - 2t

34



df

dt

- Ox dt

Multivariate Chain Rule

Mathematical expressions
to be evaluated

/ ™\

Of de Of dy

Oy dt

N/

Values already computed
by our program

35
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Another Example
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Backpropagation
Let v1,..., vy be a topological ordering of the computation graph

(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

For:=1,...,N

forward pass .
Compute v; as a function of Pa(v;)

backward pass

[1] David Rumelhart, Geoffrey Hinton, Ronald Williams. Learning representations

by back-propagating errors. Nature. 1986 -



Backpropagation

Multilayer Perceptron (multiple outputs): Backward pass:

Forward pass: L=1

(1) w(Q) (2) v/, — —
NN = 3w+ b = e
1 1 : (2) —
J W,.," =— Yk h;
. \ \ k

1>\’<Z1—>h1><fyl\ hi = o(z) R
> > ko = Yk
$2—+22—>h2 +y2/ Yk = Z WlSi)hi T b§< ) h_ — Z .)Tkw(z)
i S ki
bg)//v‘T b(z)//”T 1 , k
1 2 2 I
e 4 wid L=352 n—t) 7 = hio (z)
Wes Woyo P
plt) — 7
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Backpropagation

In vectorized form:
Backward pass:

(1) (2) _
W W\ t\ 71
y=L(y—t
X >/, »h >y )E y (y )
/ /‘ W@®) =yh'
bt!) b2 b —y
Forward pass: h — W(Z)Ty
z = V\(I(l))x + b Z=ho 0‘/(2)
h =o0(z -
y = Wh + b®) W) = 2x
b(1) =Z

1
L=|t—yl?
St =yl
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Backpropagation

@ Backprop is used to train the overwhelming majority of neural nets today.

e Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop i1s believed to be neurally implausible.

e No evidence for biological signals analogous to error derivatives.

o All the biologically plausible alternatives we know about learn much
more slowly (on computers).

@ So how on earth does the brain learn?

40



Stochastic Gradient Descent

Vanilla backpropagation training is slow with lot of data and lot of weights

Denote the loss of a single data example x; as [(x;), the training loss L is:

N is the size of the

1 N
L = ‘prdaml(x) ~ N Z l(xi) entire training dataset
=1

This is slow on the entire training dataset, thus we approximate it:

VL

V

1 n
) A V— PILED
=1

41

nis the size of a

random minibatch n can be as small as one
(batch size)



A Recipe for

Background , ,
: Machine Learning

1. Given training data:

{miv Y, ’fil

4. Train with SGD:

(take small steps
opposite the gradient)
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Thank You!
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