## COMP 4901B Large Language Models

# Reinforcement Learning from Human Feedback (RLHF)

Junxian He

Oct 17, 2025

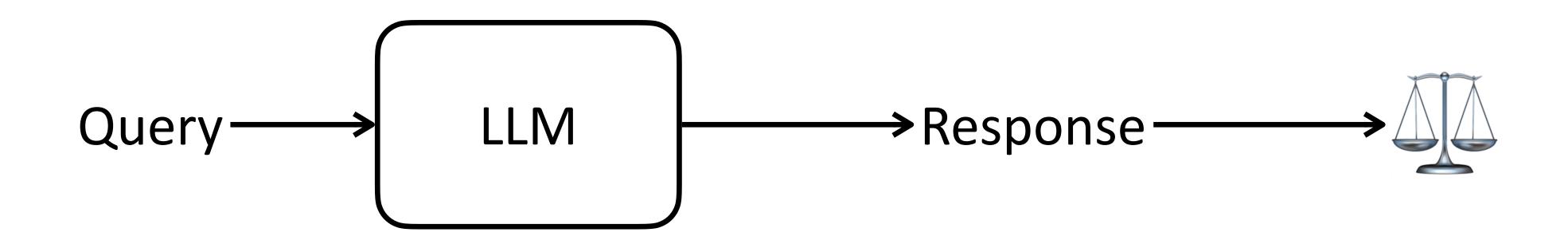
#### SFT

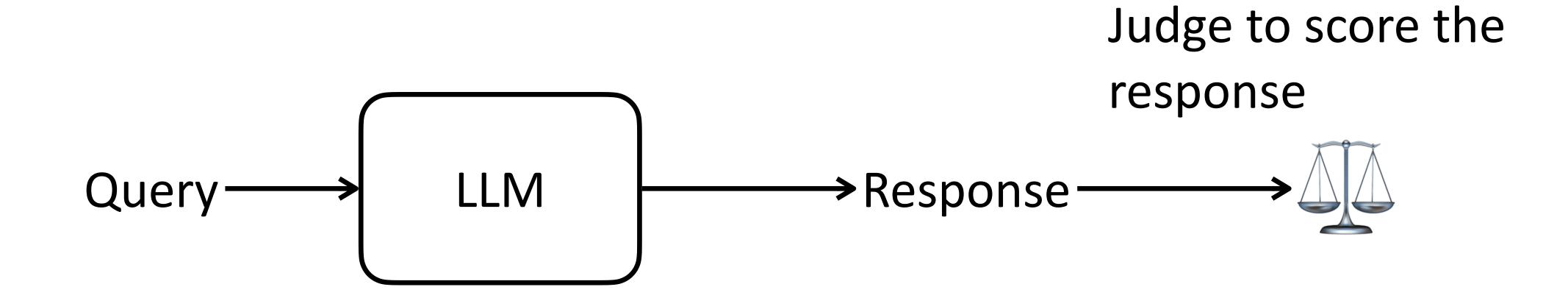
- Imitation external data
- Performance limited by external data

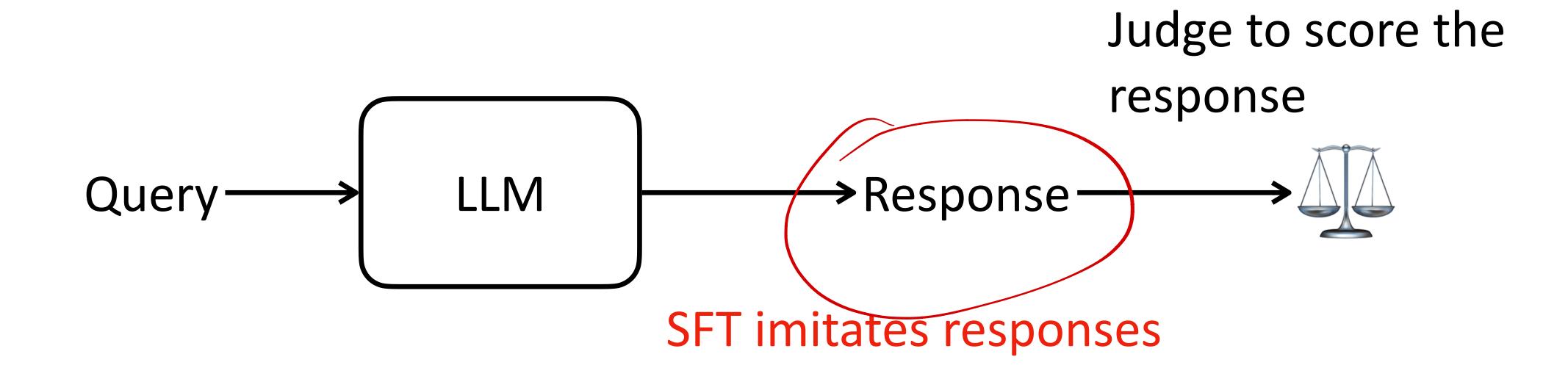
RL

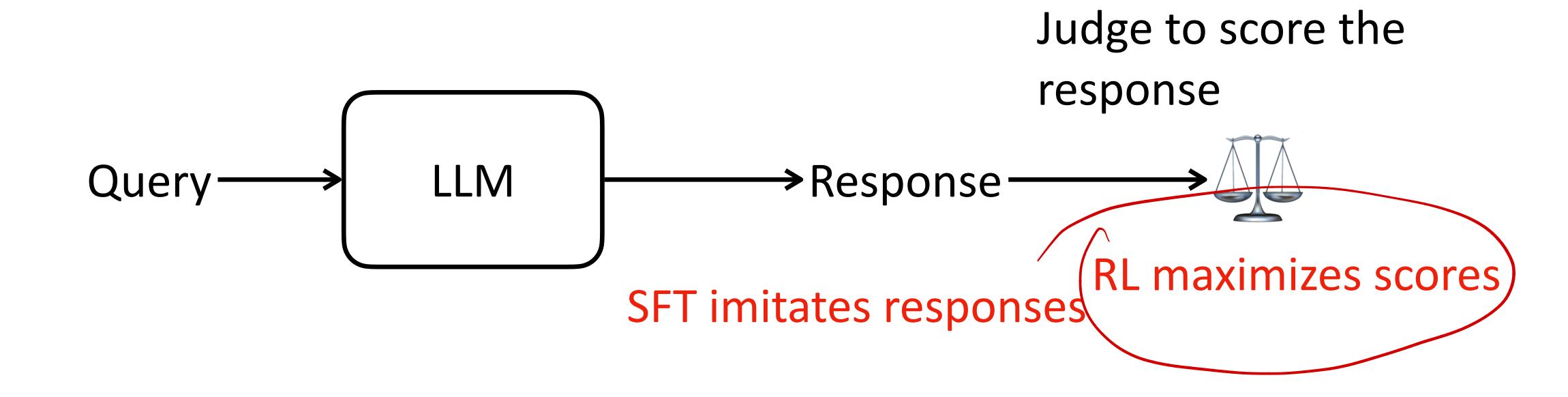
- Maximize reward rather than imitation
- The model may surpass humans (e.g., AlphaGo)

Cannolvelin Cost

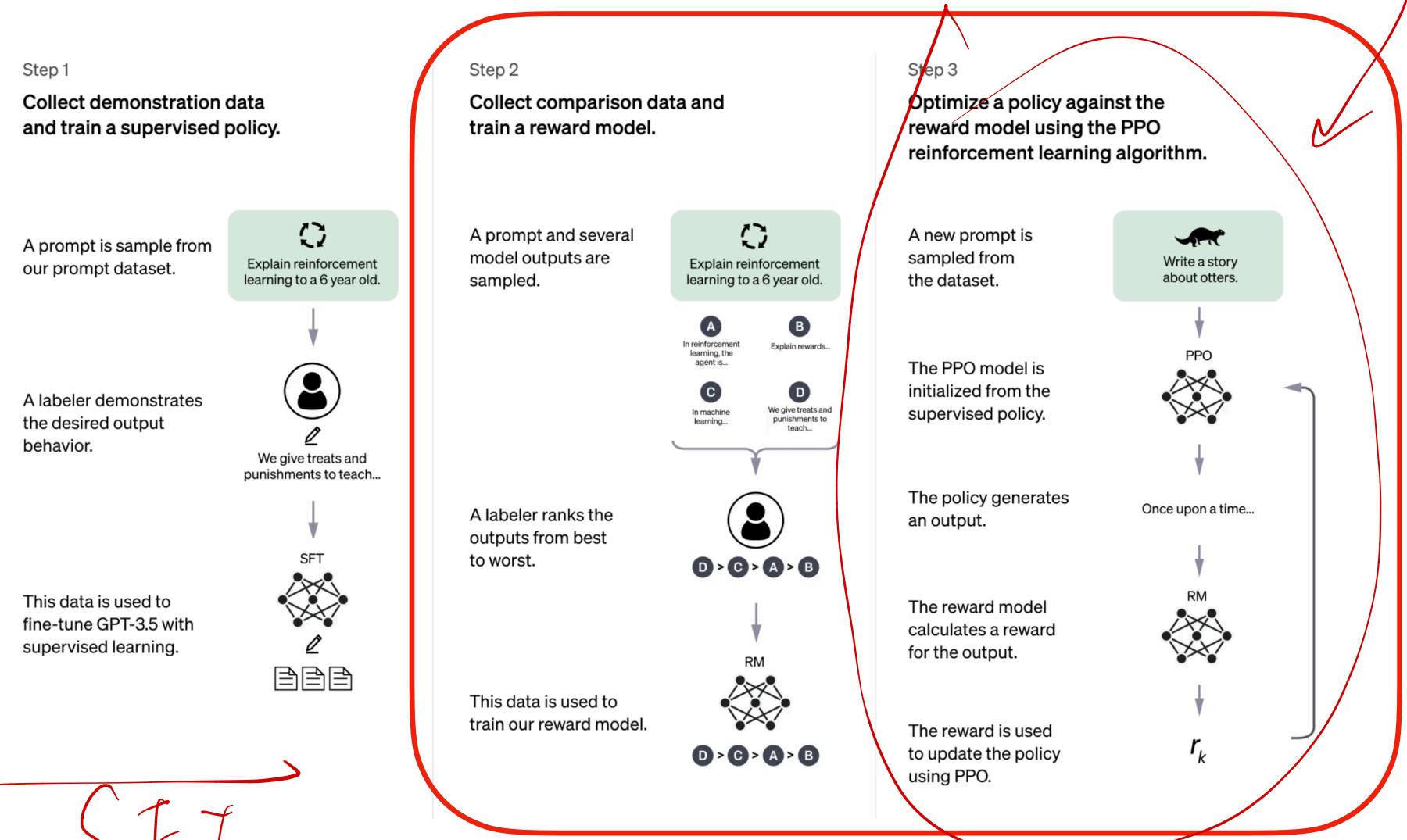








### Review: Reinforcement Learning in LLMs



#### Review: From Imitation to Optimization

#### Review: From Imitation to Optimization

#### **Imitation (SFT)**

Fit  $\hat{p}(y|x) \approx p^*(y|x)$  for some reference distribution  $p^*(y|x)$ 

- Pure generative modeling perspective
- Requires samples from reference policy

#### Review: From Imitation to Optimization

#### **Imitation (SFT)**

Fit  $\hat{p}(y|x) \approx p^*(y|x)$  for some reference distribution  $p^*(y|x)$ 

- Pure generative modeling perspective
- Requires samples from reference policy

#### **Optimization (RLHF)**

Find  $\hat{p}(y|x)$  such that  $\max_{p} E_{p}[R(y,x)]$  for a reward R(y,x)

- Maximize some reward function that we can measure
  - LMs are policies, not a model of some distribution

Objective:

$$\theta = \arg\max_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)} R(x)$$

#### Objective:

$$\theta = \underset{\theta}{\arg\max} \mathbb{E}_{x \sim p_{\theta}(x)} R(x)$$

X is the language sequence, R is the reward function, scores the generated response (we can consider R as a human or a model)

Objective:



X is the language sequence, R is the response (we can consider R as a de human or a model)

and the reneral

unvelaced to A

How to do gradients over this objective?

A is discrete

#### Objective:

$$\theta = \underset{\theta}{\operatorname{arg\,max}} \mathbb{E}_{x \sim p_{\theta}(x)} R(x)$$

X is the language sequence, R is the reward function, scores the generated response (we can consider R as a human or a model)

How to do gradients over this objective?

Gradient estimation (policy gradient):

Objective:

$$\theta = \arg\max_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)} R(x)$$

X is the language sequence, R is the reward function, scores the generated response (we can consider R as a human or a model)

How to do gradients over this objective?

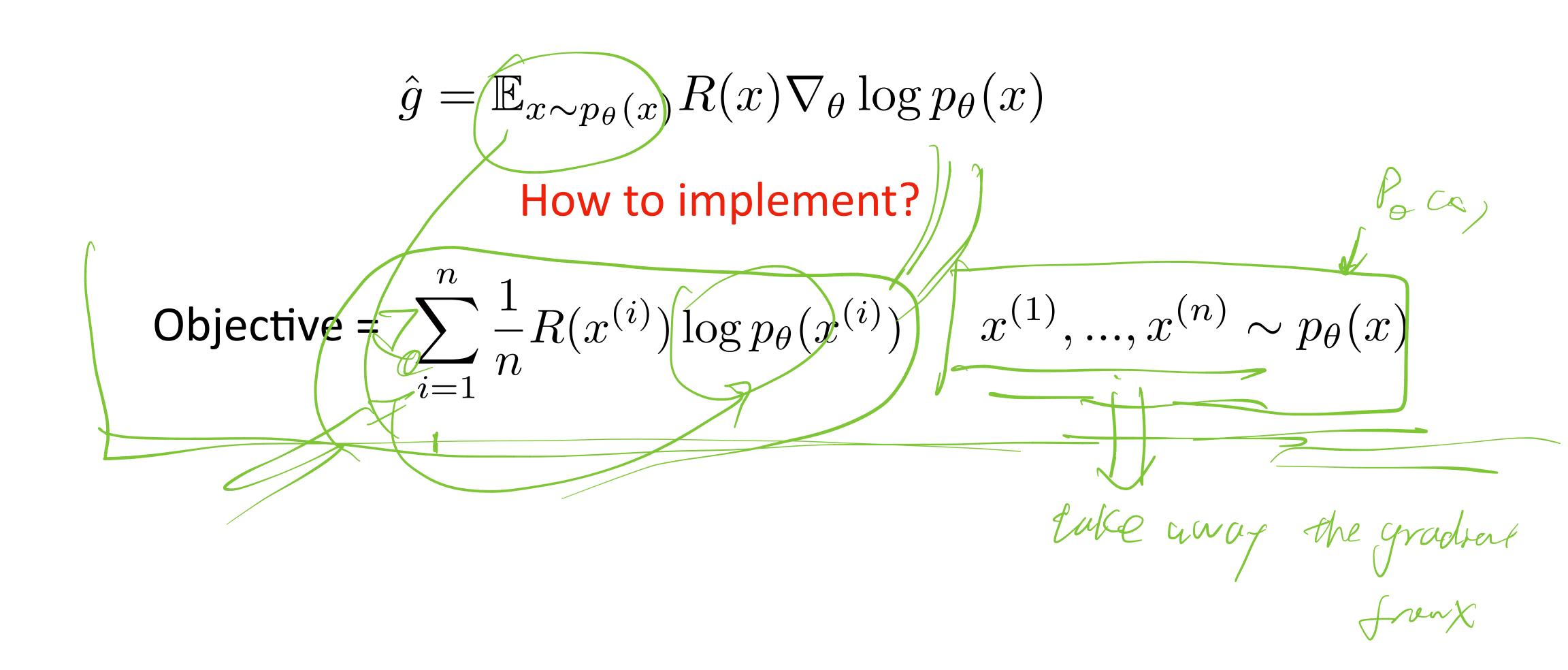
Gradient estimation (policy gradient):

$$\hat{g} = \mathbb{E}_{x \sim p_{\theta}(x)} R(x) \nabla_{\theta} \log p_{\theta}(x)$$

 $\hat{g}$  is the gradient (not objective)

$$\hat{g} = \mathbb{E}_{x \sim p_{\theta}(x)} R(x) \nabla_{\theta} \log p_{\theta}(x)$$

$$\hat{g} = \mathbb{E}_{x \sim p_{ heta}(x)} R(x) \nabla_{ heta} \log p_{ heta}(x)$$
How to implement?



$$\hat{g} = \mathbb{E}_{x \sim p_{\theta}(x)} R(x) \nabla_{\theta} \log p_{\theta}(x)$$

How to implement?

Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

This objective looks kinda like weighted log likelihood maximization?

$$\hat{g} = \mathbb{E}_{x \sim p_{\theta}(x)} R(x) \nabla_{\theta} \log p_{\theta}(x)$$

How to implement?

Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

This objective looks kinda like weighted log likelihood maximization?

What is different?

$$\hat{g} = \mathbb{E}_{x \sim p_{\theta}(x)} R(x) \nabla_{\theta} \log p_{\theta}(x)$$

How to implement?

Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

This objective looks kinda like weighted log likelihood maximization?

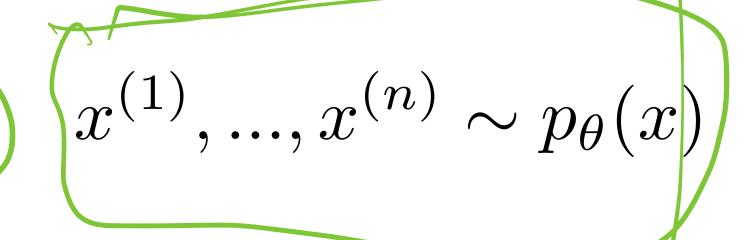
What is different?

1. Have a weight of R(x)

$$\hat{g} = \mathbb{E}_{x \sim p_{\theta}(x)} R(x) \nabla_{\theta} \log p_{\theta}(x)$$
 How to implement? 
$$\text{down modificative} = \sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)}) \qquad x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$$
 This objective looks kinda like weighted log likelihood maximization?

$$\hat{g} = \mathbb{E}_{x \sim p_{\theta}(x)} R(x) \nabla_{\theta} \log p_{\theta}(x)$$

$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$



- What is different? model is changing

  1. Have a weight of R(x)

  What is different? model is changing than any training
- 2. The data x is sampled from the model itself, not from a static dataset

Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

- 1. Have a weight of R(x)
- 2. The data x is sampled from the model itself, not from a static dataset

Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

- 1. Have a weight of R(x)
- 2. The data x is sampled from the model itself, not from a static dataset

This equation is not that complex, just view it as a weighted likelihood maximization

Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

- 1. Have a weight of R(x)
- 2. The data x is sampled from the model itself, not from a static dataset

This equation is not that complex, just view it as a weighted likelihood maximization

This is the simplest form of RL, many other RL algorithms (PPO, GRPO) are more like variants of this simple equation with the same spirit

Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

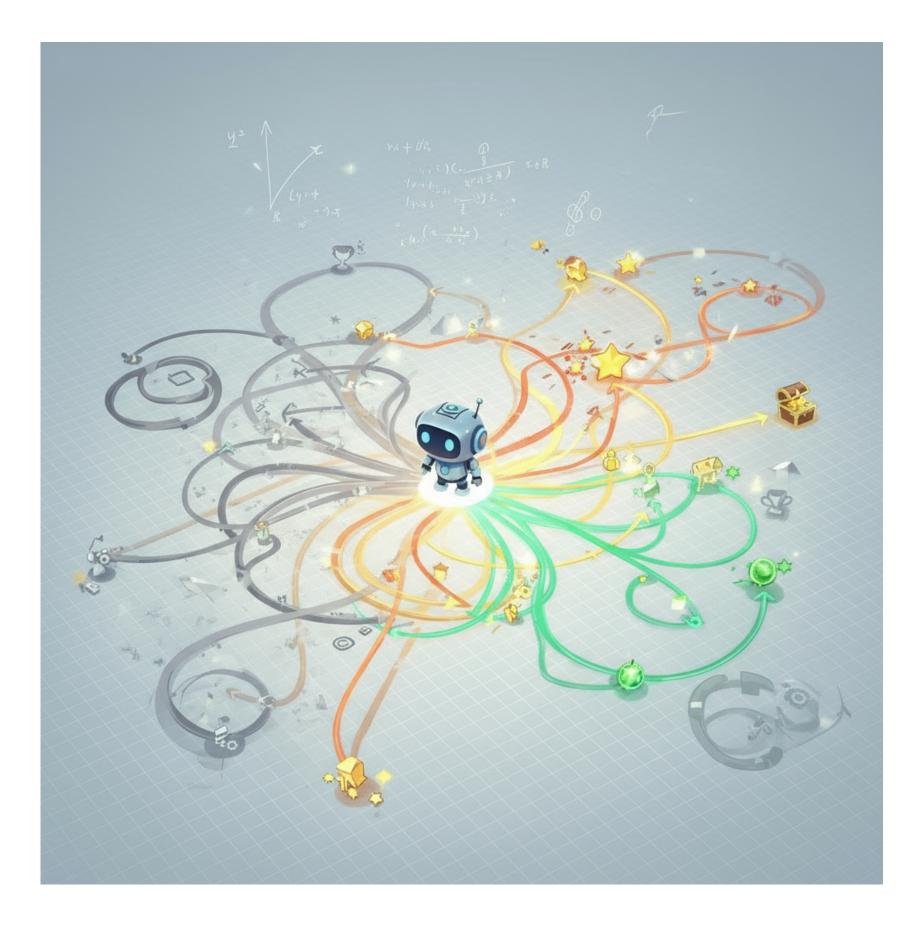
- 1. Have a weight of R(x)
- 2. The data x is sampled from the model itself, not from a static dataset

This equation is not that complex, just view it as a weighted likelihood maximization

This is the simplest form of RL, many other RL algorithms (PPO, GRPO) are more like variants of this simple equation with the same spirit

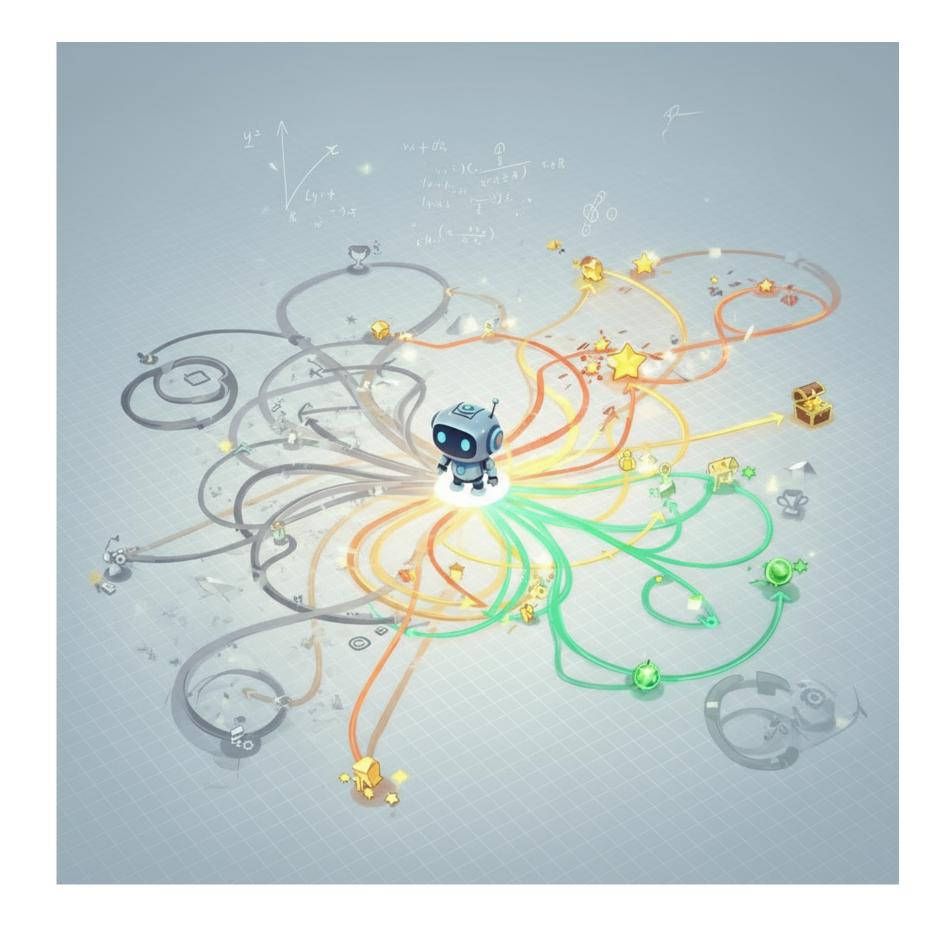
We can see why RL is called self-improving, and it is trained by "synthetic data"

Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 



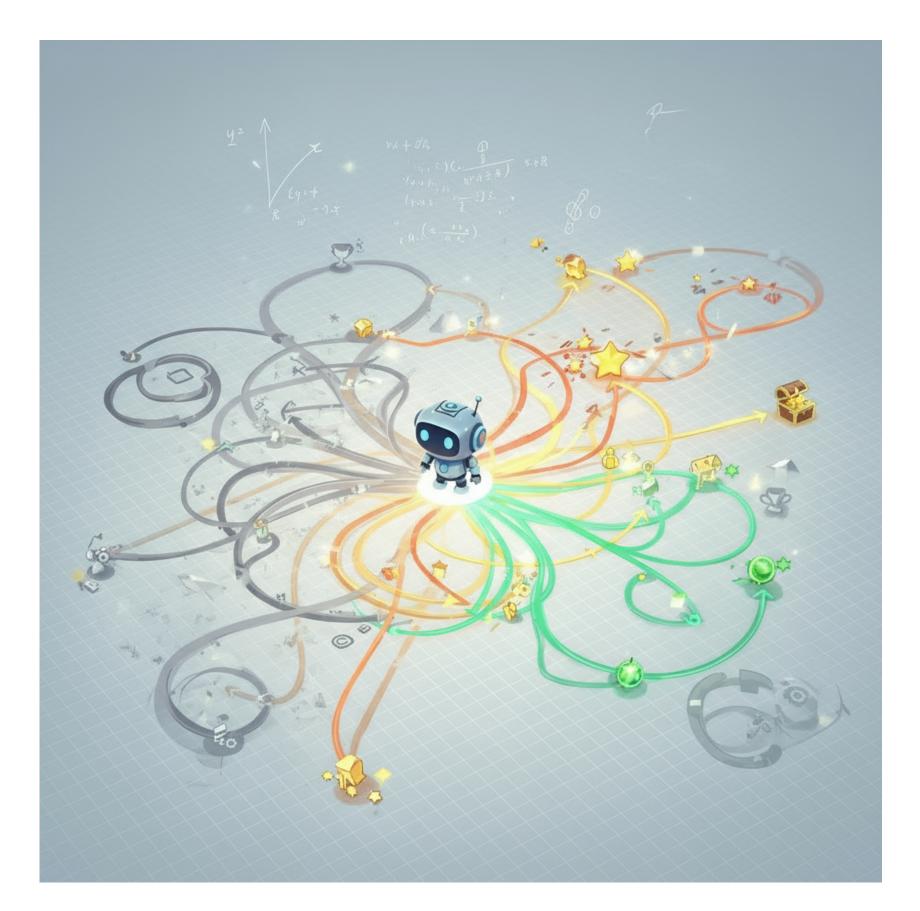
Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

1. Sample data from the model (or we call policy) itself (exploration)



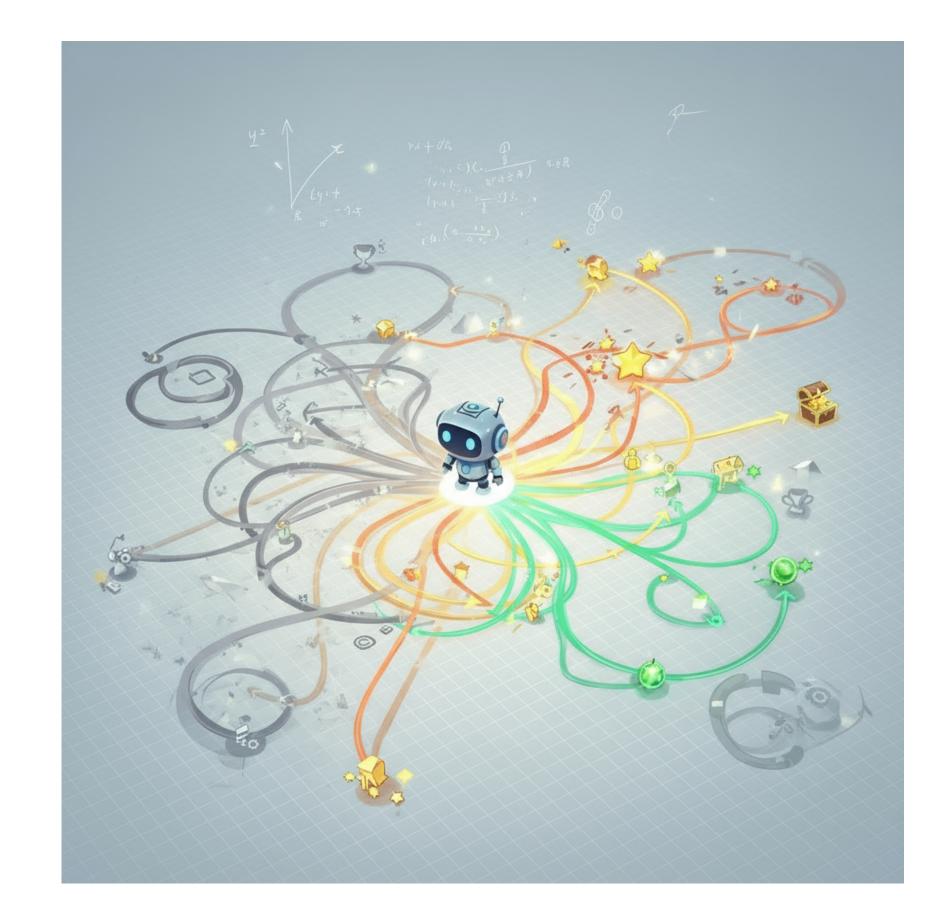
Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

- 1. Sample data from the model (or we call policy) itself (exploration)
- 2. A reward function judges whether the explored data is good or bad



Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

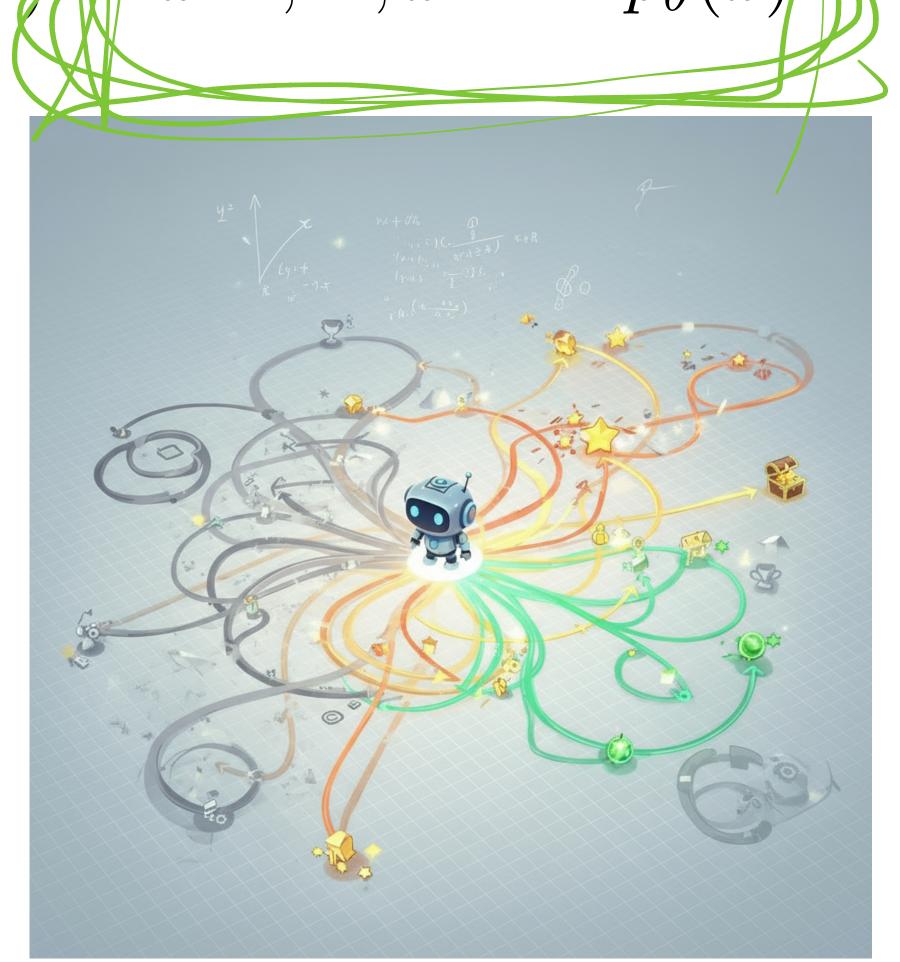
Reinforcement learning is a mixed art of both training and inference during training time



Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

Reinforcement learning is a mixed art of both training and inference during training time

Why?



Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)}) \qquad x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$$
 Training

## Review: REINFORCE / Policy Gradient

Objective = 
$$\sum_{i=1}^n \frac{1}{n} R(x^{(i)}) \log p_\theta(x^{(i)}) \qquad x^{(1)}, ..., x^{(n)} \sim p_\theta(x)$$
 Inference

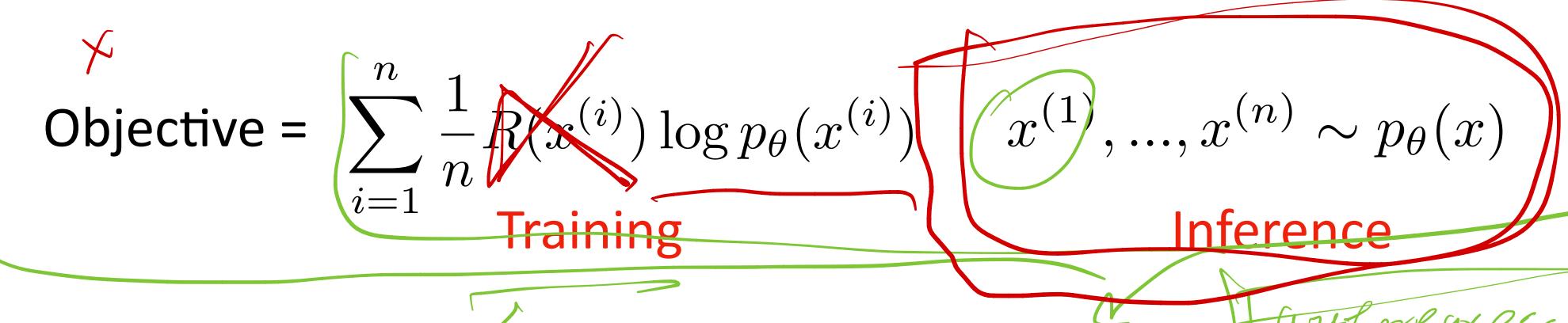
## Review: REINFORCE / Policy Gradient

Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)}) \qquad x^{(1)}, ..., x^{(n)} \checkmark p_{\theta}(x)$$
Training Inference

Each training step, the algorithm needs to run inference again

Munging

## Review: REINFORCE / Policy Gradient



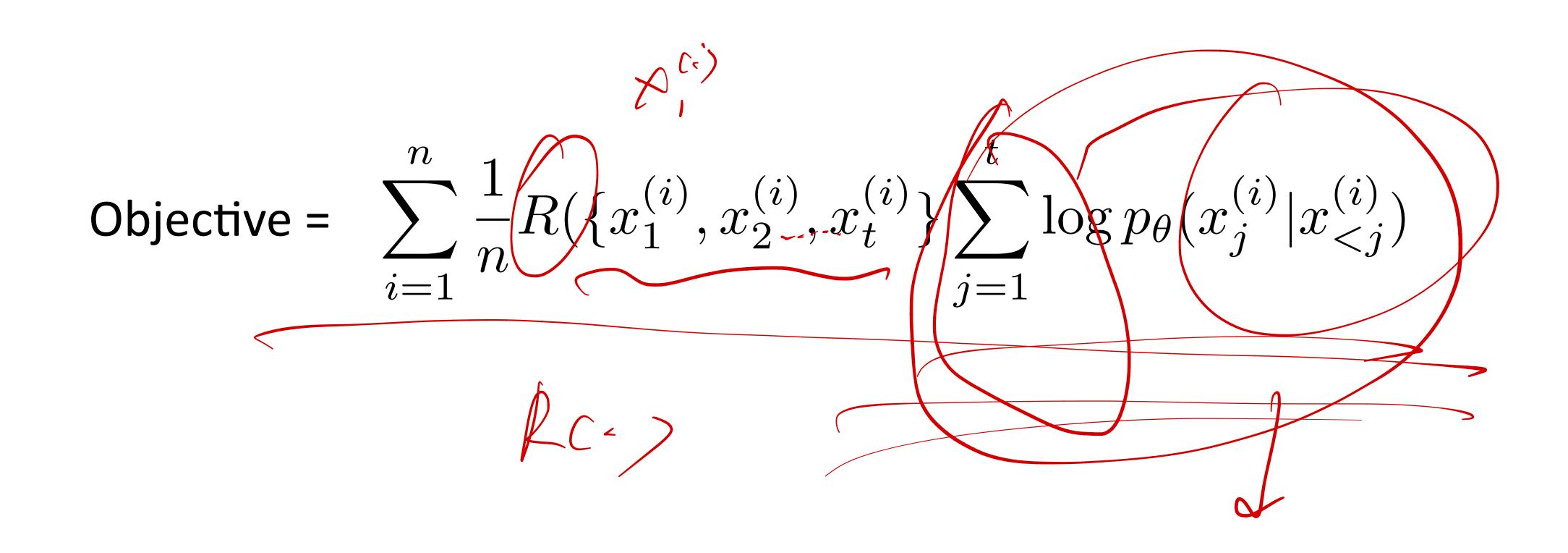
Each training step, the algorithm needs to run inference again

Is this efficient?

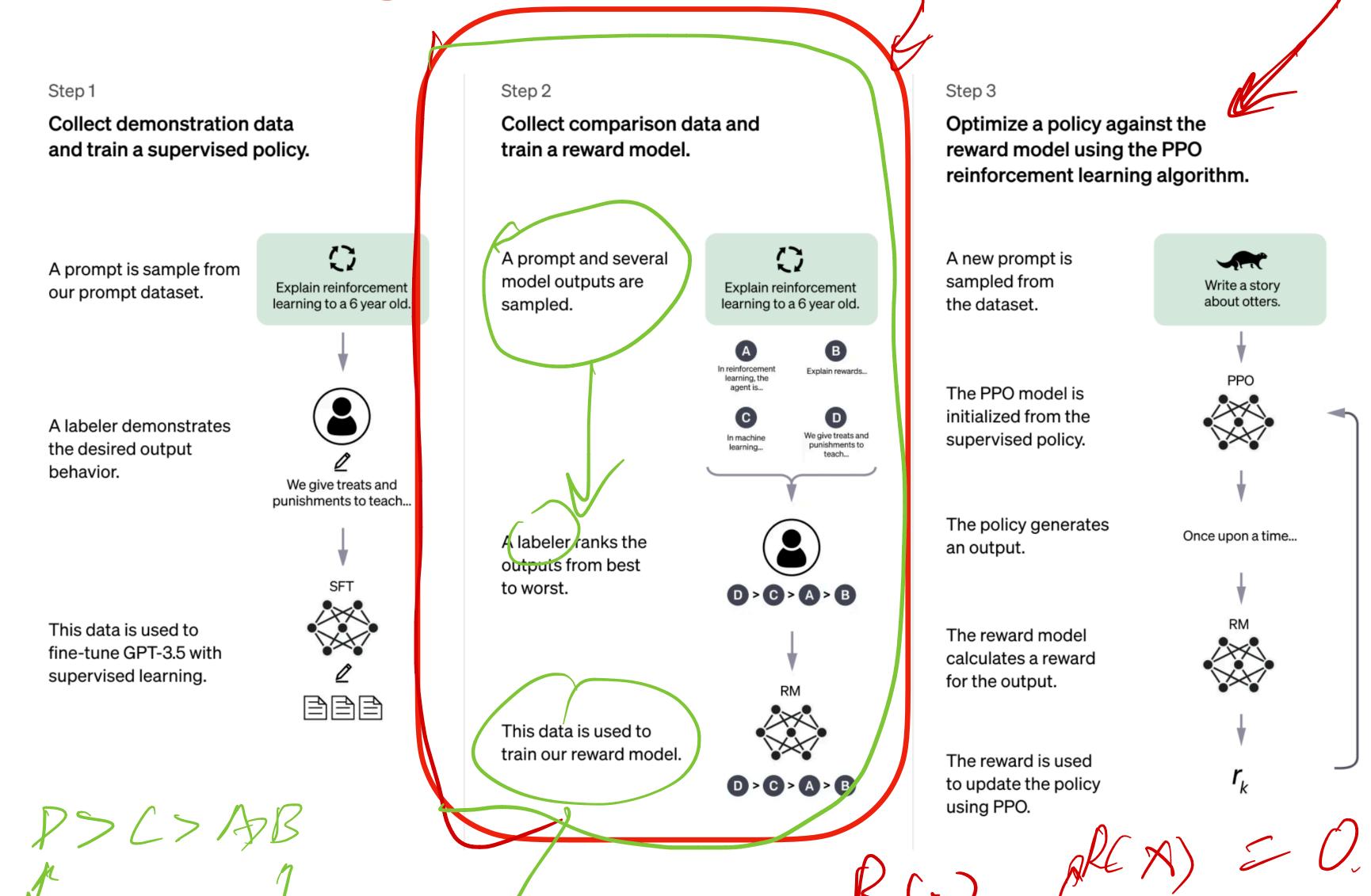
Couloregressive is seprential in nuture time complexity of CC

L. seguence Length

# REINFORCE / Policy Gradient for Language Models

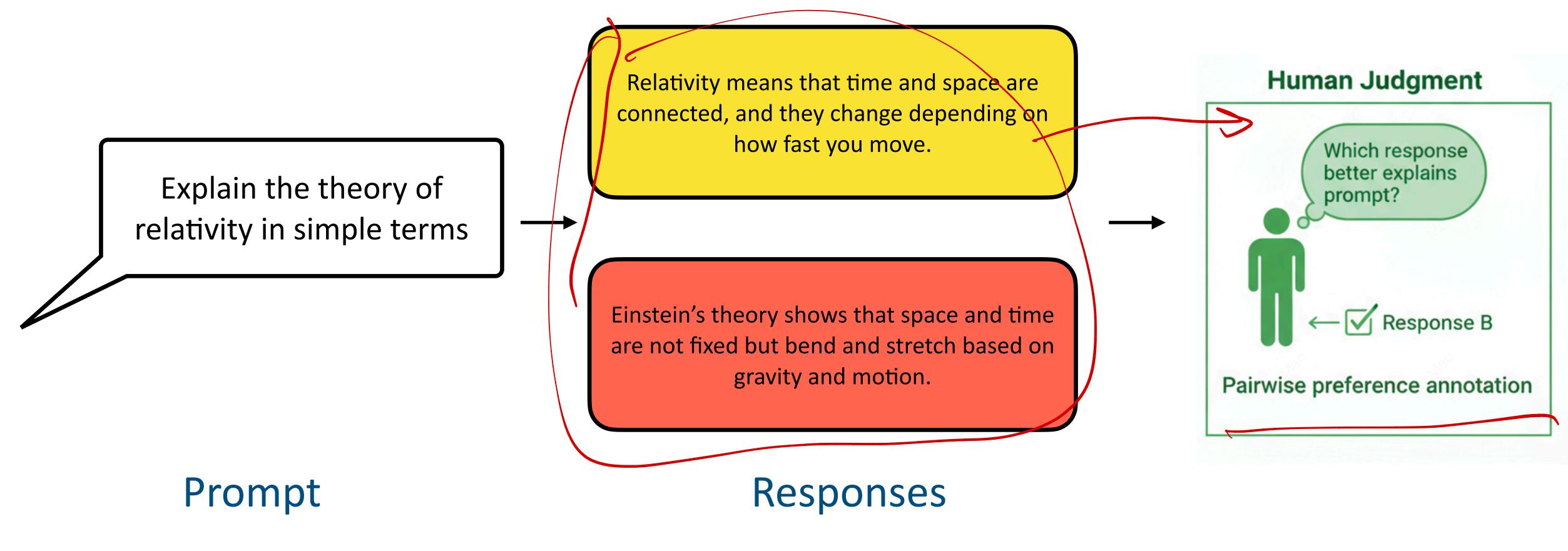


Training a Reward Model in RLHF



13

## Reward Model in RLHF: Pairwise Human Annotation



human - Jeore (A)

Training a Reward Model

binary classificating togistic regression, whether you is preferred over

Suppose we have K responses and have them ranked by humans, then for/c all possible pairs of responses,  $y_w$  is the preferred one  $y_l$  is the less preferred one, the objective of reward model  $r_{\theta}(x, y)$  is: Objective =  $-\frac{1}{\binom{K}{2}} E_{(x,y_w,y_l) \sim D} \left[ \log \left( \sigma \left( r_{\theta} \left( x,y_w \right) - r_{\theta} \left( x,y_l \right) \right) \right) \right]$ 

Yo CX, X) -

logistic regression NN log 6 (fcx)) ton Grexyn)-rex. Ju)

### Training a Reward Model

Suppose we have K responses and have them ranked by humans, then for all possible pairs of responses,  $y_w$  is the preferred one,  $y_l$  is the less preferred one, the objective of reward model  $r_{\theta}(x, y)$  is:

Objective = 
$$-\frac{1}{\binom{K}{2}} E_{(x,y_w,y_l)\sim D} \left[\log \left(\sigma \left(r_{\theta} \left(x,y_w\right) - r_{\theta} \left(x,y_l\right)\right)\right)\right]$$

In practice, we can just sample a subset of pairs, rather than enumerating all pairs

## RLHF >

R(X)

0, 7

Step 1

Collect demonstration data and train a supervised policy.

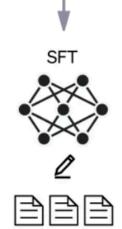
A prompt is sample from our prompt dataset.

Explain reinforcement learning to a 6 year old.

A labeler demonstrates the desired output behavior.



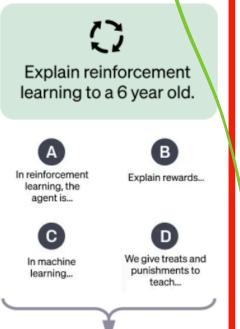
This data is used to fine-tune GPT-3.5 with supervised learning.



Step 2

Collect comparison data and train a reward model.

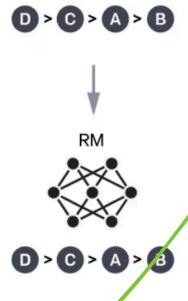
A prompt and several model outputs are sampled.



A labeler ranks the outputs from best to worst.

This data is used to

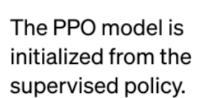
train our reward model.



Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

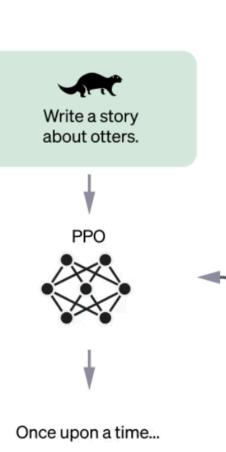
A new prompt is sampled from the dataset.



The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.



RM

 $r_{k}$ 

After we have the reward model, we fix it and do RL, for example, with REINFORCE

Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

### **RLHF**

After we have the reward model, we fix it and do RL, for example, with REINFORCE

Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

But in fact, the original RLHF uses a more complex objective called Proximal Policy Optimization (PPO): (no need to know the exact details in this course)

$$L^{ ext{PPO}}( heta) = \mathbb{E}_t \left[ \min \left( rac{p_{ heta}(a_t \mid s_t)}{p_{ heta_{ ext{old}}}(a_t \mid s_t)} \hat{A}_t, \operatorname{clip}\left(rac{p_{ heta}(a_t \mid s_t)}{p_{ heta_{ ext{old}}}(a_t \mid s_t)}, 1 - \epsilon, 1 + \epsilon 
ight) \hat{A}_t 
ight) 
ight]$$
 language models to follow instructions with human feedback. 2022

Ouyang et al. Training language models to follow instructions with human feedback. 2022

rule-hused RLHF

Cleeseek-R

After we have the reward model, we fix it and do RL, for example, with

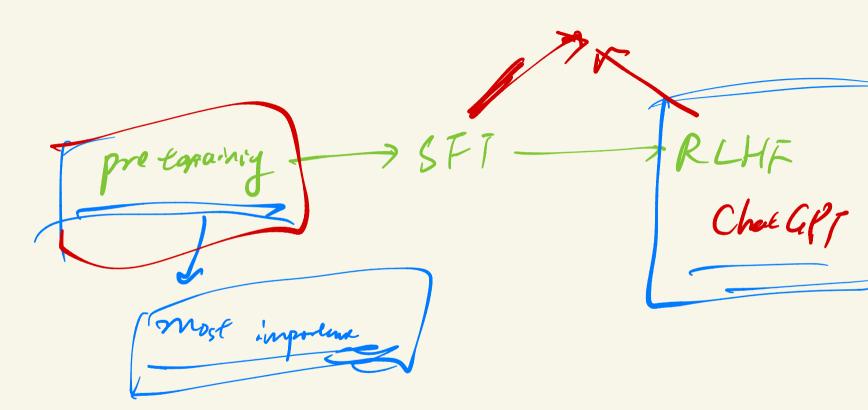
REINFORCE

Objective = 
$$\sum_{i=1}^{n} \frac{1}{n} R(x^{(i)}) \log p_{\theta}(x^{(i)})$$
  $x^{(1)}, ..., x^{(n)} \sim p_{\theta}(x)$ 

But in fact, the original RLHF uses a more complex objective called Proximal Policy Optimization (PPO): (no need to know the exact details in this course)

$$L^{ ext{PPO}}( heta) = \mathbb{E}_t \left[ \min \left( rac{p_{ heta}(a_t \mid s_t)}{p_{ heta_{ ext{old}}}(a_t \mid s_t)} \hat{A}_t, \; \operatorname{clip}\!\left( rac{p_{ heta}(a_t \mid s_t)}{p_{ heta_{ ext{old}}}(a_t \mid s_t)}, 1 - \epsilon, 1 + \epsilon 
ight) \hat{A}_t 
ight) 
ight]$$

#### RLHF is one method for "preference learning"

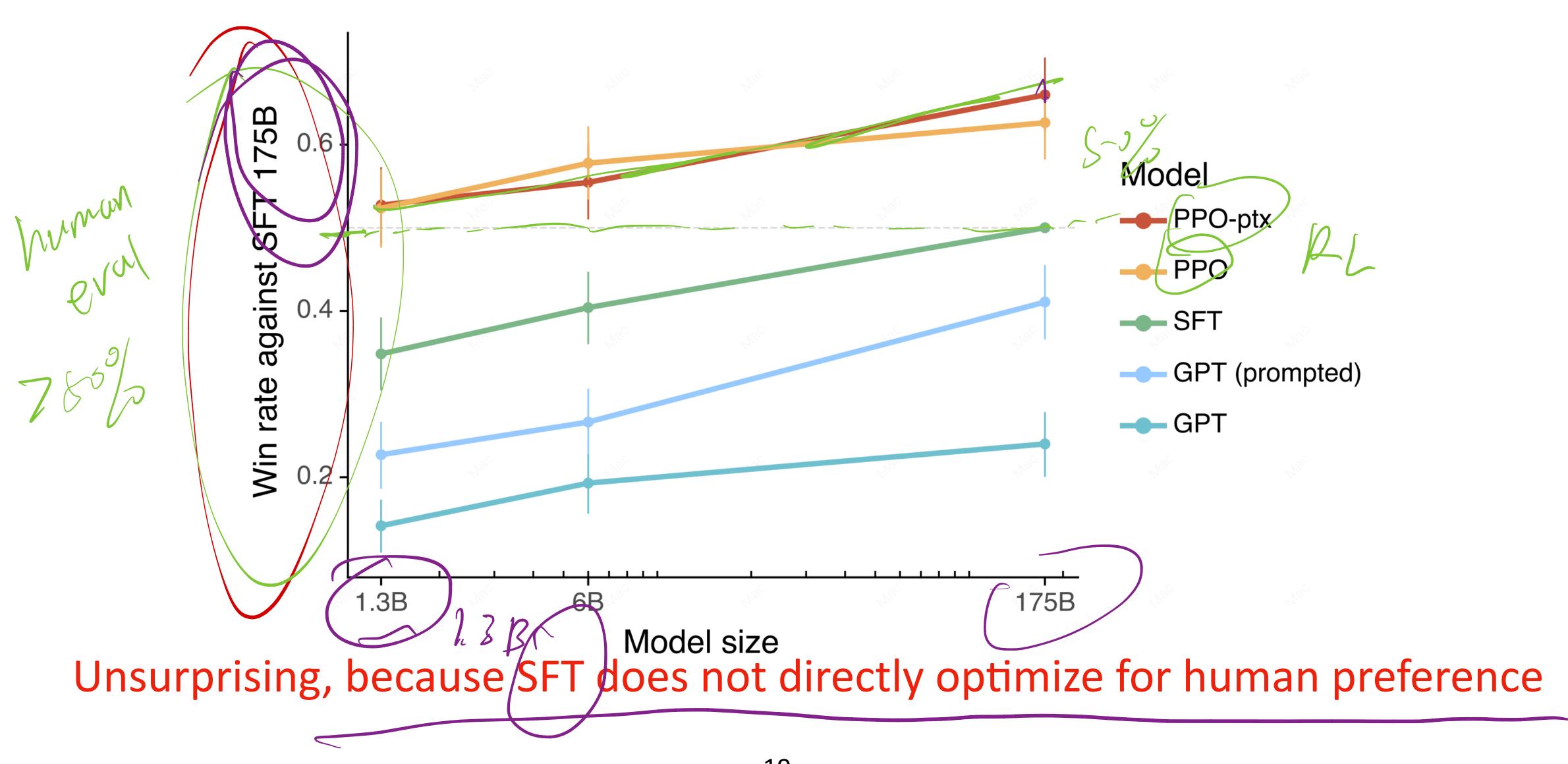


Overage Users

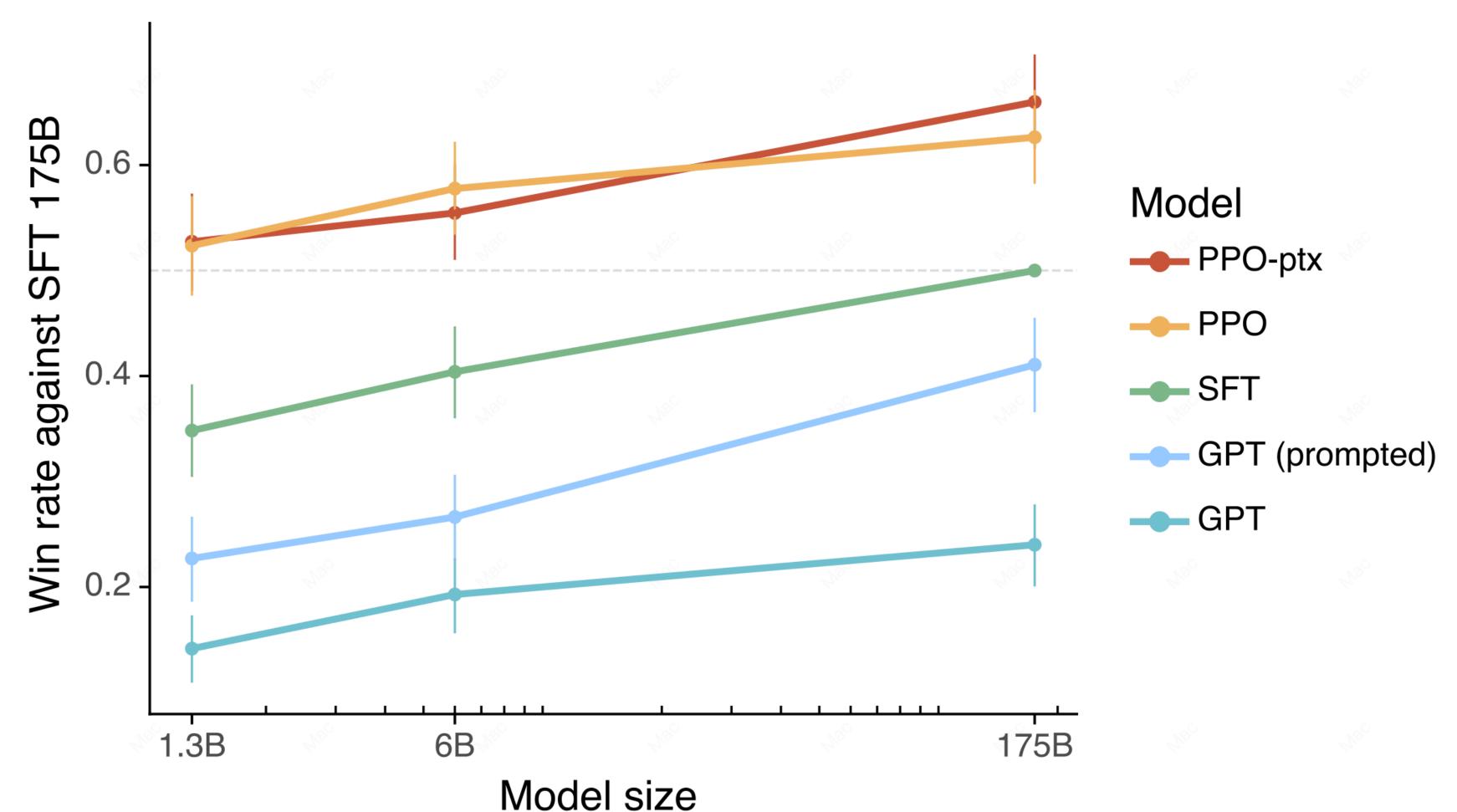
## Why is RLHF so Important?

If we build products for humans, then optimizing for human feedback is the most important

## Human Feedback outperforms SFT in Human Evaluation



## Human Feedback outperforms SFT in Human Evaluation



Unsurprising, because SFT does not directly optimize for human preference RLHF directly aligns with evaluation, but SFT has a gap

## Reinforcement Learning from Human Feedback Data

#### Basic Setup

Your annotation progress for this HIT: 0/6 completed. Sample 1 of 6. Lets you skip forward (all samples still need to be marked): → Next sample. Returns you back to the next un-marked sample to mark: M Go to next un-marked sample. Annotation Guidelines Instruction Tell me about self driving cars Input Al Response 1 Self driving cars are vehicles that are capable of detecting their surroundings and navigating without any input from a human driver. They use a variety of sensors, such as cameras, radar, and lidar, to detect objects in their environment and use advanced algorithms to make decisions about how to maneuver around them. Self driving cars are becoming increasingly popular and are being used in a variety of applications, such as ride-hailing services and autonomous delivery services. Al Response 2 Self driving cars are cars that are equipped with sensors, cameras, and software, which allows them to navigate without the need for a driver. Self driving cars are able to monitor their environment and navigate without the assistance of a driver. Self driving cars use a combination of technologies such as GPS, radar, lidar, and computer vision to detect their environment and avoid obstacles. They are also able to update their maps and adjust their routes to account for variables such as traffic and construction. The main benefit of self driving cars is their ability to reduce crashes and save lives. Autonomous vehicles have the potential to save up to 30,000 lives annually. They are also more energy efficient than traditional vehicles, as they do not require a driver who has to maintain a minimum speed. Autonomous vehicles also create new opportunities for increased mobility, allowing those who are unable to drive to get around. Rating Response 1 is better. OResponse 1 is only slightly better. (only pick this if it's truly close) Response 2 is only slightly better. (only pick this if it's truly close) Response 2 is better.

Hi test22. Not your MTurk id? Logout

## Reinforcement Learning from Human Feedback Data

#### **Basic Setup**

Your annotation progress for this HIT: 0/6 completed. Sample 1 of 6. Lets you skip forward (all samples still need to be marked): → Next sample. Returns you back to the next un-marked sample to mark: M Go to next un-marked sample. Annotation Guidelines Instruction Tell me about self driving cars Input Al Response 1 Self driving cars are vehicles that are capable of detecting their surroundings and navigating without any input from a human driver. They use a variety of sensors, such as cameras, radar, and lidar, to detect objects in their environment and use advanced algorithms to make decisions about how to maneuver around them. Self driving cars are becoming increasingly popular and are being used in a variety of applications, such as ride-hailing services and autonomous delivery services. Al Response 2 Self driving cars are cars that are equipped with sensors, cameras, and software, which allows them to navigate without the need for a driver. Self driving cars are able to monitor their environment and navigate without the assistance of a driver. Self driving cars use a combination of technologies such as GPS, radar, lidar, and computer vision to detect their environment and avoid obstacles. They are also able to update their maps and adjust their routes to account for variables such as traffic and construction. The main benefit of self driving cars is their ability to reduce crashes and save lives. Autonomous vehicles have the potential to save up to 30,000 lives annually. They are also more energy efficient than traditional vehicles, as they do not require a driver who has to maintain a minimum speed. Autonomous vehicles also create new opportunities for increased mobility, allowing those who are unable to drive to get around. Rating Response 1 is better. Response 1 is only slightly better. (only pick this if it's truly close) Response 2 is only slightly better. (only pick this if it's truly close) Response 2 is better.

Hi test22. Not your MTurk id? Logout

Easier than annotating the responses directly

|                 | Base model - | Supervised learning (one time) | Pairwise feedback | RL    | → Evaluation |
|-----------------|--------------|--------------------------------|-------------------|-------|--------------|
| Compute cost    | \$300k       | \$100                          | \$100             | \$100 | \$0          |
| Annotation cost | \$0          | \$25k                          | \$4k              | \$0   | \$50         |
|                 |              |                                |                   |       |              |

|                 | Base model - | Supervised learning (one time) | → Pairwise feedback - | ► RL  | → Evaluation |
|-----------------|--------------|--------------------------------|-----------------------|-------|--------------|
| Compute cost    | \$300k       | \$100                          | \$100                 | \$100 | \$0          |
| Annotation cost | \$0          | \$25k                          | \$4k                  | \$0   | \$50         |

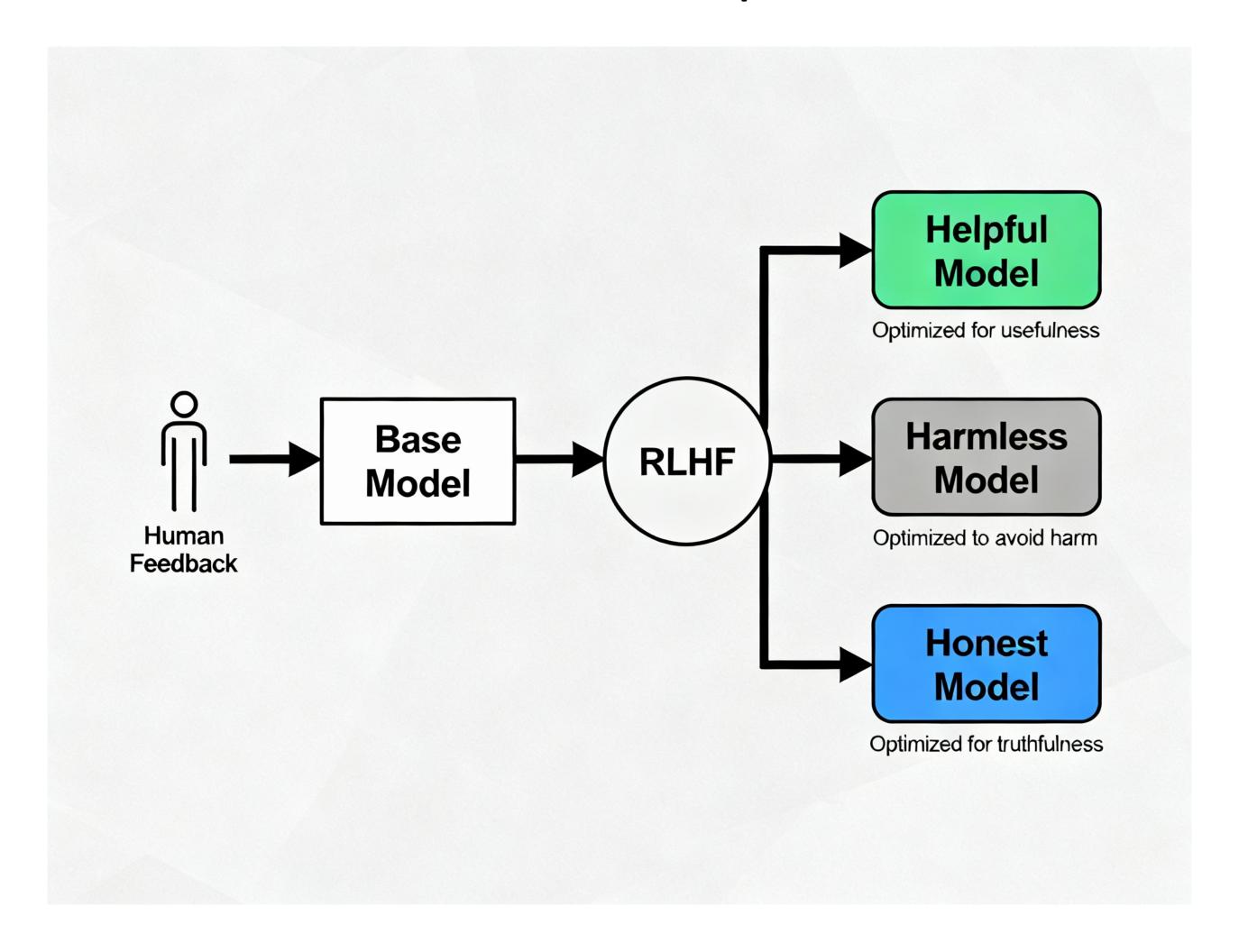
#### 1. SFT data can be expensive

|                 | Base model - | Supervised learning (one time) | → Pairwise feedback - | → RL  | → Evaluation |
|-----------------|--------------|--------------------------------|-----------------------|-------|--------------|
| Compute cost    | \$300k       | \$100                          | \$100                 | \$100 | \$0          |
| Annotation cost | \$0          | \$25k                          | \$4k                  | \$0   | \$50         |

- 1. SFT data can be expensive
- 2. There may be tasks that are much easier for humans to verify than solve, particularly when AI today is outperforming humans

### RLHF

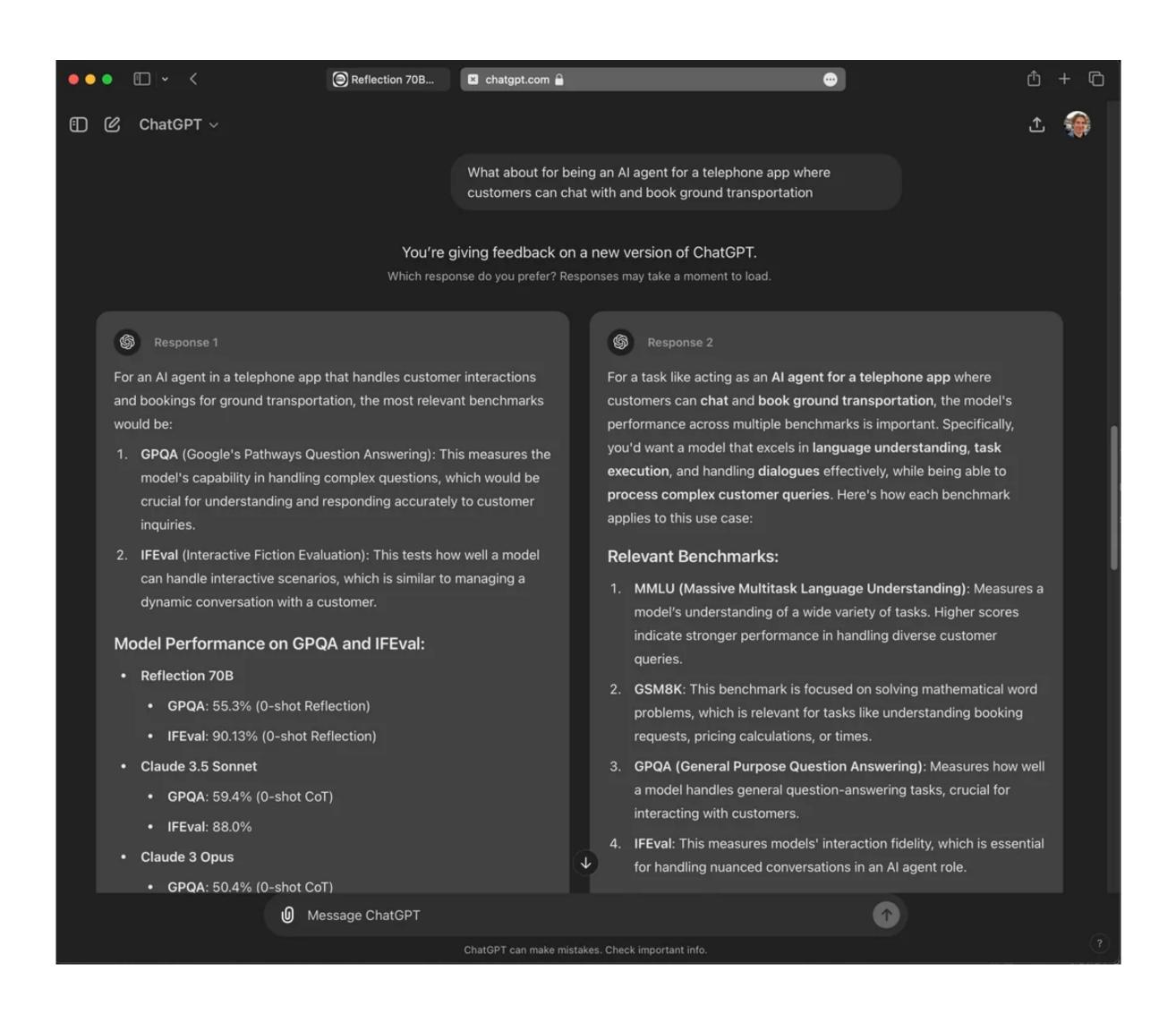
Different from SFT, RLHF can be used to optimize certain human preferences.



human teedback

# Collecting high-quality Human Feedbacks matters a lot, but not easy

### Human Feedback is Precious



Many products already track our feedback to help improve the models

### **RLHF: Human Annotation Matters**

In this task, you will be provided with a **Prompt** from a user (e.g., a question, instruction, statement) to an Al chatbot along with two potential machine-generated **Responses** to the Prom

Your job is to assess which of the two Responses is better for the Prompt, considering the following for each Response:

**Helpfulness:** To what extent does the Response provide useful information or satisfying content for the Prompt?

#### Responses should:

Responses should:

- Address the intent of the user's Prompt such that a user would not feel the Prompt was ignored or misinterpreted by the Response.
- Provide specific, comprehensive, and up-to-date information for the user needs expressed in the Prompt.
- **Be sensible and coherent.** The response should not contain any nonsensical information or contradict itself across sentences (e.g., refer to two different people with the same name as if they are the same person).
- Adhere to any requirements indicated in the Prompt such as an explicitly specified word length, tone, format, or information that the Response should include.
- Not contain inaccurate, deceptive, or misleading information (based on your current knowledge or quick web search - you do not need to perform a rigorous fact check)
- Not contain harmful, offensive, or overly sexual content

A Response may sometimes intentionally avoid or decline to address the question/request of the Prompt and may provide a reason for why it is unable to respond. For example, "Sorry, there may not be a helpful answer to this question." These responses can be considered helpful in cases where an appropriate helpful response to the Prompt does not seem possible.

#### Rating scale:

- Not at All Helpful: Response is useless/irrelevant, contains even a single piece of nonsensical/inaccurate/deceptive/misleading information, and/or contains harmful/offensive/overly sexual content.
- Slightly Helpful: Response is somewhat related to the Prompt, does not address important aspects of the Prompt, and/or contains outdated information.
- Somewhat Helpful: Response partially addresses the intent of the Prompt (most users would want more information), contains extra unhelpful information, and/or is lacking helpful details/specifics.
- Very Helpful: Response addresses the intent of the Prompt with a satisfying response. Some users might want a more comprehensive response with additional details or context. It is comparable to a response an average human with basic subject-matter knowledge might provide.
- Extremely Helpful: Response completely addresses the intent of the Prompt and provides helpful details/context. It is comparable to a response a talented/well-informed human with subject-matter expertise might provide.

Presentation: To what extent is the content of the Response conveyed well?

#### Be organized in a structure that is easy to consume and understand. Flowing in a logical order and makes good use of formatting such paragraphs,

- Be clearly written in a polite neutral tone that is engaging, direct, and inclusive. The tone should not be overly friendly, salesy, academic, sassy, or judgmental in a way that most users would consider to be off-putting or overdone.
- Have consistent style with natural phrasing and transitions as if composed by a single talented human.
- Not be rambling, repetitive. or contain clearly off-topic information.
   Similar information should not be repeated multiple times. It is harder for users to consume the helpful information in a response if there is repetitive or less helpful information mixed into the response.
- Not include notable language issues or grammatical errors

#### Rating scale:

- **Poor:** Response is poorly written or has notable structural, formatting. language, or grammar issues. Or Response has an awkward or inappropriate tone. Or the Response repeats similar information. Or only a small portion of the Response contains helpful information.
- Adequate: Response could have been written/organized better or may have minor language/grammar issues. A minimal amount of less helpful information may be present. Users would still feel the content of the Response was easy to consume.
- Excellent: Response is very well written and organized. Sentences flow in a logical order with smooth transitions and consistent style. The content of the Response is conveyed in a way that is comparable to a response a talented human might produce.

How you annotate the reward model training data will subsequently decide the model behaviors

Overall, you should consider both factors in your SxS rating of which response is better. A more concise response presenting the most helpful information directly and clearly is usually better than a longer response that may be harder to consume and/or contains clearly off-topic information. Responses with Poor Presentation (e.g., rambling, inappropriate tone) should play a significant role in your assessment of which side is better. It may help to imagine the user chatting with a real person and consider which Response most users would prefer to receive from a real person.



Hard to get really high-quality, verifiable annotators

Hard to get them to really check correctness

Have to be careful about GPT4 use...

### Crowdsourcing is difficult

Hard to get really high-quality, verifiable annotators

Hard to get them to really check correctness

Have to be careful about GPT4 use...

Nowadays, many annotators just use LLMs to annotate to make money...

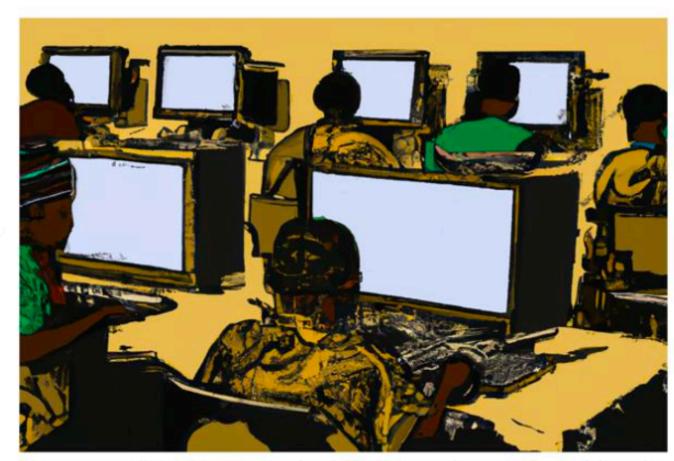
## **Crowdsourcing Ethics**

#### Data collection at scale can have significant issues

BUSINESS . TECHNOLOGY

Exclusive: OpenAI Used Kenyan Workers on Less Than \$2 Per Hour to Make ChatGPT Less Toxic

15 MINUTE READ



This image was generated by OpenAl's image-generation software, Dall-E 2. The prompt was: "A seemingly endless view of African workers at desks in front of computer screens in a printmaking style." TIME does not typically use Al-generated art to illustrate its stories, but chose to in this instance in order to draw attention to the power of OpenAl's technology and shed light on the labor that makes it possible. Image generated by Dall-E 2/OpenAl

TECHNOLOGY

#### AMERICA ALREADY HAS AN AI UNDERCLASS

Search engines, ChatGPT, and other AI tools wouldn't function without an army of contractors. Now those workers say they're underpaid and mistreated.

By Matteo Wong

### Crowdsource Biases

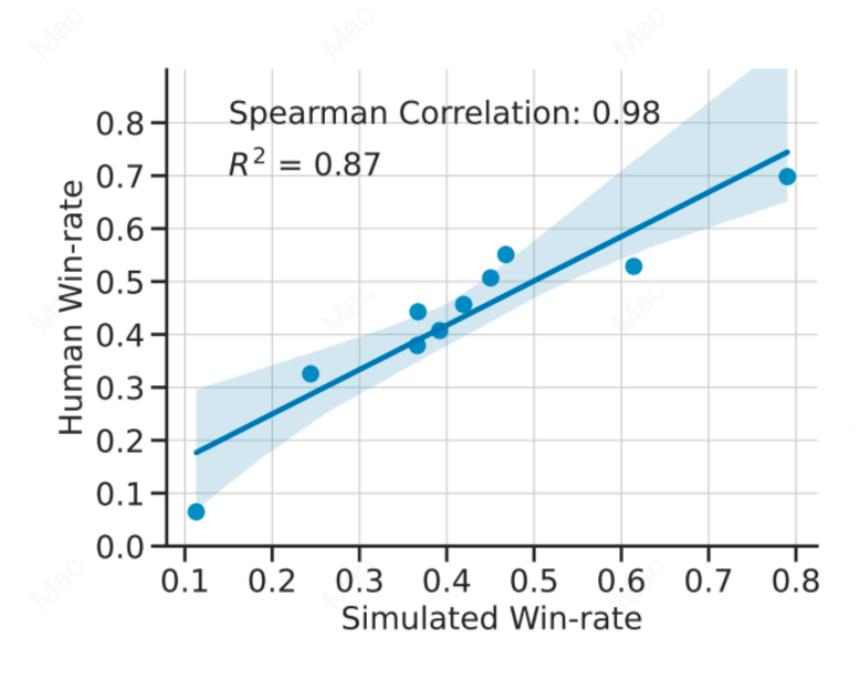
#### The annotator distribution for RLHF can significantly shift its behaviors

| What gender do you identify as?               |       |
|-----------------------------------------------|-------|
| Male                                          | 50.0% |
| Female                                        | 44.4% |
| Nonbinary / other                             | 5.6%  |
| What ethnicities do you identify as?          |       |
| White / Caucasian                             | 31.6% |
| Southeast Asian                               | 52.6% |
| Indigenous / Native American / Alaskan Native | 0.0%  |
| East Asian                                    | 5.3%  |
| Middle Eastern                                | 0.0%  |
| Latinx                                        | 15.8% |
| Black / of African descent                    | 10.5% |
| What is your nationality?                     |       |
| Filipino                                      | 22%   |
| Bangladeshi                                   | 22%   |
| American                                      | 17%   |
| Albanian                                      | 5%    |
| Brazilian                                     | 5%    |
| Canadian                                      | 5%    |
| Colombian                                     | 5%    |
| Indian                                        | 5%    |
| Uruguayan                                     | 5%    |
| Zimbabwean                                    | 5%    |
| What is your age?                             |       |
| 18-24                                         | 26.3% |
| 25-34                                         | 47.4% |
| 35-44                                         | 10.5% |
| 45-54                                         | 10.5% |
| 55-64                                         | 5.3%  |
| 65+                                           | 0%    |
| What is your highest attained level of educa  | tion? |
| Less than high school degree                  | 0%    |
| High school degree                            | 10.5% |
| Undergraduate degree                          | 52.6% |
| Master's degree                               | 36.8% |
| Doctorate degree                              | 0%    |

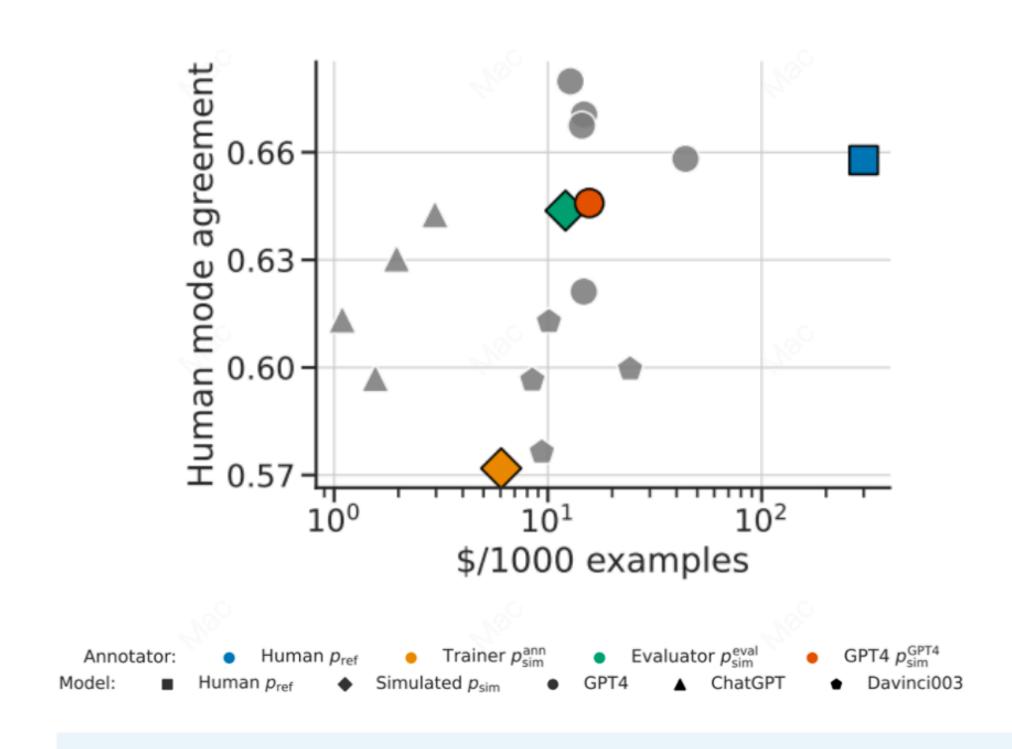
| Group                 | Al21          |              |                           | OpenAl |         |                  |                          |                          |                          |
|-----------------------|---------------|--------------|---------------------------|--------|---------|------------------|--------------------------|--------------------------|--------------------------|
|                       | J1-<br>grande | J1-<br>jumbo | j1-<br>grande-<br>v2-beta | ada    | davinci | text-<br>ada-001 | text-<br>davinci-<br>001 | text-<br>davinci-<br>002 | text-<br>davinci-<br>003 |
| RELIG                 |               |              |                           | 9      |         |                  | 6.                       |                          |                          |
| Protestant            | 0.813         | 0.814        | 0.797                     | 0.821  | 0.788   | 0.709            | 0.715                    | 0.755                    | 0.694                    |
| Roman<br>Catholic     | 0.815         | 0.820        | 0.806                     | 0.825  | 0.794   | 0.709            | 0.716                    | 0.759                    | 0.700                    |
| Mormon                | 0.792         | 0.794        | 0.778                     | 0.803  | 0.772   | 0.700            | 0.709                    | 0.752                    | 0.694                    |
| Orthodox              | 0.771         | 0.776        | 0.762                     | 0.783  | 0.754   | 0.688            | 0.698                    | 0.733                    | 0.693                    |
| Jewish                | 0.794         | 0.796        | 0.785                     | 0.801  | 0.773   | 0.699            | 0.710                    | 0.758                    | 0.706                    |
| Muslim                | 0.786         | 0.796        | 0.788                     | 0.793  | 0.775   | 0.684            | 0.704                    | 0.730                    | 0.698                    |
| Buddhist              | 0.771         | 0.784        | 0.776                     | 0.783  | 0.764   | 0.682            | 0.703                    | 0.747                    | 0.709                    |
| Hindu                 | 0.778         | 0.798        | 0.793                     | 0.789  | 0.776   | 0.683            | 0.703                    | 0.728                    | 0.707                    |
| Atheist               | 0.774         | 0.778        | 0.772                     | 0.786  | 0.761   | 0.690            | 0.707                    | 0.766                    | 0.713                    |
| Agnostic              | 0.783         | 0.789        | 0.781                     | 0.795  | 0.768   | 0.698            | 0.715                    | 0.771                    | 0.715                    |
| Nothing in particular | 0.815         | 0.819        | 0.802                     | 0.826  | 0.791   | 0.712            | 0.715                    | 0.765                    | 0.698                    |

### RLAIF — When the Feedback is from Al

GPT4 is a surprisingly good pairwise feedback system

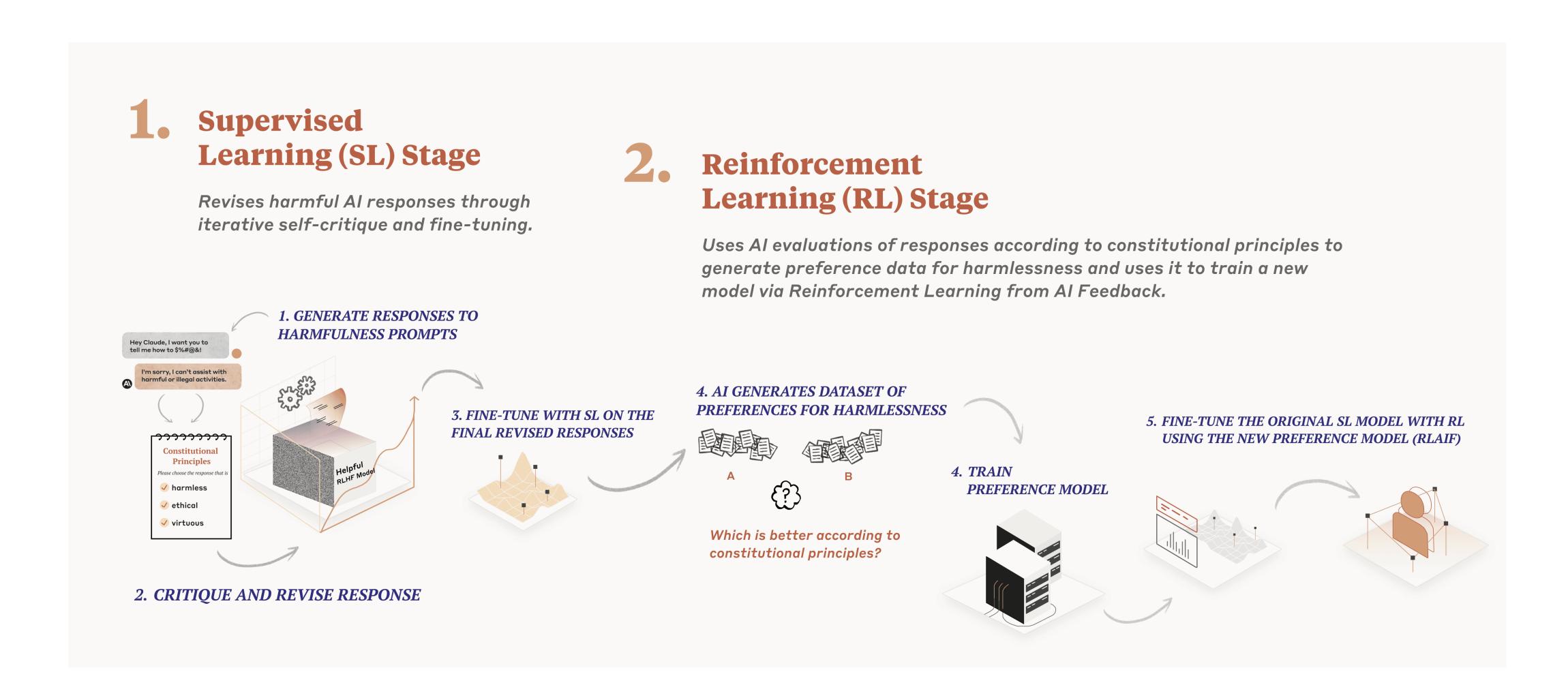


Near-perfect rank correlation at the system level



Agreement near human inter-annotator levels

### RLAIF — Constitutional Al



## Challenges of RL(HF)

Objective = 
$$\sum_{i=1}^n \frac{1}{n} R(x^{(i)}) \log p_\theta(x^{(i)}) \qquad x^{(1)}, ..., x^{(n)} \sim p_\theta(x)$$
 Inference

Each training step, the algorithm needs to run inference again Inefficient

## Challenges of RL(HF)

Objective = 
$$\sum_{i=1}^n \frac{1}{n} R(x^{(i)}) \log p_\theta(x^{(i)}) \qquad x^{(1)}, ..., x^{(n)} \sim p_\theta(x)$$
 Inference

Each training step, the algorithm needs to run inference again Inefficient

The original RL is called "on-policy" because the training data is from the dynamic policy itself. SFT is like "off-policy" where the training data is from a fixed distribution

## Challenges of RL(HF)

Objective = 
$$\sum_{i=1}^n \frac{1}{n} R(x^{(i)}) \log p_\theta(x^{(i)}) \qquad x^{(1)}, ..., x^{(n)} \sim p_\theta(x)$$
 Inference

Each training step, the algorithm needs to run inference again Inefficient

Off-policy algorithms will typically be easier to apply, more efficient and stable, with performance compromise, which we will talk a bit later

## Thank You!