= 3 F] $ A B COMP 4901B

Mt THE HONG KONG Large Language Models

UNIVERSITY OF SCIENCE
AND TECHNOLOGY
RLHF and LLMs Scaling
LaWws
Junxian He

Oct 22, 2025

Part of the slides are adapted from Stanford CS336



—

\\
—)

\WQ

ﬂ s 9/!;':} AJ&”‘Z ti’d/_g

—

Oeee))%ekzll)






Recap: Why Do We Want Reinforcement

Learning
SFT

Imitation external data
Performance limited by external data

RL

Maximize reward rather than imitation

The model may surpass humans (e.g., AlphaGo)
- —
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Review: REINFORCE / Policy Gradient
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How to implement?
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Objective = E = R(z) log pe (z)
T
i=1

aximization?
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Review: REINFORCE / Policy Gradient

§ — 43$Np9($)R($)VQ 1ng9 (CIZ‘)

How to implement?
L .1 . :
Objective = Z 5}%(:1:(@)) log pe () D 2™~ py ()
i=1

This objective looks kinda like weighted log likelihood maximization?

What is different?



Review: REINFORCE / Policy Gradient

§ — 4:a;'fvpe(a’:)}z(x)ve 1ng9 (CIZ‘)

How to implement?
L .1 . :
Objective = Z ER(QZ(Z)) log pe () D 2™~ py ()
i=1

This objective looks kinda like weighted log likelihood maximization?

What is different?

1. Have a weight of R(x)



Review: REINFORCE / Policy Gradient

§ — 4jzz;'fvpe(a’:)}z(x)VH 1ng9 (.CIZ‘)

How to implement?
L .1 . :
Objective = Z ER(QIZ(Z)) log pe () D 2™~ py ()
i=1

This objective looks kinda like weighted log likelihood maximization?

What is different?

1. Have a weight of R(x)
2. The data x is sampled from the model itself, not from a static dataset
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Collecting high-quality Human
Feedbacks matters a lot, but not easy
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(@) Reflection 70B... B chatgpt.com @

(&, ChatGPT ~

What about for being an Al agent for a telephone app where
customers can chat with and book ground transportation

You're giving feedback on a new version of ChatGPT.

Vhich response do you prefer? Respo

For an Al agent in a telephone app that handles customer interactions
and bookings for ground transportation, the most relevant benchmarks

would be:

1. GPQA (Google's Pathways Question Answering): This measures the
model's capability in handling complex questions, which would be
crucial for understanding and responding accurately to customer
inquiries.

IFEval (Interactive Fiction Evaluation): This tests how well a model
can handle interactive scenarios, which is similar to managing a

dynamic conversation with a customer.

Model Performance on GPQA and IFEval:
* Reflection 70B
* GPQA: 55.3% (0-shot Reflection)
* |FEval: 90.13% (0-shot Reflection)
* Claude 3.5 Sonnet
* GPQA: 59.4% (0-shot CoT)
* |FEval: 88.0%
* Claude 3 Opus

* GPQA: 50.4% (0-shot CoT)

@ Message ChatGPT

neee m take noment to le
1Ses may take a mo ) 0 ]

For a task like acting as an Al agent for a telephone app where
customers can chat and book ground transportation, the model's
performance across multiple benchmarks is important. Specifically,
you'd want a model that excels in language understanding, task
execution, and handling dialogues effectively, while being able to
process complex customer queries. Here's how each benchmark

applies to this use case:

Relevant Benchmarks:

1. MMLU (Massive Multitask Language Understanding): Measures a
model’'s understanding of a wide variety of tasks. Higher scores
indicate stronger performance in handling diverse customer

queries.

GSMB8K: This benchmark is focused on solving mathematical word
problems, which is relevant for tasks like understanding booking

requests, pricing calculations, or times.

GPQA (General Purpose Question Answering): Measures how well
a model handles general question-answering tasks, crucial for

interacting with customers.

IFEval: This measures models' interaction fidelity, which is essential

for handling nuanced conversations in an Al agent role.

Human Feedback is Precious

Many products already track our
feedback to help improve the models



RLHF: Human Annotation Matters

In this task, you will be provided with a Prompt from a user (e.g., a question, instruction, statement) to an Al chatbot along with two potential machine-generated Responses to the Prom|

Your job is to assess which of the two Responses is better for the Prompt, considering the following for each Response:

Helpfulness: To what extent does the Response provide useful information or Rating scale:

. - 7
salislying content for the Prompti = Not at All Helpful: Response is useless/irrelevant, contains even a single

Responses should: piece of nonsensical/inaccurate/deceptive/misleading information, and/or
contains harmful/offensive/overly sexual content.

= Slightly Helpful: Response is somewhat related to the Prompt, does not
address important aspects of the Prompt, and/or contains outdated
information.

= Somewhat Helpful: Response partially addresses the intent of the Prompt
(most users would want more information), contains extra unhelpful

* Address the intent of the user's Prompt such that a user would not feel the
Prompt was ignored or misinterpreted by the Response.

* Provide specific, comprehensive, and up-to-date information for the user
needs expressed in the Prompt.

= Be sensible and coherent. The response should not contain any nonsensical
information or contradict itself across sentences (e.g., refer to two different

e with the same name as if they are the same person) information, and/or is lacking helpful details/specifics.
. Apedohemre to any requirements indicated in the Prompt such as an explicilly = Very Helpful: Response addresses the intent of the Prompt with a satisfying

cpachod wordangth, tone, formal o nommation Bt 6 Response sb0ud e sone e manen s e e~ | HOW yOU annotate the feward
. :l‘gtug:ﬁtaln neocurste. decend ssleading Informat with basic subject-matter knowledge might provide. |
’ ptive, or misleading information (based on = Extremely Helpful: Response completely addresses the intent of the Prompt .
raining data will
[ ]
subsequently decide the mogel

your current knowledge or quick web search - you do not need to perform a and provides helpful details/context. It is comparable to a response a
behavi

rigorous fact check) talented/well-informed human with subject-matter expertise might provide.
* Not contain harmful, offensive, or overly sexual content

A Response may sometimes intentionally avoid or decline to address the
question/request of the Prompt and may provide a reason for why it is unable to
respond. For example, "Sorry, there may not be a helpful answer to this question.”
These responses can be considered helpful in cases where an appropriate helpful
response to the Prompt does not seem possible.

Presentation: To what extent is the content of the Response conveyed well? Rating scale:

Responses should: * Poor: Response is poorly written or has notable structural, formatting.
language, or grammar issues. Or Response has an awkward or inappropriate
tone. Or the Response repeats similar information. Or only a small portion of
the Response contains helpful information.

= Adequate: Response could have been written/organized better or may have
minor language/grammar issues. A minimal amount of less helpful information
may be present. Users would still feel the content of the Response was easy
to consume.

= Be organized in a structure that is easy to consume and understand.
Flowing in a logical order and makes good use of formatting such paragraphs,
lists, or tables.

= Be clearly written in a polite neutral tone that is engaging, direct, and
inclusive. The tone should not be overly friendly, salesy, academic, sassy, or
judgmental in a way that most users would consider to be off-putting or

overdone. _ = Excellent: Response is very well written and organized. Sentences flow in a
* Have consistent style with natural phrasing and transitions as if logical order with smooth transitions and consistent style. The content of the

composed by a single talented human. Response is conveyed in a way that is comparable to a response a talented
* Not be rambling, repetitive. or contain clearly off-topic information. human might produce.

Similar information should not be repeated multiple times. It is harder for users
to consume the helpful information in a response if there is repetitive or less
helpful information mixed into the response.

* Notinclude notable language issues or grammatical errors

Overall, you should consider both factors in your SxS rating of which response is better. A more concise response presenting the most helpful information directly and clearly is usually
better than a longer response that may be harder to consume and/or contains clearly off-topic information. Responses with Poor Presentation (e.g., rambling, inappropriate tone) should
play a significant role in your assessment of which side is better. It may help to imagine the user chatting with a real person and consider which Response most users would prefer to
receive from a real person.
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Crowdsourcing is difficult

 Hard to get really high-quality, verifiable annotators |

AN\

 Hard to get them to really check correctness

——

-—
 / Have to be careful about GPT4 use..

Nowadays, many annotators just use LLMs to annotate to make money...

Toeeee——




Crowdsourcing Ethics

Data collection at scale can have significant issues

BUSINESS « TECHNOLOGY

Exclusive: OpenAl Used Kenyan Workers on
I.ess Than $2 Per Hour to Make ChatGPT Less
TOXiC TECHNOLOGY

AMERICA ALREADY HAS
AN Al UNDERCLASS

Search engines, ChatGPT, and other Al tools wouldnt function
without an army of contractors. Now those workers say they're

underpaid and mistreated.

By-Matteo Wong

This image wag generated by OpenAl's image-generation software, Dall-E 2. The prompt was: "A seemingly endless view of African wafkers
at desks in front o dagputer screens in a printmaking style.” TIME does not typically use Al-generated art to illustrate its stonessiut chose
to in this instance in order t0"tramg attention to the power of OpenAl's technology and shed light on the labor that makes it.pGssible



Crowdsource Biases

The annotator distribution for RLHF can significantly shift its behaviors

hat g;:nr do 'ou eify ? ' ol Openit
e o - - i1- ada | davinci | text- | text- | text- text-
Nonbinary / other 5.6 wande | Jumbo | grande- odo-081 | dovincl- | dovincl- | dovinel-
What ethnicities do you identify as?

White / Caucasian 31.6%

Southeast Asian 52.6%

Indigenous / Native American / Alaskan Native  0.0% 0.715 | 0.755 | 0.694
East Asian 5.3%

Middle Eastern 0.0%

Latinx =~~~ 15.8% 0.716 | 0.759 | 0.700
Black / of African descent 10.5%

Flipin e Mormon | 0.792 | 0.794 | 0.778 | 0.803 | 0.772 | 0.700 | 0.709 | 0.752 | 0.694
Banglpdcshi 22‘2

Albanian g orthodox | 0.771 | 0.776 | 0.762 | 0.783 | 0.754 | 0.688 | 0.698 | 0.733 | 0.693
Brazilian 5%

gi’)‘,'j:,';i"an 2;’: Jewish | 0.794 | 0.796 | 0.785 | 0.801 | 0.773 | 0.699 | 0.710 | 0.758 | 0.706
Indian 5%

puguayan o Musiim | 0.786 | 0.796 | 0.788 | 0.793 | 0.775 | 0.684 | 0.704 | 0.730 | 0.698
18-24 Yhatls your age? 26.3% 0.747 | 0.709
25-34 47.4%

4554 10.5% 0.728 | 0.707
55-64 5.3%

65+ 0%

What is your highest attained level of education? 0.766 | 0.713
Less than high school degree 0%

High school degree 10.5% Agnostic | 0.783 | 0.789 | 0.781 | 0.795 | 0.768 | 0.698 | 0.715 | 0.771 | 0.715
Undergraduate degree 52.6%

Master’s degree 36.8% Nothing |

Doctorate degree 0% Nothing " | 0.815 | 0.819 | 0.802 | 0.826 | 0.791 | 0.712 | 0.715 | 0.765 | 0.698
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GPT4 is a surprisingly good pairwise feed bac%t;m
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Near-perfect rank correlation at the system level Agreement near human inter-annotato
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RLAIF — Constitutional Al

1, Supervised
Learning (SL) Stage

Revises harmful Al responses through
iterative self-critique and fine-tuning.

1. GENERATE RESPONSES TO
HARMFULNESS PROMPTS

Hey Claude, | want you to
tell me how to $%#@&! .

I'm sorry, | can’t assist with
@ harmful or illegal activities.

PN

LA A A AT e

Constitutional
Principles

Please choose the response that is

v harmless

+ ethical

+/ virtuous

2. CRITIQUE AND REVISE RESPONSE

T

|
|
|

o

3. FINE-TUNE WITH SL ON THE
FINAL REVISED RESPONSES

Reinforcement

Learning (RL) Stage

Uses Al evaluations of responses according to constitutional principles to
generate preference data for harmlessness and uses it to train a new

4. A GENERATES DATASET OF

Which is better according to
constitutional principles?

4] TRAIN
PREFERENCE MODEL

>\~

P
Z

Anthropic. Constitutional Al: Harmlessness from Al Feedback. 2022

11

model via Reinforcement Learning from Al Feedback.

PLAD -

5. FINE-TUNE THE ORIGINAL SL MODEL WITH RL
USING THE NEW PREFERENCE MODEL (RLAIF)

‘F\




Challenges of RL(HF)

Objective = E lR((E(i)) log pe () AN LN po(x)
n
i=1

Training Inference

Each training step, the algorithm needs to run inference again
Inefficient

12



Challenges of RL(HF)

. .1 | |
Objective = E = R(z) log pe (z)
T
i=1

Training

D)
O
xy

Each!training step, the algorithm needs to run-infere

W{ﬁ Y@y {56 A

/\/LQLKYW )

L . [
The original RL is called/“on-policy

oolicy itself. SFT is like £off-polic
S /

[

{ 14

because the training data is from the dynamic
where the training data is from a fixed distribution

N\
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Challenges of RL(HF)

Objective = :lR(x@)log po(z®) M 2™~ py(x)
T
1=1

Training Inference

Each training step, the algorithm needs to run inference again
Inefficient

/7 ?chi ACw?NWO//@/ /OW
1% >
Off-policy_alg

orithms will typically be easier to apply, more efficient and stable, with
performa{\\ce compromise, which we will talk a bit later

13
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LLM Scaling Laws

(for pretraining)  °/°/
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The Bitter Lesson

The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general
methods that leverage computation are ultimately the most effective, and by a large
margin. The ultimate reason for this is Moore's law, or rather its generalization of
continued exponentially falling cost per unit of computation. Most Al research has
been conducted as if the computation available to the agent were constant (in which
case leveraging human knowledge would be one of the only ways to improve
performance) but, over a slightly longer time than a typical research project, massively
more computation inevitably becomes available. Seeking an improvement that makes
a difference in the shorter term, researchers seek to leverage their human knowledge
of the domain, but the only thing that matters in the long run is the leveraging of
computation. These two need not run counter to each other, but in practice they tend
to. Time spent on one is time not spent on the other. There are psychological
commitments to investment in one approach or the other. And the human-knowledge
approach tends to complicate methods in ways that make them less suited to taking
advantage of general methods leveraging computation. There were many examples of
Al researchers' belated learning of this bitter lesson, and it is instructive to review
some of the most prominent.

15
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The Bitter Lesson

“The bitter lesson is a claim in artificial intelligence that, in the long run, simpler
systems that can scale with available computational power will outperform more

complex systems that @te domain-specific human knowledjggz

‘/
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The Bitter Lesson

“The bitter lesson is a claim in artificial intelligence that, in the long run, simpler
systems that can scale with available computational power will outperform more
complex systems that integrate domain-specific human knowledge”

ZW{ /> (S /WMﬁ/ fk/ﬂo}
—— ovey

"Every time | fire a linguist, the performance of the speech recognizer goes up”

— Frederick Jelinek at IBM Research togevelop speech recognizer
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“The bitter lesson is a claim in artificial intelligence that, in the long run, simpler
systems that can scale with available computational power will outperform more
complex systems that integrate domain-specific human knowledge”
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The Bitter Lesson

“The bitter lesson is a claim in artificial intelligence that, in the long run, simpler

systems that can scale with availabl | ower will outperform more
complex systems that integrate domain-specific human knowledge’

[ 4
/

"Every time | fire a linguist, the performance of the speech recognizer goes up”

— Frederick Jelinek at IBM Research to develop speech recognizer

17



The Bitter Lesson

Payawi|3 SejyIN :suolje.jsnj||

AlphaFold Al , .3

David Demis John M.
Baker Hassabis Jumper

“for computational “yor protein structure prediction”
protein design”

THE ROYAL SWEDISH ACADEMY OF SCIENCES

18
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4.0

3.2
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1 APt

(N/8 8 - 1013) —-0.076

Required compute,

——————

ataset and parameters need to increase exponenti

Kaplan et al. Scaling Laws for Neural Language Models. 2020
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Power Law for Language Model Scaling

Non-embedding parameters N, dataset size Q, compute budget C, .

| /

—
—

For loss to decrease 10% relatively, the N, D, or C,_ .. needs to increase around 10
times

Kaplan et al. Scaling Laws for Neural Language Models. 2020

20



Power Law for Language Model Scaling

Non-embedding parameters N, dataset size D, compute budget C ..

)MMM[&@ j7/ vmle[ S 2€

1. For models with a ]/Q'ted number of parameters,) trained to convergence on sufficiently large

datasets: N\
L(N) = (N/N)Y™ (an @ N, ~ 8.8 x 10'Y (non-embedding parameters)  (1.1)

Z! NN Véj?gg/‘/t—.

Lo :CNC/N)@

(7/(([/0// W ’ — N

For loss to decrease 10% relatively, the N, D, or C,_ .. needs to increase/around 10

. < ‘—’_-N’_/\__A
times -

Kaplan et al. Scaling Laws for Neural Language Models. 2020
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Power Law for Language Model Scaling

Non-embedding parameters N, dataset size D, compute budget C ..

1. For models with a limited number of parameters, trained to convergence on sufficiently large
datasets:

L(N) = (N;/N)*N; ay ~ 0.076, N, ~ 8.8 x 10'° (non-embedding parameters)  (1.1)

2. For large models trained with a limited dat ith early stopping:

5.4 x 10'° (tokens) (1.2)

— >

For loss to decrease 10% relatively, the N, D, or C,_ .. needs to increase around 10
times

Kaplan et al. Scaling Laws for Neural Language Models. 2020
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Power Law for Language Model Scaii\n\g\)

I

Non-embedding parameters N, dataset size D, compute budget C ..

1. For models with a limited number of parameters, trained to convergence on sufficiently 1
datasets:

/ L(N) = (Nc/N)™ ;

any ~ 0.076, N, ~ 8.8 x 10*° (non-embedding parameters)/ /(1.1)

2. For large models trained with a'h aset with early stopping:

L(D) = (D./D)*" ; <aD ~ 0.095, D. ~ 5.4 x 10'° (tokens) (1.2)
3. When training with a limited amount of compute; ' t, an optimally-sized

madel, and a sufficiently small batch size (making optimaE use of compute):

L(Coin) = (C™™ /Cai) *C 5 ™ ~ 0.050, C™® ~ 3.1 x 10° (PF-days) (1.3)

~—

For loss to decreas€/10% relatively, the N, D, or C,_ .. needs to increase around 10
times

Kaplan et al. Scaling Laws for Neural Language Models. 2020

20



Power Law for Language Model Scaling

Power law is exciting because it means as we scale up, the performance can
continue getting better

Power law is also pessimistic, because it’s harder and harder to increase
model size, data,xponential.
T Lo s
>

foM — Jeam 05w

Kaplan et al. Scaling Laws for Neural Language Models. 2020

21



Loss is Predictable
N, D

Dashed lines show the
predicted curve

o
-
®
® ® 0 O
O
o)
<

107 108 10° 1010
Tokens in Dataset
Kaplan et al. Scaling Laws for Neural Language Models. 2020
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Scaling Laws for Prediction

2.0

1.0 l |
100p

BeforeWscaTe trainmé, we can predict its performance in
advance by fiting smaller-scale experiments!

—
OpenAl. GPT-4 Technical Report. 2024

N
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Scaling Laws for Prediction

Capability prediction on 23 coding problems

— Mean Log Pass Rate
5

® Observed
Prediction
4 ® * gpt-4
3 O
Q
2
O
@]
1
0 I I I I I I
1u 10y 100y 0.001 0.01 0.1
Compute

OpenAl. GPT-4 Technical Report. 2024

24



Scaling Laws for Prediction

Capability prediction on 23 coding p@
— Mean Log Pass Rate
5

® Observed
Prediction
4 ® * gpt-4
3 O
Q
2
[
O
1
0 I I I I I I
1y 10y 100y 0.001 0.01 0.1 1
Compute

Downstream task performance can be predicted relatively well

OpenAl. GPT-4 Technical Report. 2024

24



Close Relationship between Pretraining
Loss and Downstream Performance

Overview
0.7 - p: -0.931
e: 0.031
Qwen-_72b
®
Mxgl-8x7b Deepseek-lim-67b
g 0.5 Jamba-52b > Qwen-14b
@) LI ma-Z-ﬂ)b -
- ° tral-7b
0.4 Llama-1-65b Qwen-7b
L ) o :
g Llama-1-30b Fa|co?1_40b' Yi-6b
§ 0.3 Llama-2-13b " | |13ma-1-13b @ ~
g Llama-2-7b
0.2
0.1-
0.0 ; i ; ; ; | | ;
0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54

Bits per character

(\

Huang et al. Compression Represents Intelligence Linearly. 2024

25

Knowledge and Commonsense

0.20 0.25 0.30 0.35 0.40
Mathematical Reasoning

p:-0.953
e: 0.031
[ }‘.
]
]
.’o 0 o
0.40 0.45 050 0.55

byl

0.75

-0.50

-0.25

0.00

0.75

-0.50

-0.25

0.00

0.75

-0.50

-0.25

0.00



Certain Abilities Remain Hard to Predict

Inverse scaling prize, hindsight neglect

Accuracy
100
50
0
ada babbage curie gpt-3.5 gpt-4
Model \
—\4
3
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Scaling Laws for Prediction

OpenAl codebase next word prediction

Bits per word
6.0

. e Observed
Prediction
5.0 ® gpt-4
O
4.0
O
3.0 O
O
0
O
2.0 o °
o
1.0 I I I I I ]
100p 10n 1u 100y 0.01 1
Comput

OpenAl. GPT-4 Technical Report. 2024
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Scaling Laws for Prediction

P

OpenAl codebase next word prediction
" o Scaling law is very useful as it can be used to
check whether our large-scale run is as
expected in the middle
2.0 e ., . \ \
o — - . L ' | 5 W"VL{%S M d ) b

o -/

_

OpenAl. GPT-4 Technical Report. 2024
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Scaling Laws for Prediction
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Scaling Laws for Prediction

L(N,D) = [(%)Zg | %TD

If everything is destined before training, then what we is pertaining studying?
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Scaling Laws for Prediction

L(N,D) = [(%)i‘g | %TD

If everything is destined before training, then what we is pertaining studying?

Is this a dead end and just requiring too many resources?
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Scaling Laws for Prediction

AQ_
N.\ar D.|
L(N,D) = | = :

— B

If everything is destined before training, then what we is pertaining studying?

Is this a dead end and just requiring too many resources?
Even though the form is power law, but the coefficient can be different with
(de/Férent architectures and data quality. We want to find high data quality
and better model arch so that it scales more efficiently
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Scaling Laws for Resource Allocation

Given a fixed FLOPs budget, how should one trade-off model size and the
number of training tokens?

Hoffmann et al. Training Compute-Optimal Large Language Models. 2022
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Scaling Laws for Resource Allocation

Given a fixed FLOPs budget, how should one trade-off model size and the
number of training tokens? _—

—

In practice, we are often FLOPs bounded, like we can only us{lOOO H100s for 3 months.

Hoffmann et al. Training Compute-Optimal Large Language Models. 2022

29



Scaling Laws for Resource Allocation

Given a fixed FLOPs budget, how should one trade-off model size and the
number of training tokens?

In practice, we are often FLOPs bounded, like we can only use 1000 H100s for 3 months.?

.

But this situation is changing,@the future we may be data bounded

g

Hoffmann et al. Training Compute-Optimal Large Language Models. 2022
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Scaling Laws for Resource Allocation

Given a fixed FLOPs budget, how should one trade-off model size and the
number of training tokens?

In practice, we are often FLOPs bounded, like we can only use 1000 H100s for 3 months.

But this situation is changing, in the future we may be data bounded

argmin
N,D s.t. FLOPs(N,D)=

Ce——

N— :

Hoffmann et al. Training Compute-Optimal Large Language Models. 2022
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Scaling Laws for Resource Allocation
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Vanng model parameters for the same FLOPs, there is an optimal model size,
arger is not always better (because the model is trained with less data)
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The optimal model size and training token size, they should increase TOGETHER
as we have more compute
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o Allocation

Scaling Laws for Resou

/  Parameters FLOPs FLOPs (in Gopher unit) Tokens
400 Million 1.92e+19 1/29,968 8.0 Billion

1 Billion 1.21e+420 1/4,761 20.2 Billion

. 10Billion 1.23e+22 1/46  205.1 Billion
67 Billion 5.76e+23 1 1.5 Trillion

175 Billion 3.85e+24 6.7 3.7 Trillion
280 Billion 0. 90e+24 17.2 5.9 Trillion
%59.5 . Tr11110n

r1 10N . : 22515.9 2

Chinchilla Optimal Allocation

S

Hoffmann et al. Training Compute-Optimal Large LanguagM
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Thank You!
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