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Recap: Chain-of-Thought Reasoning

Standard Prompting

ot

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?
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A: The answer is 27. x
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A:
The answer is 11.
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Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. 2022
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Recap: Distillation from a Strong Teacher
Model

Filter is optional. In mathematical reasoning for example, we
filter with final answer correctness. For code, we filter with
whether to pass the unit test passing

If you still remember, when we talked about evaluation, we mentioned

final answer correctness does not entail reasoning correctness
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Self-training Self-Improving
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Test-Time Scaling
The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general
methods that leverage computation are ultimately the most effective, and by a large
margin. The ultimate reason for this is Moore's law, or rather its generalization of
continued exponentially falling cost per unit of computation. Most Al research has
been conducted as if the computation available to the agent were constant (in which
case leveraging human knowledge would be one of the only ways to improve
performance) but, over a slightly longer time than a typical research project, massively
more computation inevitably becomes available. Seeking an improvement that makes
a difference in the shorter term, researchers seek to leverage their human knowledge
of the domain, but the only thing that matters in the long run is the leveraging of
computation. These two need not run counter to each other, but in practice they tend
to. Time spent on one is time not spent on the other. There are psychological
commitments to investment in one approach or the other. And the human-knowledge
approach tends to complicate methods in ways that make them less suited to taking
advantage of general methods leveraging computation. There were many examples of
Al researchers' belated learning of this bitter lesson, and it is instructive to review
some of the most prominent.
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Test-Time Scaling

The most important part about CoT, is that itself can
scale, providing a new scaling dimension.

vy reasoning longer and longer, the performance ge
better and better, this is one way of test-time scaling

This is very natural, because humans think longer when dealing with more complex
problems. Before CoT, transformers didn’t have such a mechanism!



Test-Time Scaling

Long CoT opens a new era and paradigm shift (e.g., o1,
03, GPT-5, DeepSeek-R1)
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Long Chain of Thought
L2/ JoL

Okay, let's see. So Aya goes for a 9-kilometer walk every morning a ops at a coffee shop. The
problem gives two scenarios with different speeds and total times, and we need to find the total time
when she walks at a different speed. Hmm.

O1 Solution

First, | need to parse the information given. The key points are:

1. The distance is always 9 km.

2. The total time includes both walking time and t minutes at the coffee shop.

3. Two different speeds are given, each resulting in different total times, but the coffee shop time t is the
same in both cases.

Wait, let me make sure. The problem states when she walks at s km/h, the total time is 4 hours (which
includes t minutes). When she walks at s + 2 km/h, the total time is 2 hours and 24 minutes (which also
includes t minutes). So both cases have the same t, but different walking times leading to different total
times.

So, the total time is walking time plus t. Since t is in minutes, but the total time is given in hours and

minutes, | need to convert everything to the same units. Maybe convert all times to minutes to avoid
confusion.

Since speed can't be negative, s = (5)/2 = 2.5 km/h
Wait, sqrt(49)=7, so (-2 +7)/2=5/2=2.5, yes. So s=2.5 km/h.

Now check if that makes sense.

Third scenario: speed is s +0.5=3 km/h. Walking time=9/3=3 hours=180 minutes. Add t=24, total=204.

Yes, seems correct.



Long Chain of Thought

O1 Solution

Okay, let's see. So Aya goes for a 9-kilometer walk every morning and stops at a coffee shop. The
problem gives two scenarios with different speeds and total times, and we need to find the total time
when she walks at a different speed. Hmm.

First, | need to parse the information given. The key points are:

1. The distance is always 9 km.
2. The total time includes both walking time and t minutes at the coffee shop.
3. Two different speeds are given, each resulting in different total times, but the coffee shop time t is the

same i both cases Long Chain of Thought (CoT)

Wait, let me make sure. The problem states when she walks at s km/h, the total time is 4 hours (which
includes t minutes). When she walks at s + 2 km/h, the total time is 2 hours and 24 minutes (which also
includes t minutes). So both cases have the same t, but different walking times leading to different total

dimes. + certain cognitive behaviors
So, the total time is walking time plus t. Since t is in minutes, but the total time is given in hours and (e . g . Self— Reﬂ eCt | O n)

minutes, | need to convert everything to the same units. Maybe convert all times to minutes to avoid
confusion.

Since speed can't be negative, s = (5)/2 = 2.5 km/h
Wait, sqrt(49)=7, so (-2 +7)/2=5/2=2.5, yes. So s=2.5 km/h.

Now check if that makes sense.

Third scenario: speed is s +0.5=3 km/h. Walking time=9/3=3 hours=180 minutes. Add t=24, total=204.

Yes, seems correct.



How to Train Models to Reason Longer?

10



How to Train Models to Reason Longer?

© Collect Human Data?

10



How to Train Models to Reason Longer?

© Collect Human Data? Human does not write down the inherent thinking

10



How to Train Models to Reason Longer?

Collect Human Data? Human does not write down the inherent thinking

Synthesize/Distill Data from another model?

10



How to Train Models to Reason Longer?

© Collect Human Data? Human does not write down the inherent thinking

@ Synthesize/Distill Data from another model?

At that time, only 01 has this ability, but 01 does not
reveal its thinking process

10



The Limitation of Human Reasoning
Data in the Wild
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<think> Template

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user
with the answer. The reasoning process and answer are enclosed within <think> </think> and
<answer> </answer> tags, respectively, i.e., <think> reasoning process here </think>

<answer> answer here </answer>. User: prompt. Assistant:

System (global) Prompt

12
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<think> Template
oo e 3 < on 33 " (thnt> & [oh ke >

1 >wart by isolating the variable x. To do this, I subtract 4x from both sides of the
inequality to get 3 < 2x + 7.

Next, I need to isolate 2x on its own. I'Ll subtract 7 from both sides, resulting in -4
< 2X.

Finmn21ly, T divide both sides by 2 to solve for x, which gives me -2 < Xx.
é</think>

Te sulve the inequality \(4x + 3 < 6x + 7\), follow these steps:

1. *xSubtract \(4x\) from both sides*x to begin isolating the variable tera:

\[

4x + 3 - 4x < 6x + 7 - 4X
\1]

Simplifying this gives:
\[

3 < 2x + 7

\1]

. **Subtract \(7\) from both sides** to further isolate the term with \(x\):

\[
3 -7 <2x + 7 -1

\]
Simplifying this gives:
\[

oo Some models hide the <think> part to

. *xDivide both sides by \(2\)** to solve for \(x\):

ract-aizs « vpeactzniia prevent distillation

\]
Simplifying this gives:

é f%(ﬂ [C%@J

Alternatively, since \(x > -2\) is the same as \(-2 < x\), you can express it as:

X > =2

. 47/[%f/1[é7 R

**Final Answer: *x
\[

\boxed{x > -2}%

\1
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Recap: Policy Gradient
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Recap: Policy Gradient
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Kimi Team. Kimi k1.5: Scaling Reinforcement Learning with LLMs. 2025 15



Why Reward Models Fail?

Reward model can produce inaccurate judgement, making the feedback
noisy (judging correctness of mathematical reasoning is hard than judging
simple responses)
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Why Reward Models Fail?

Reward model can produce inaccurate judgement, making the feedback
noisy (judging correctness of mathematical reasoning is hard than judging
simple responses)

Reward hacking

A Hacking the reward function
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Reward Hacking

In LLMs, maybe there are certain patterns to fool the judge model to make
it always output a good score
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Reward Hacking

In LLMs, maybe there are certain patterns to fool the judge model to make
it always output a good score

If such patterns/weaknesses exist, it is very likely to be learned by the policy
model during RL

Reward mode is not robust

17



Reinforcement Learning with
Verifiable Reward (RLVR)

. —~ 1 . |
Objective = Z ER(:U(Z)) log pe () D 2™ py ()
i=1

Make R() as a rule-based reward, so that it can never be hacked

18
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Objective = Z ER(:U(Z)) log pe () D 2™ py ()
i=1

Make R() as a rule-based reward, so that it can never be hacked
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What is Rule-based Reward?

>>> Solve 4x + 3 < 6x +7

<think>

I start by isolating the variable x. To do this, I subtract 4x from both sides of the
inequality to get 3 < 2x + 7.

Next, I need to isolate 2x on its own. I'Ll subtract 7 from both sides, resulting in -4
< 2X.

Finally, I divide both sides by 2 to solve for x, which gives me -2 < x.
</think>

To solve the inequality \(4x + 3 < 6x + 7\), follow these steps:

il

**Subtract \(4x\) from both sides*x to begin isolating the variable term:

\[
4X + 3 - 4x < 6X + T - 4Xx

\1]
Simplifying this gives:

**Subtract \(7\) from both sides*x to further isolate the term with \(x\):
\[

3 -7<2x +7 -1

\1

Simplifying this gives:

\[

-4 < 2X

\1

*xDivide both sides by \(2\)**x to solve for \(x\):
Q;rac{-a}{z} < \frac{2x}{2}

;gmplifging this gives:

2 < x

\1]

Alternatively, since \(x > -2\) is the same as \(-2 < x\), you can express it as:

\[
X > -2

\1]

*kFinal Answer: xx

\L

\boxed{x > -2}

\1]
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What is Rule-based Reward?

>>> Solve 4x + 3 < 6x +7

<think>

I start by isolating the variable x. To do this, I subtract 4x from both sides of the
inequality to get 3 < 2x + 7.

Next, I need to isolate 2x on its own. I'Ll subtract 7 from both sides, resulting in -4
< 2X.

Finally, I divide both sides by 2 to solve for x, which gives me -2 < x.
</think>

To solve the inequality \(4x + 3 < 6x + 7\), follow these steps:

1. *xSubtract \(4x\) from both sides*x to begin isolating the variable term:

\[
4X + 3 - 4x < 6X + T - 4Xx

\1]
Simplifying this gives:

. **xSubtract \(7\) from both sides*x to further isolate the term with \(x\):
\[
3 -7<2x +7 -1
\1
Simplifying this gives:
\[
-4 < 2X
\1

. **Divide both sides by \(2\)** to solve for \(x\):
Q;Iac{-a}{Z} < \frac{2x}{2}
;gmplifging this gives:
< x

\1]

Alternatively, since \(x > -2\) is the same as \(-2 < x\), you can express it as:

\[
X > =2

\1]

*xFinal Answer: %

\[
\boxed{x > -2}

\1]

For mathematical reasoning, extract the final answer and compare with the ground-
truth

20



What is Rule-based Reward?

() Issue Unit Tests
data leak in GBDT due to warm J
start (This is about the non- PrePR Post PR “Jests
histogram-based version of... 19 Generated PR [ 4 join_struct_col
) Codebase B sklearn 4 vstack_struct_col
B sklearn/ D regs.txt ) gradient_boosting.py + K v dstack_struct_col
BB examples/ [ setup.cfg Y helper.py v/ matrix_transform
D README.rst [J setup.py BB utils = v Jeuclidean_diff

Jimenez et al. SWE-BENCH: CAN LANGUAGE MODELS RESOLVE

REAL-WORLD GITHUB ISSUES? 2024 51
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Long CoT Patterns Emerging in RLVR Training

DeepSeek-R1 and Kimi-k1.5 choose the extremely simple recipe — Reinforcement Learning

Guo, Daya, et al. "Deepseek-rl: Incentivizing reasoning capability in lIms via reinforcement learning." arXiv preprint arXiv:2501.12948 (2025).
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Long CoT Patterns Emerging in RLVR Training

DeepSeek-R1 and Kimi-k1.5 choose the extremely simple recipe — Reinforcement Learning

DeepSeek-R1-Zero average length per response during training
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Guo, Daya, et al. "Deepseek-rl: Incentivizing reasoning capability in lIms via reinforcement learning." arXiv preprint arXiv:2501.12948 (2025).
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Long CoT Patterns(Emerging in RLVR Training

DeepSeek-R1 and Kimi-k1.5 choose the extremely simple recipe — Reinforecement Learning

DeepSeek-R1-Zero average length per response during training
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10000 -

8000 A

6000 -

4000 A

Average length per response

2000 A

0 2000 4000 6000 8000
eps

Model naturally develops long CoT during RL

Guo, Daya, et al. "Deepseek-rl: Incentivizing reasoning capability in lIms via reinforcement learning." arXiv preprint arXiv:2501.12948 (2025).
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Self-Reflection Emerging in RL Training

Exam p|e: Question: If a > 1, then the sum of the real solutions of \/ a—Va+x = x is equal to
Response: <think>
To solve the equation ya — va +x = x, let’s start by squaring both - - -
(\/a—\/m)2=x2 — a—+Va+x=x% \

Rearrange to isolate the inner square root term:
(a-x*)’=a+x = a*-2ax’+(x*)?=a+x = x*-2ax* -x+(a*-a) =0

Wait, wait. Wait. That’s an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum can be - - -
We started with the equation:

Va-+a+x=x

First, let’s square both sides:

a-— a+x=x2 - at+x=a—Xx

Next, I could square both sides again, treating the equation: - - /—_/\/A//
Q% / /i | S -
/ 4 > // /

2
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Self-Reflection Emerging in RL Training

Exam p|e: Question: If a > 1, then the sum of the real solutions of \/ a—VYa+x = xis equal to

Response: <think>
To solve the equation \/ a — ya+x = x, let’s start by squaring both - - -

(\/a—\/m)2=x2 — a—+Va+x=x%

Rearrange to isolate the inner square root term:
(a—x*)?=a+x = a*>-2ax’+(x?)?* =a+x = x*-2ax’—x+(a®*-a) =0

Wait, wait. Wait. That’s an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum can be - - -
We started with the equation:
Va-+a+x=x

First, let’s square both sides:
a-Va+x=x* = VYa+x=a-x
Next, I could square both sides again, treating the equation: - - -

2

Without reward model, long CoT and self-reflection just naturally emerge.
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RL Training is not a new thing
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RL Training is not a new thing

But the emergence of
Long CoT plus Self Reflection is new
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)/L finally works

Shunyu Yao. The Second Half. 2025
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fRL Training only Updates a Sparse
Network

—~——

Algo. Init Model RL Model Update Sparsity Oh-Policy KL Online
DPO Llama-3.1-Tulu-3-8B-SFT Llama-3.1-Tulu-3-8B-DPO 81.4 X v X
1l ] Llama-3.1-Tulu-3-70B-SFT Llama-3.1-Tulu-3-70B-DP0O 95.2 X v X
GRpo  deepseek-math-7b-instruct deepseek-math-7b-rl 68.5 v v v
I DeepSeek v3 base DeepSeek-R1-Zero 86.0 v v v
ORPO|| mistral-7B-v0.1 mistral-orpo-beta 76.9 X X X
KTO Eurus-7b-sft Eurus-7b-kto 96.0 X v X
] Llama-3-Base-8B-SFT Llama-3-Base-8B-SFT-KTO 81.2 X v X
PPO mistral-7b-sft math-shepherd-mistral-7b-rl 80.8 v v v/
S1nPO  Meta-Llama-3-8B-Instruct  Llama-3-Instruct-8B-SimP0O 86.5 X X X
e X v

PRIME Eurus-2-7b-sft Eurus-2-7B-PRIME 77.0

) LMy dy avt need to

Mukherjee et al. Reinforcement Learning Finetunes Small Subnetworks in Large Language Models. 2025

(/W»Ma;f g h
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ne-Shot RL!

Average on 6 benchmarks
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Wang et al. Reinforcement Learning for Reasoning in Large Language Models with One Training Example. 2025
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MATH-500 Acc.

Shao et al. Spurious Rewards: Rethinking Training

Spurious Reward

Weak & Spurious Rewards Work!
on Certain Models, but Not All

Correct answer f

Most common label . )
+29.1 - +34.4 from 64 rollouts |l| Majority Vote
+24.1 =:31.9 1 example w/ correct label
2 +27.8 (Wang et al., 2025) One-Shot RL
Response contains _
\boxed{}? D ECLI’I‘I‘Iat Reward 4
+16.7 +16.4 Use an incorrect Ng@7 ,,‘
13.2 rollout as~greund truth \‘ Incorrect Label = c
Reward=1 : o
LY Random Reward ] <
6 ‘
36.8

+15.5

v

6.2 8.3

+0.4

) -2.1

| |

)

I

-6.4
i

\
A

Qwen2.5-7E Llama3.1-8B-Instruct Olmo2-7B
Significant gains from Significant gains from Gains from Gains from

most training signal most training signals informative signals ground truth only

SHron £y

&Q\r

RLVR. 2025 =

i

~
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Thank You!
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