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Recap:	Reasoning	Model

2

scale test-time compute
coT

&

(think

↓

OM-
Da



3

Recap:	Long	CoT	Patterns	Emerging	in	RLVR	Training

DeepSeek-R1 and Kimi-k1.5 choose the extremely simple recipe — Reinforcement Learning 

Guo,	Daya,	et	al.	"Deepseek-r1:	IncenNvizing	reasoning	capability	in	llms	via	reinforcement	learning."	arXiv	preprint	arXiv:2501.12948	(2025).
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Recap:	Long	CoT	Patterns	Emerging	in	RLVR	Training

DeepSeek-R1 and Kimi-k1.5 choose the extremely simple recipe — Reinforcement Learning 

Model naturally develops long CoT during RL 
Guo,	Daya,	et	al.	"Deepseek-r1:	IncenNvizing	reasoning	capability	in	llms	via	reinforcement	learning."	arXiv	preprint	arXiv:2501.12948	(2025).
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Recap:	Self-Reflec=on	Emerging	in	RL	
Training

Example: 
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Recap:	Self-Reflec=on	Emerging	in	RL	
Training

Example: 

Without reward model, long CoT and self-reflection just naturally emerge. 



Why	Synthe=c	Data
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Data	is	not	growing	and	we	are	
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Synthe=c	Data	in	Pretraining
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Huggingface.	Cosmopedia:	how	to	create	large-scale	syntheNc	data	for	pre-training.	2024
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How	to	Obtain	Prompts?
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Huggingface.	Cosmopedia:	how	to	create	large-scale	syntheNc	data	for	pre-training.	2024

Diversity	is	the	biggest	issue	for	large	scale	data	synthesis

Human	data	is	naturally	diverse
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How	to	Obtain	Prompts?
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Huggingface.	Cosmopedia:	how	to	create	large-scale	syntheNc	data	for	pre-training.	2024

Diversity	is	the	biggest	issue	for	large	scale	data	synthesis

Human	data	is	naturally	diverse
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Synthe=c	Data	in	Pretraining
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Huggingface.	Cosmopedia:	how	to	create	large-scale	syntheNc	data	for	pre-training.	2024
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Synthe=c	Data	at	Large	Scale	is	very	Challenging
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Synthe=c	Data	at	Large	Scale	is	very	Challenging
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performance

Training	compute

Train	with	human	data

Train	with	syntheNc	data

Diversity	is	the	biggest	issue	here,	no	diversity,	no	scaling



Synthe=c	Data	at	SFT	is	Very	Successful
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Taori	et	al.	Alpaca:	A	Strong,	Replicable	InstrucNon-Following	Model.	2023
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How	to	Evaluate	Synthe=c	Data
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Intrinsic	Evalua=on	of	Synthe=c	Data
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Wang	et	al.	Self-Instruct:	Aligning	Language	Models	with	Self-Generated	InstrucNons.	2022
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Intrinsic	Evalua=on	of	Synthe=c	Data
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Generally,	we	look	at	helpfulness	(correctness),	diversity,	complexity
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How	to	Generate	Synthe=c	Data
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Given	diverse	queries,	obtaining	responses	is	fine	with	disNllaNon	
Synthesizing	high-quality	queries	is	not	easy
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How	to	Create	Synthe=c	Data
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Wang	et	al.	Self-Instruct:	Aligning	Language	Models	with	Self-Generated	InstrucNons.	2022
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Ding	et	al.	Enhancing	Chat	Language	Models	by	Scaling	High-quality	InstrucNonal	ConversaNons.	2023

How	to	Create	Synthe=c	Data
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Ding	et	al.	Enhancing	Chat	Language	Models	by	Scaling	High-quality	InstrucNonal	ConversaNons.	2023

How	to	Create	Synthe=c	Data
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Ding	et	al.	Enhancing	Chat	Language	Models	by	Scaling	High-quality	InstrucNonal	ConversaNons.	2023

How	to	Create	Synthe=c	Data
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How	to	Create	Synthe=c	Data
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How	to	Create	Synthe=c	Data
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Beber	than	Training	on	Human	Data

How	to	Create	Synthe=c	Data
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Back-transla=on	for	Synthe=c	Data	Genera=on

21

Given	an	output,	generate	a	corresponding	input

Li	et	al.	Self-Alignment	with	InstrucNon	BacktranslaNon.	2023
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Back-transla=on	for	Synthe=c	Data	Genera=on

21

Given	an	output,	generate	a	corresponding	input

Li	et	al.	Self-Alignment	with	InstrucNon	BacktranslaNon.	2023
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Transforma=on	of	Exis=ng	Data

Use	or	retrieve	exisNng	data,	then	transform	it	into	an	example	under	the	
desired	task
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Transforma=on	of	Exis=ng	Data

Yue	et	al.	MAmmoTH2:	Scaling	InstrucNons	from	the	Web.	2024
-
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Transforma=on	of	Exis=ng	Data

Yue	et	al.	MAmmoTH2:	Scaling	InstrucNons	from	the	Web.	2024
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Transforma=on	of	Exis=ng	Data

Yue	et	al.	MAmmoTH2:	Scaling	InstrucNons	from	the	Web.	2024
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Rephrasing	documents	for	pretraining

Maini	et	al.	Rephrasing	the	Web:	A	Recipe	for	Compute	and	Data-Efficient	Language	Modeling.	2024
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How	to	Filter	Synthe=c	Data
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Correctness	Filtering	
Quality	Filtering	
Diversity	Filtering
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Quality	Filtering
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Can	simply	asking	LLM	to	judge	the	quality

Zhou	et	al.	Less	is	More	for	Alignment.	2023.
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Diversity	Filtering
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How	Do	We	Use	Synthe=c	Data
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Synthe=c	Data	is	Naturally	Rooted	in	RL
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SyntheNc	data	in	SFT	are	typically	from	other	models,	while	syntheNc	data	in	
RL	are	from	the	model	to	be	opNmized

Chu	et	al.	SFT	Memorizes,	RL	Generalizes:	A	ComparaNve	Study	of	FoundaNon	Model	Post-training.	2025
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Synthe=c	Data	is	Naturally	Rooted	in	RL

29

SyntheNc	data	in	SFT	are	typically	from	other	models,	while	syntheNc	data	in	
RL	are	from	the	model	to	be	opNmized What	is	the	difference?

Chu	et	al.	SFT	Memorizes,	RL	Generalizes:	A	ComparaNve	Study	of	FoundaNon	Model	Post-training.	2025

SFT	Memorizes,	RL	Generalizes:
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Why SFT memorize, Al generaizes
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Synthe=c	(query,	answer)	Pairs	in	RL

30

Liu	et	al.	SynLogic:	Synthesizing	Verifiable	Reasoning	Data	at	Scale	for	Learning	Logical	Reasoning	and	Beyond.	2025



Synthe=c	(query,	answer)	Pairs	in	RL

30

Liu	et	al.	SynLogic:	Synthesizing	Verifiable	Reasoning	Data	at	Scale	for	Learning	Logical	Reasoning	and	Beyond.	2025

RL	only	needs	a	query	and	verificaNon	script
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Thank	You!
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