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Recap:	What	are	Agents
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One-Step	Tool	Call	->	Agents

3

LLMs

Tool	Calls

{

  "response": "Sure, I’ll check the current weather for you.",

  "reasoning": "I need real-time conditions so the user’s route 
recommendation is accurate.",

  "tool_calls": [

    {

      "name": "get_weather",

      "arguments": {

        "location": "San Jose, CA, US",

        "date": "2025-11-07"

      }

    }

  ],

}

not exact
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One-Step	Tool	Call	->	Agents
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LLMs

Tool	Calls

Execute	Tools



One-Step	Tool	Call	->	Agents

5

LLMs

Tool	Calls

{

  "response": "Sure, I’ll check the current weather for you.",

  "reasoning": "I need real-time conditions so the user’s route recommendation is 
accurate.",

  "tool_calls": [

    {

      "name": "get_weather",

      "arguments": {

        "location": "San Jose, CA, US",

        "date": "2025-11-07"

      }

    }

  ],

  "tool_return": {

    "temperature": 21.5,

    "condition": "clear",

    "humidity": 60,

    "wind_speed": 10,

    "location": "San Jose, CA, US",

    "date": "2025-11-07"

  }

}

Execute	Tools

Append	Tool	Returnsu



One-Step	Tool	Call	->	Agents
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LLMs

Tool	Calls

Execute	Tools

Append	Tool	Returns

{

  "response": "Sure, I’ll check the current weather for you.",

  "reasoning": "I need real-time conditions so the user’s route recommendation is 
accurate.",

  "tool_calls": [

    {

      "name": "get_weather",

      "arguments": {

        "location": "San Jose, CA, US",

        "date": "2025-11-07"

      }

    }

  ],

  "tool_return": {

    "temperature": 21.5,

    "condition": "clear",

    "humidity": 60,

    "wind_speed": 10,

    "location": "San Jose, CA, US",

    "date": "2025-11-07"

  }

}

Apply_chat_template()a p
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Sure, I’ll check the current weather for you.

[thinking] I need real-time conditions so the user’s route recommendation is accurate. [/thinking]

<tool_call>

{"name": "get_weather", "arguments": {"location": "San Jose, CA, US", "date": "2025-11-07"}}

</tool_call>

<tool_return>

{

  "temperature": 21.5,

  "condition": "clear",

  "humidity": 60,

  "wind_speed": 10,

  "location": "San Jose, CA, US",

  "date": "2025-11-07"

}

</tool_return>

This	is	the	context	fed	back	to	the	
model	to	conSnue	generaSon

↓ ctool-call >
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One-Step	Tool	Call	->	Agents
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LLMs

Tool	Calls

Execute	Tools

Append	Tool	Returns

Apply_chat_template()

Agent	Loop

-



One-Step	Tool	Call	->	Agents
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LLMs

Tool	Calls

Execute	Tools

Append	Tool	Returns

Apply_chat_template()

Agent	Loop

Agent	loop	ends	when	the	model	generates	a	tex	
response	without	tool	calling,	or	someSmes	we	
define	a	“done”	tool	for	the	model	to	call

D -I
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One-step	Example
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Why	Do	We	Want	Agents
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Imagine	if	things	get	done	by	just	talking…

Carson

Leading
agent



Training-free	Methods	for	Building	Agents
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How	to	Let	LLM	Become	an	Agent
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How	to	Let	LLM	Become	an	Agent
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Sure, I’ll check the current weather for you.

[thinking] I need real-time conditions so the user’s route recommendation is accurate. [/thinking]

<tool_call>

{"name": "get_weather", "arguments": {"location": "San Jose, CA, US", "date": "2025-11-07"}}

</tool_call>



How	to	Let	LLM	Become	an	Agent

12

Sure, I’ll check the current weather for you.

[thinking] I need real-time conditions so the user’s route recommendation is accurate. [/thinking]

<tool_call>

{"name": "get_weather", "arguments": {"location": "San Jose, CA, US", "date": "2025-11-07"}}

</tool_call>

We	just	need	the	LLMs	to	output	certain	formats	of	tool	calls	that	we	can	parse



How	to	Let	LLM	Become	an	Agent
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Sure, I’ll check the current weather for you.

[thinking] I need real-time conditions so the user’s route recommendation is accurate. [/thinking]

<tool_call>

{"name": "get_weather", "arguments": {"location": "San Jose, CA, US", "date": "2025-11-07"}}

</tool_call>

We	just	need	the	LLMs	to	output	certain	formats	of	tool	calls	that	we	can	parse
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Just	Prompt
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Just	Prompt
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We	just	need	the	LLMs	to	output	
certain	formats	of	tool	calls	that	
we	can	parse

system prompt1-



EvaluaHng	Language	Agents
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Key	to	Agent	Benchmarks

18



Key	to	Agent	Benchmarks
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Key	to	Agent	Benchmarks
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Key	to	Agent	Benchmarks
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WebArena
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WebArena	(Zhou	et	al.	23’)
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Example	Tasks	in	WebArena

20

↓ sequence of actions
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Outcome/ExecuHon-based	EvaluaHon
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Outcome/ExecuHon-based	EvaluaHon
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ObservaHon	&	AcHon	Space
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ObservaHon	&	AcHon	Space
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Another	type	of	web	agents,	GUI	agents,	directly	takes	image	as	input	observaSons

flexible
-
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TerminalBench
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TerminalBench

24

bash
000
-

O -

-



Training	Methods	for	Improving	Agents
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Learning	of	LLM	Agents
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Supervised	Finetuning
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Supervised	Finetuning
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Supervised	Finetuning
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Supervised	Finetuning
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Create	More	Training	Data
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Data	AugmentaHon
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Reinforcement	Learning
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RLVR



Reinforcement	Learning
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Reinforcement	Learning
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Reinforcement	Learning
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Reinforcement	Learning
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Reinforcement	Learning
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RL	Environments
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Environments	and	benchmarks	typically	come	together
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RL	Environments
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Environments	and	benchmarks	typically	come	together
cusor
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RL	Environments
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Environments	and	benchmarks	typically	come	together

Research	and	Products	are	really	close	nowadays,	and	we	can	directly	RL	in	real,	
product-level	environments
-



Thank	You!
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