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Recap:	Learning	of	LLM	Agents
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Recap:	Reinforcement	Learning
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RL	Environments
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RL	Environments
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Environments	and	benchmarks	typically	come	together

Research	and	Products	are	really	close	nowadays,	and	we	can	directly	RL	in	real,	
product-level	environments



A	Holis8c	Framework	of	Agents
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A	Holis8c	Framework	of	Agents
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Implement	a	Live	Example	to	
Understand	Actual	Model	Input/Output
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Implement	a	Live	Example	to	
Understand	Actual	Model	Input/Output
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Live	Example	aCer	Applying	Template
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Json	formaXed	context	



Live	Example	aCer	Applying	Template
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AYer	applying	chat	templates
Qwen2.5-coder	tokenizer
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AYer	applying	chat	templates
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Live	Example	aCer	Applying	Template
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Live	Example	aCer	Applying	Template
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Qwen3-Coder	tokenizer	template
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Live	Example	aCer	Applying	Template
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Qwen3-Coder	tokenizer	template
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LLM	Safety	and	Bias
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Some	Defini8on	of	Bias
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Some	Defini8on	of	Bias
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Some	Defini8on	of	Bias
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Some	Defini8on	of	Bias
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Algorithmic	Fairness

18



Fairness	Metrics
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To	control	variables,	let’s	use	the	same	set	of	resume,	but	only	change	the	
candidates’	ethnic	group	informaVon	on	the	resume



Fairness	Metrics
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To	control	variables,	let’s	use	the	same	set	of	resume,	but	only	change	the	
candidates’	ethnic	group	informaVon	on	the	resume



Where	Does	Bias	Come	From?
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Example	of	Bias	from	Data:	LangID	Tool
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Jurgens	et	al.	IncorporaVng	Dialectal	Variability	for	Socially	Equitable	Language	IdenVficaVon.	2017
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Example	of	Bias	from	Data:	LangID	Tool
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Jurgens	et	al.	IncorporaVng	Dialectal	Variability	for	Socially	Equitable	Language	IdenVficaVon.	2017
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Example	of	Bias	from	Data:	LangID	Tool
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Jurgens	et	al.	IncorporaVng	Dialectal	Variability	for	Socially	Equitable	Language	IdenVficaVon.	2017

Takeaway:	Bias	can	be	miVgated	by	making	beXer	data	choices
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Example	of	Bias	from	Data:	LangID	Tool
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Jurgens	et	al.	IncorporaVng	Dialectal	Variability	for	Socially	Equitable	Language	IdenVficaVon.	2017

Takeaway:	Bias	can	be	miVgated	by	making	beXer	data	choices
But	this	is	not	the	only	source….



Bias	amplifica8on	from	models
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Zhao	et	al.	Men	Also	Like	Shopping:	Reducing	Gender	Bias	AmplificaVon	using	Corpus-level	Constraints.	2017
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Bias	amplifica8on	from	models
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Zhao	et	al.	Men	Also	Like	Shopping:	Reducing	Gender	Bias	AmplificaVon	using	Corpus-level	Constraints.	2017
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Model	Biases:	Mathema8cal	Links
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Model	Biases:	Mathema8cal	Links
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Suppose	you	have	a	machine	translaVon	dataset	covering	mulVple	
languages,	but	most	of	them	are	about	English-Spanish	translaVon,	and	some	
of	them	are	about	other	languages.	Models	will	prioriVze	decrease	losses	of	
English-Spanish	translaVon
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Where	Does	Bias	Come	From?
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Google	Translate	Issue
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Google	Translate	Issue
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Google	Translate	Issue
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Hate	Speech	or	Toxic	Language	Detec8on
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Racial	biases	in	popular	datasets
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Why	did	these	biases	occur?	Why	didn’t	NLP	system	
designers	think	about	these	issues	beforehand
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Harmful	Content	&	Toxicity
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Biases	vs.	Toxicity
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Toxicity	in	LLMs
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Gehman	et	a.	RealToxicityPrompts:	EvaluaVng	Neural	Toxic	DegeneraVon	in	Language	Models.	2020

Touvron	et	a.	LLaMA:	Open	and	Efficient	FoundaVon	Language	Models.	2023
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Why	are	these	models	learning	so	
much	undesirable	content?
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Problems	with	Self-Supervised	Pretraining
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Toxicity	in	GPT-2’s	pretraining	data
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Fake	news	in	GPT-2’s	Pretraining	data
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Thank	You!
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