
Language Model Bias and Safety
Junxian He

1

Nov 14, 2025

COMP 4901B	
Large Language Models

Part of slides are adapted from CMU 11711



Recap: Learning of LLM Agents
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Recap: Reinforcement Learning
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Reinforcement Learning
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RL Environments
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Environments and benchmarks typically come together

Research and Products are really close nowadays, and we can directly RL in real, 
product-level environments



A Holistic Framework of Agents
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Environment Agent Loop

System prompt

Default tools

Memory 
management

Data

Query
Env states



Implement a Live Example to 
Understand Actual Model Input/Output
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Tool Definition



Implement a Live Example to 
Understand Actual Model Input/Output
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Example Conversation Data



Implement a Live Example to 
Understand Actual Model Input/Output
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Live Example after Applying Template
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Json formatted context 



Live Example after Applying Template
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After applying chat templates

System prompt

Qwen2.5-coder tokenizer



Live Example after Applying Template
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After applying chat templates



Live Example after Applying Template
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Qwen3-Coder tokenizer template

Switch from json tool call to xml



Live Example after Applying Template
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Qwen3-Coder tokenizer template

Switch from json tool call to xml



LLM Safety and Bias
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Some Definition of Bias
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Algorithmic Fairness
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Fairness Metrics
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To control variables, let’s use the same set of resume, but only change the 
candidates’ ethnic group information on the resume



Where Does Bias Come From?
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Example of Bias from Data: LangID Tool
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Jurgens et al. Incorporating Dialectal Variability for Socially Equitable Language Identification. 2017



Example of Bias from Data: LangID Tool
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Jurgens et al. Incorporating Dialectal Variability for Socially Equitable Language Identification. 2017

Takeaway: Bias can be mitigated by making better data choices
But this is not the only source….



Bias amplification from models
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Zhao et al. Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints. 2017



Model Biases: Mathematical Links
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Suppose you have a machine translation dataset covering multiple 
languages, but most of them are about English-Spanish translation, and some 
of them are about other languages. Models will prioritize decrease losses of 
English-Spanish translation



Where Does Bias Come From?
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Google Translate Issue
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Hate Speech or Toxic Language Detection
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Racial biases in popular datasets
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Why did these biases occur? Why didn’t NLP system 
designers think about these issues beforehand
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Harmful Content & Toxicity
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Biases vs. Toxicity
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Toxicity in LLMs
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Gehman et a. RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models. 2020

Touvron et a. LLaMA: Open and Efficient Foundation Language Models. 2023



Why are these models learning so	
much undesirable content?
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Problems with Self-Supervised Pretraining
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Toxicity in GPT-2’s pretraining data
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Fake news in GPT-2’s Pretraining data
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Thank You!
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