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p(x1, x2, . . . , xI) =
I

∏
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p(xi |x1:i−1)
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Learning	a	language	model	is	to	learn	these	condi)onal	
probabili)es,	for	any	language	sequence

p(x1, x2, . . . , xI) =
I

∏
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p(xi |x1:i−1)
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Given	a	dataset,	how	to	find	these	probabiliCes?

Maximum	Likelihood	Es)ma)on

p(x1, x2, . . . , xI) =
I

∏
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p(xi |x1:i−1)
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c(x1:i−1)
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p(xi |x1:i−1) = c(x1:i)
c(x1:i−1)

Count	the	frequency	and	divide

There	are	infinite	number	of	parameters	for	language

We	may	see	long	sequences	only	once,	coun)ng	becomes	meaningless

-

-



n-gram	Language	Models

8



n-gram	Language	Models

8

Next	token	probability	only	depends	on	the	previous	n-1	words



n-gram	Language	Models

8

Next	token	probability	only	depends	on	the	previous	n-1	words

Unigram	LM:

p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi)

emer

-
RX) finite



n-gram	Language	Models

8

Next	token	probability	only	depends	on	the	previous	n-1	words

Unigram	LM:

p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi) Each	token	is	independent



n-gram	Language	Models

8

Next	token	probability	only	depends	on	the	previous	n-1	words

Unigram	LM:

p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi) Each	token	is	independent

Bigram	LM:

p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi |xi−1)

Tword
-
-

D X D
& u-
-



n-gram	Language	Models

8

Next	token	probability	only	depends	on	the	previous	n-1	words

Unigram	LM:

p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi) Each	token	is	independent

Bigram	LM:

p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi |xi−1)

Generally	for	n-gram	LM:

p(x1, x2, . . . , xI) =
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Count-based:

p(xi |xi−n+1:i−1) = c(xi−n+1:i)
c(xi−n+1:i−1)

Number	of	parameters	decreases,	but	flexibility	decreases	as	well
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Count-based:

p(xi |xi−n+1:i−1) = c(xi−n+1:i)
c(xi−n+1:i−1)

Number	of	parameters	decreases,	but	flexibility	decreases	as	well

TradiConally,	we	directly	compute	this	probability,	but	neural	language	
models	use	neural	networks	to	compute	the	probability	
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Neural	language	models	are	typically	autoregressive
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Neural	Networks
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Neural	Networks

Neural	language	models	are	typically	autoregressive
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Neural	Networks

Neural	language	models	are	typically	autoregressive
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We	can	compute	the	loss	on	every	token	in	parallel
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Neural	Networks
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Neural	Networks
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At	inference	Cme,	to	generate:

Neural	Networks

<start> 

The 

The 

mouse 

mouse ate 

ate

the

the

cheese

cheese . Autoregressive	generaCon	has	to	generate	
token	by	token

Are	language	models	generaCve	models?

Can	we	compute	p(x)	given	x?	Can	we	sample	new	x?

✅

✅

-



Neural	Language	Models

18

At	inference	Cme,	to	generate:

Neural	Networks
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cheese . Autoregressive	generaCon	has	to	generate	
token	by	token

Cann’t	parallelize,	efficiency	of	
autoregressive	decoding	is	sCll	an	
important	research	topic

Are	language	models	generaCve	models?
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Language	model	is	the	fundamental	block	to	model	language	distribuCon	p(x)

For	a	long	Cme,	to	solve	specific	tasks:
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Language	model	is	the	fundamental	block	to	model	language	distribuCon	p(x)

For	a	long	Cme,	to	solve	specific	tasks:

Image/text/audio Encoder Decoder Text

When	we	have	a	be_er	arch/training	
for	LM,	we	can	have	a	be_er	decoder

Not	long	ago,	some	people	think	purely	language	models	is	useless	because	it	
does	not	directly	address	tasks,	and	LM	performance	may	not	transfer	to	
downstream	tasksTtranslation

,
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Ok,	language	modeling	can	be	used	as	pretraining,	but	is	a	language	model	itself	
useful	for	some	tasks	directly?

In the late 1980s the Hong Kong Government anticipated a strong demand for university graduates to fuel an economy increasingly based on services. Sir 
Sze-Yuen Chung and Sir Edward Youde, the then Governor of Hong Kong, conceived the idea of another university in addition to the pre-existing two 
universities, The University of Hong Kong and The Chinese University of Hong Kong.
Planning for the "Third University", named The Hong Kong University of Science and Technology later, began in 1986. Construction began at the Kohima 
Camp site in Tai Po Tsai on the Clear Water Bay Peninsula. The site was earmarked for the construction of a new [ ]
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Radford	et	al.	Language	Models	are	Unsupervised	Mul)task	Learners.	2018.	

Next	token	predicCon	can	unify	many	tasks

Machine	translaCon:

Chinese: 今天是学期的最后⼀天。 
English: 

QuesCon	answering:

Q:  What is the capital of the United States? 
A: 

This	was	an	early	form	of	promp)ng,	
that	is	widely	discussed	today

Comple)on	is	very	general
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Source	Data	A	(maybe	a	different	task) Target	Data	B

Model

Train	on	data	A	first
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Source	Data	A	(maybe	a	different	task) Target	Data	B

Model

Train	on	data	A	first

Model

Then	train	on	data	B

Classically,	this	is	transfer	Learning

It	is	now	called	pretraining	because	of	the	scale	of	A

Eny-> German

small scale traditionally

D Engl Even
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language↳ modeling



Pretraining

27

Source	Data	A	(maybe	a	different	task) Target	Data	B

Model

Train	on	data	A	first

Model

Then	train	on	data	B

For	supervised	training,	data	A	is	oHen	limited

How	can	we	find	large-scale	data	A	to	train?LM
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Language	Model

Large-scale	Data
Large-scale	Parameters

Large-Scale	Compute
Large	Language	Model
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