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Recap: Autoregressive Language 
Models
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p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi |x1:i−1)

Next Word Context



Recap: Neural Language Models
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Neural language models are typically autoregressive

Data: “The mouse ate the cheese .”
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Recap: Neural Language Models
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Neural Networks

Neural language models are typically autoregressive
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Data: “The mouse ate the cheese .”

We can compute the loss on every token in parallel



Recap: Neural Language Models
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Neural Networks

Neural language models are typically autoregressive
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Data: “The mouse ate the cheese .”

Each prediction only sees the inputs on its lef



Recap: Multilayer Networks of 
Sigmoid Units
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Activation Functions
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Tanh
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Activation Function
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ReLU
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Other Activation Functions
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Multilayer Perceptron Neural 
Networks (MLP)
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Residual Connection
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We want deeper and deeper NNs, but going deep is difficult

Weight initialization	
Normalization modules	
Deep residual learning

Commonly used techniques to train “Deep” NNs:



The Degradation Problem
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Deep Residual Learning
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MLP network is hard to handle 
sequence data with varying length
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Recurrent Neural Networks (RNNs)
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Recurrent Neural Networks
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Computation Graph
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Computation Graph
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Compact view
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks

There are many variants of RNNs since the functional form to compute 
 can vary, e.g., LSTMs(t)



Sequence-to-Sequence Learning
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Example of Neural Machine Translation



RNN Language Model

28



Transformer
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Vaswani et al. Attention is All You Need. NeurIPS 2017.



Encoder
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Decoder
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Transformer Encoder
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Self-attention

MLP
Residual 
connection



What is Attention
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Q: Query	
K: key	
V: value

Attention weight = softmax(QKT)

Scaled Attention weight = softmax(
QKT

dk
)

Q ∈ Rn×d K ∈ Rm×d V ∈ Rm×d

We have n queries, m (key, value) pairs

Dot-products grow large in magnitude

Attention weight represents the strength to “attend” values V

Shape is mxn



Q, K, V
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What are Q, K, V in the transformer



Self-Attention
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35

Input is X

Query, key, and value are 
from the same input, thus it 
is called “self”-attention

Jay Alammar. The Illustrated Transformer.



Self-Attention
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Slides by Emma Strubell

At each step, the attention computation attends 
to all steps in the input example



Self-Attention
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Slides by Emma Strubell



Self-Attention
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Slides by Emma Strubell

Attention weight on every 
word in the sequence



Self-Attention

39

Slides by Emma Strubell



Self-Attention
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Slides by Emma Strubell



Multi-Head Attention
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Multi-Head Self-Attention

42 Jay Alammar. The Illustrated Transformer.



Multi-Head Self-Attention

43 Jay Alammar. The Illustrated Transformer.



Multi-head Self-Attention
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Slides by Emma Strubell



Multi-head Self-Attention
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Slides by Emma Strubell

Concat and output projection



Multi-head Self-Attention + FFN
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Slides by Emma Strubell



Transformer Encoder
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Currently we only cover the encoder side

This encoder-decoder arch is originally proposed as a seq2seq arch, for classification tasks, often only 
encoder is used. And language models often only have a decoder



Transformer Decoder in Seq2Seq
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Self-attention

Cross-attention

Cross-attention uses the output of 
encoder as input



Masked Attention
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Typical attention attends to the entire sequence, while masked 
attention only attends to the ones on the left because future words 
have not been generated



Position Embeddings
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Question: If we shuffle the order of words in the 
sequence, will that change the attention output 
and feed forward output of the corresponding 
word?

Position embeddings are added to each 
word embedding, otherwise our model is 
unaware of the position of a word



Positional Encoding
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Transformer Positional Encoding
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Complexity
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n is sequence length, d is embedding dimension.

Square complexity of sequence length is a major issue for transformers to deal 
with long sequence

Restricted self-attention means not attending all words in the 
sequence, but only a restricted field



Thank You!
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