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Neural	Networks

Neural	language	models	are	typically	autoregressive
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We	can	compute	the	loss	on	every	token	in	parallel
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Mul7layer	Perceptron	Neural	
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We	want	deeper	and	deeper	NNs,	but	going	deep	is	difficult

Weight	iniPalizaPon	
NormalizaPon	modules	
Deep	residual	learning

Commonly	used	techniques	to	train	“Deep”	NNs:
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MLP	network	is	hard	to	handle	
sequence	data	with	varying	length
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Recurrent	Neural	Networks	(RNNs)
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Recurrent	Neural	Networks

There	are	many	variants	of	RNNs	since	the	funcPonal	form	to	compute	
	can	vary,	e.g.,	LSTMs(t)
-
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Sequence-to-Sequence	Learning
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RNN	Language	Model
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Transformer
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Vaswani	et	al.	A^enPon	is	All	You	Need.	NeurIPS	2017.
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Transformer	Encoder
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Q:	Query	
K:	key	
V:	value
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Q,	K,	V

34

What	are	Q,	K,	V	in	the	transformer
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Jay	Alammar.	The	Illustrated	Transformer.
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Slides	by	Emma	Strubell

At	each	step,	the	a^enPon	computaPon	a^ends	
to	all	steps	in	the	input	example
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Slides	by	Emma	Strubell

A^enPon	weight	on	every	
word	in	the	sequence
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Concat	and	output	projecPon



Mul7-head	Self-ANen7on	+	FFN

46

Slides	by	Emma	Strubell



Transformer	Encoder

47

Currently	we	only	cover	the	encoder	side



Transformer	Encoder

47

Currently	we	only	cover	the	encoder	side



Transformer	Encoder
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Currently	we	only	cover	the	encoder	side

This	encoder-decoder	arch	is	originally	proposed	as	a	seq2seq	arch,	for	classificaPon	tasks,	oQen	only	
encoder	is	used.	And	language	models	oQen	only	have	a	decoder
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Masked	ANen7on
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Typical	a^enPon	a^ends	to	the	enPre	sequence,	while	masked	
a^enPon	only	a^ends	to	the	ones	on	the	leQ	because	future	words	
have	not	been	generated
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sequence,	will	that	change	the	a^enPon	output	
and	feed	forward	output	of	the	corresponding	
word?
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QuesPon:	If	we	shuffle	the	order	of	words	in	the	
sequence,	will	that	change	the	a^enPon	output	
and	feed	forward	output	of	the	corresponding	
word?

PosiPon	embeddings	are	added	to	each	
word	embedding,	otherwise	our	model	is	
unaware	of	the	posiPon	of	a	word



Posi7onal	Encoding
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Transformer	Posi7onal	Encoding
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n	is	sequence	length,	d	is	embedding	dimension.
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n	is	sequence	length,	d	is	embedding	dimension.

Square	complexity	of	sequence	length	is	a	major	issue	for	transformers	to	deal	
with	long	sequence

Restricted	self-a^enPon	means	not	a^ending	all	words	in	the	
sequence,	but	only	a	restricted	field
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