
Transformers
Junxian	He

1

Sep	17,	2025

COMP	4901B	
Large	Language	Models



Please	Download	HKUST	iLearn	in	
Your	Mobile	Phone	or	iPad

2

We	are	going	to	use	iPRS	to	do	quizzes	in	the	future



Audit ↓ attendance

inte( 10%
--I group project enrolled--

9

audit

↑



Recap:	Autoregressive	Language	
Models

3

p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi |x1:i−1)

Next	Word Context



Recap:	Neural	Language	Models

4



Recap:	Neural	Language	Models

4

Neural	language	models	are	typically	autoregressive



Recap:	Neural	Language	Models

4

Neural	language	models	are	typically	autoregressive

Data: “The mouse ate the cheese .”



Recap:	Neural	Language	Models

4

Neural	language	models	are	typically	autoregressive

Data: “The mouse ate the cheese .”

Neural	Networks

<start> 

The 



Recap:	Neural	Language	Models

5

Neural	Networks

Neural	language	models	are	typically	autoregressive

<start> The 

mouse 

Data: “The mouse ate the cheese .”



Recap:	Neural	Language	Models

6

Neural	Networks

Neural	language	models	are	typically	autoregressive

<start> The mouse 

ate

Data: “The mouse ate the cheese .”

O

decoder

-



Recap:	Neural	Language	Models

7

Neural	Networks
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Neural	Networks

Neural	language	models	are	typically	autoregressive
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Data: “The mouse ate the cheese .”

We	can	compute	the	loss	on	every	token	in	parallel
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Neural	Networks

Neural	language	models	are	typically	autoregressive

<start> 

The 

The 

mouse 

mouse ate 

ate

the

the

cheese

cheese .

Data: “The mouse ate the cheese .”

Each	predicSon	only	sees	the	inputs	on	its	leT
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Vaswani	et	al.	AXenSon	is	All	You	Need.	NeurIPS	2017.
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V:	value
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Q:	Query	
K:	key	
V:	value

AXenSon	weight	=	soTmax(QKT)
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Q,	K,	V
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Input	is	X

Jay	Alammar.	The	Illustrated	Transformer.
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Input	is	X

Query,	key,	and	value	are	
from	the	same	input,	thus	it	
is	called	“self”-aXenSon
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Slides	by	Emma	Strubell

At	each	step,	the	aXenSon	computaSon	aXends	
to	all	steps	in	the	input	example
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Slides	by	Emma	Strubell

AXenSon	weight	on	every	
word	in	the	sequence
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Slides	by	Emma	Strubell
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Transformer	Encoder
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Currently	we	only	cover	the	encoder	side

⑨



Transformer	Encoder
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Currently	we	only	cover	the	encoder	side

encoder-> ger representation

decorder- generate
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Transformer	Encoder
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Currently	we	only	cover	the	encoder	side

This	encoder-decoder	arch	is	originally	proposed	as	a	seq2seq	arch,	for	classificaSon	tasks,	oTen	only	
encoder	is	used.	And	language	models	oTen	only	have	a	decoder
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Masked	AFenGon
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Typical	aXenSon	aXends	to	the	enSre	sequence,	while	masked	
aXenSon	only	aXends	to	the	ones	on	the	leT	because	future	words	
have	not	been	generated
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Self-aXenSon

Cross-aXenSon

Cross-aXenSon	uses	the	output	of	
encoder	as	input
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and	feed	forward	output	of	the	corresponding	
word?
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QuesSon:	If	we	shuffle	the	order	of	words	in	the	
sequence,	will	that	change	the	aXenSon	output	
and	feed	forward	output	of	the	corresponding	
word?

PosiSon	embeddings	are	added	to	each	
word	embedding,	otherwise	our	model	is	
unaware	of	the	posiSon	of	a	word



PosiGonal	Encoding
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Transformer	PosiGonal	Encoding
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n	is	sequence	length,	d	is	embedding	dimension.
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Complexity

35

n	is	sequence	length,	d	is	embedding	dimension.

Square	complexity	of	sequence	length	is	a	major	issue	for	transformers	to	deal	
with	long	sequence

Restricted	self-aXenSon	means	not	aXending	all	words	in	the	
sequence,	but	only	a	restricted	field



Language	Model	Training	with	
Limited	Context
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Dai	et	al.	Transformer-XL:	AXenSve	Language	Models	Beyond	a	Fixed-Length	Context.	2019.



Transformer	Language	Model	(e.g.,	ChatGPT)
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Language	Model	Pretraining
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Source	Data	A	(maybe	a	different	task) Target	Data	B

Model

Train	on	data	A	first

Model

Then	train	on	data	B

Classically,	this	is	transfer	Learning

It	is	now	called	pretraining	because	of	the	scale	of	A
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Source	Data	A	(maybe	a	different	task) Target	Data	B

Model

Train	on	data	A	first

Model

Then	train	on	data	B

For	supervised	training,	data	A	is	oTen	limited

How	can	we	find	large-scale	data	A	to	train?



BERT
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Mask	language	modeling

Devlin	et	al.	BERT:	Pre-training	of	Deep	BidirecSonal	Transformers	for	
Language	Understanding.	NAACL	2019.
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Language	Understanding.	NAACL	2019.
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Language	Understanding.	NAACL	2019.

Self-supervised	Learning
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41

Mask	language	modeling

Transformer	

<start> The [mask] ate 

mouse

the cheese

Construct	a	syntheSc	task	from	raw	text	only
Can	be	made	very	large-scale

Is	Bert	a	language	model?	Is	it	a	generaSve	model?
Devlin	et	al.	BERT:	Pre-training	of	Deep	BidirecSonal	Transformers	for	
Language	Understanding.	NAACL	2019.

Self-supervised	Learning



GeneraGve	Pre-Training	(GPT)
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Radford	et	al.	Improving	Language	Understanding	by	GeneraSve	Pre-Training.	2018	
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Radford	et	al.	Improving	Language	Understanding	by	GeneraSve	Pre-Training.	2018	
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