

COMP 4901B Large Language Models

Transformers

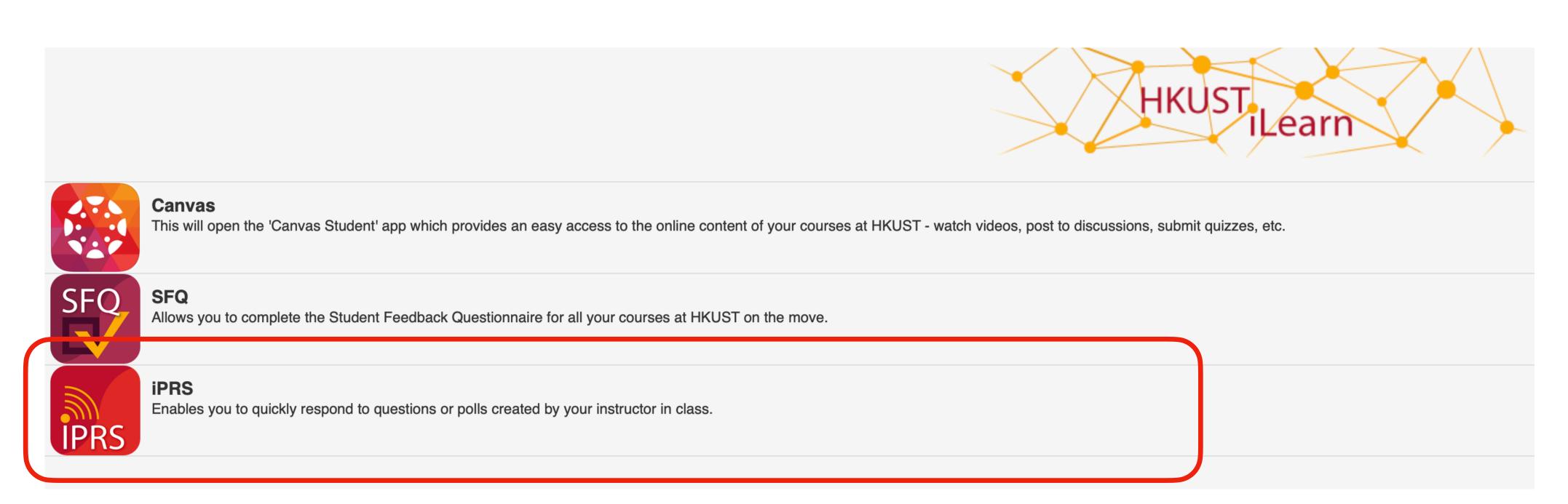
Junxian He

Sep 17, 2025

Please Download HKUST iLearn in Your Mobile Phone or iPad

HKUST iLearn

HKUST Learning
Designed for iPad. Not verifice



We are going to use iPRS to do quizzes in the future

Audit attendence

Recap: Autoregressive Language Models

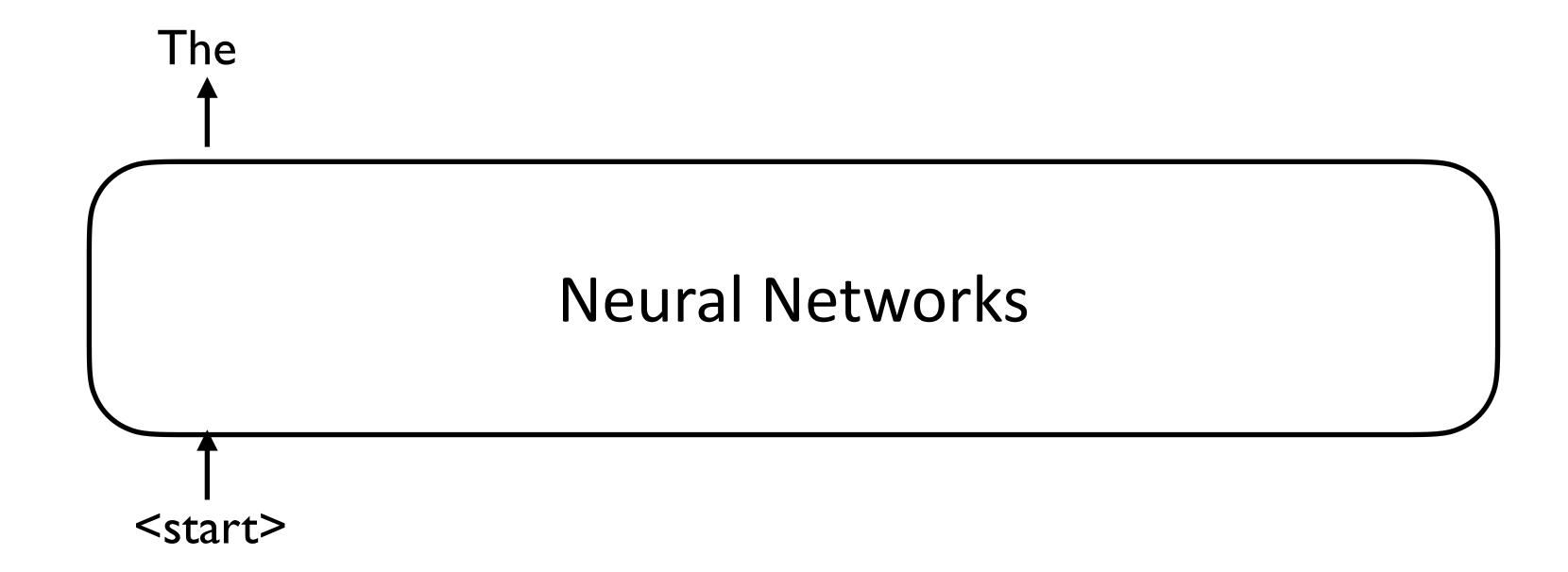
```
p(\mbox{the, mouse, ate, the, cheese}) = p(\mbox{the}) p(\mbox{mouse } | \mbox{ the}) p(\mbox{ate } | \mbox{ the, mouse}) p(\mbox{the } | \mbox{ the, mouse, ate}) p(\mbox{cheese } | \mbox{ the, mouse, ate, the}).
```

$$p(x_1, x_2, \dots, x_I) = \prod_{i=1}^{I} p(x_i | x_{1:i-1})$$
Next Word Context

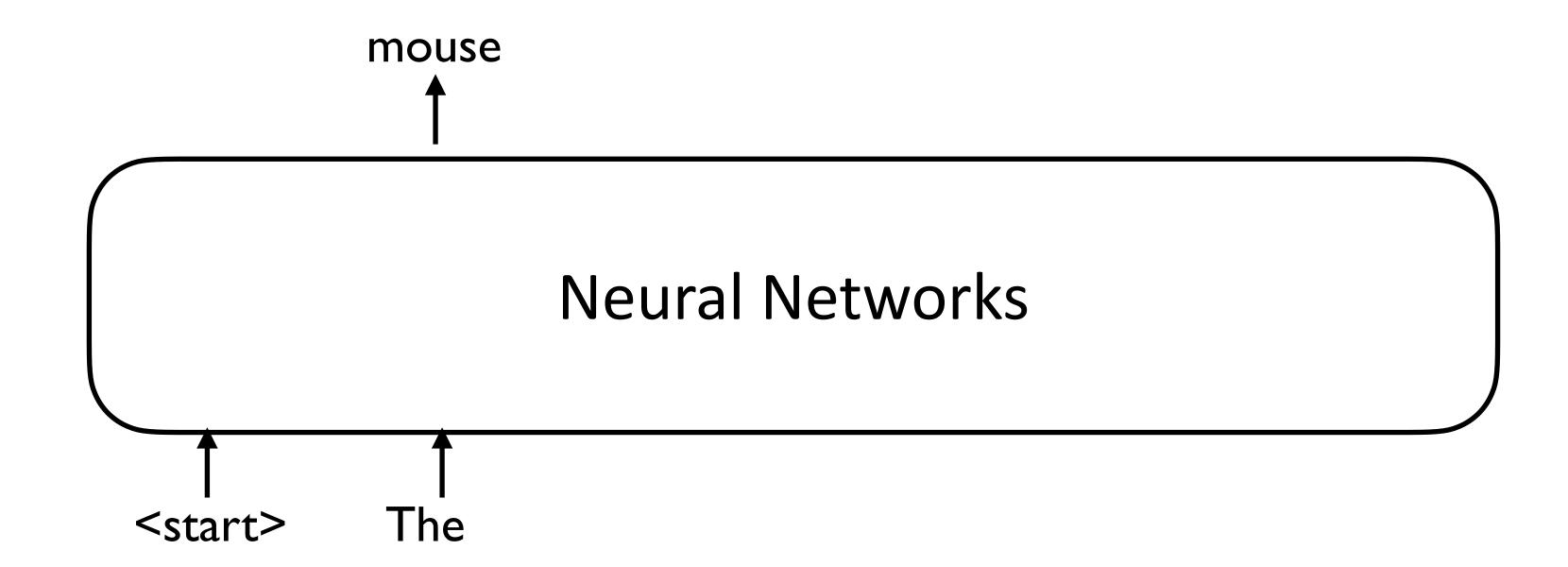
Neural language models are typically autoregressive

Neural language models are typically autoregressive

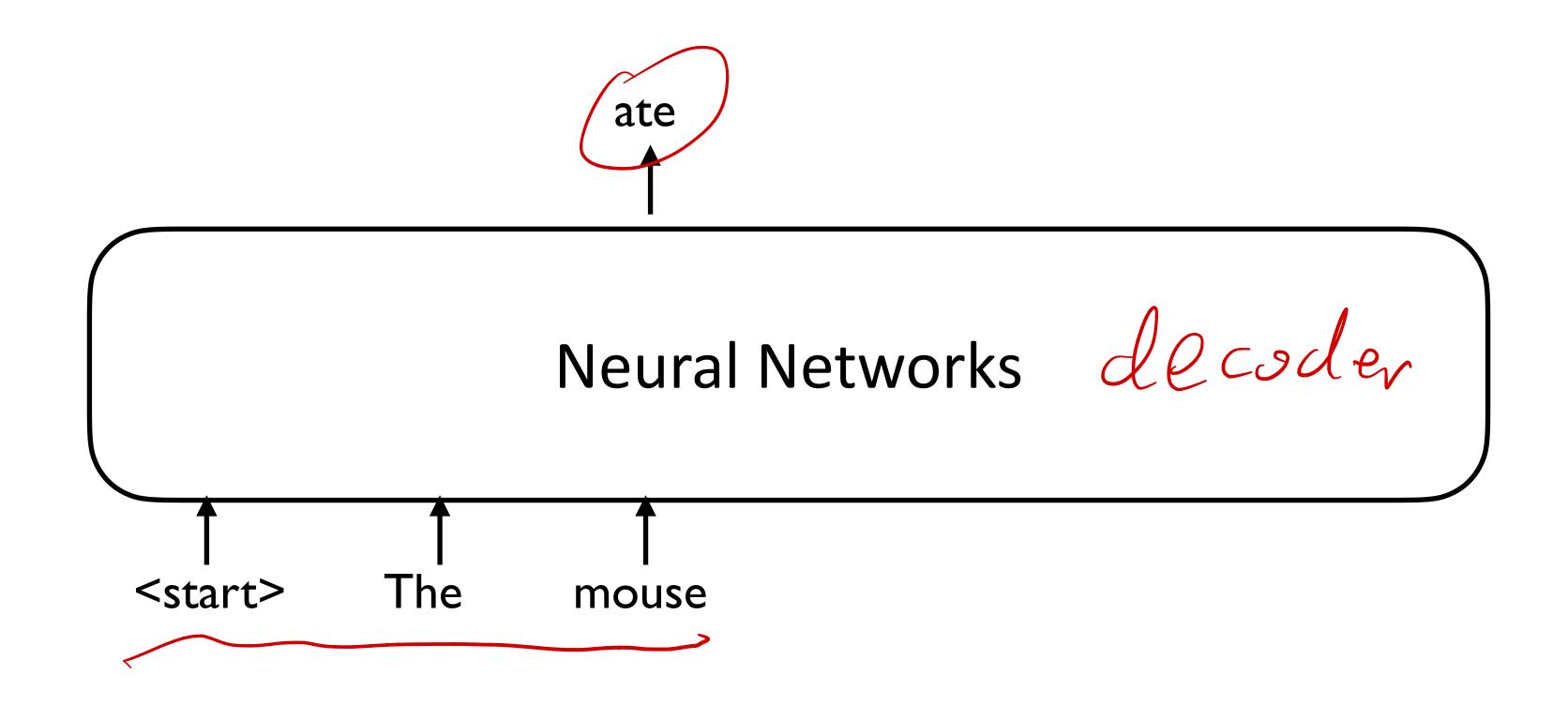
Neural language models are typically autoregressive



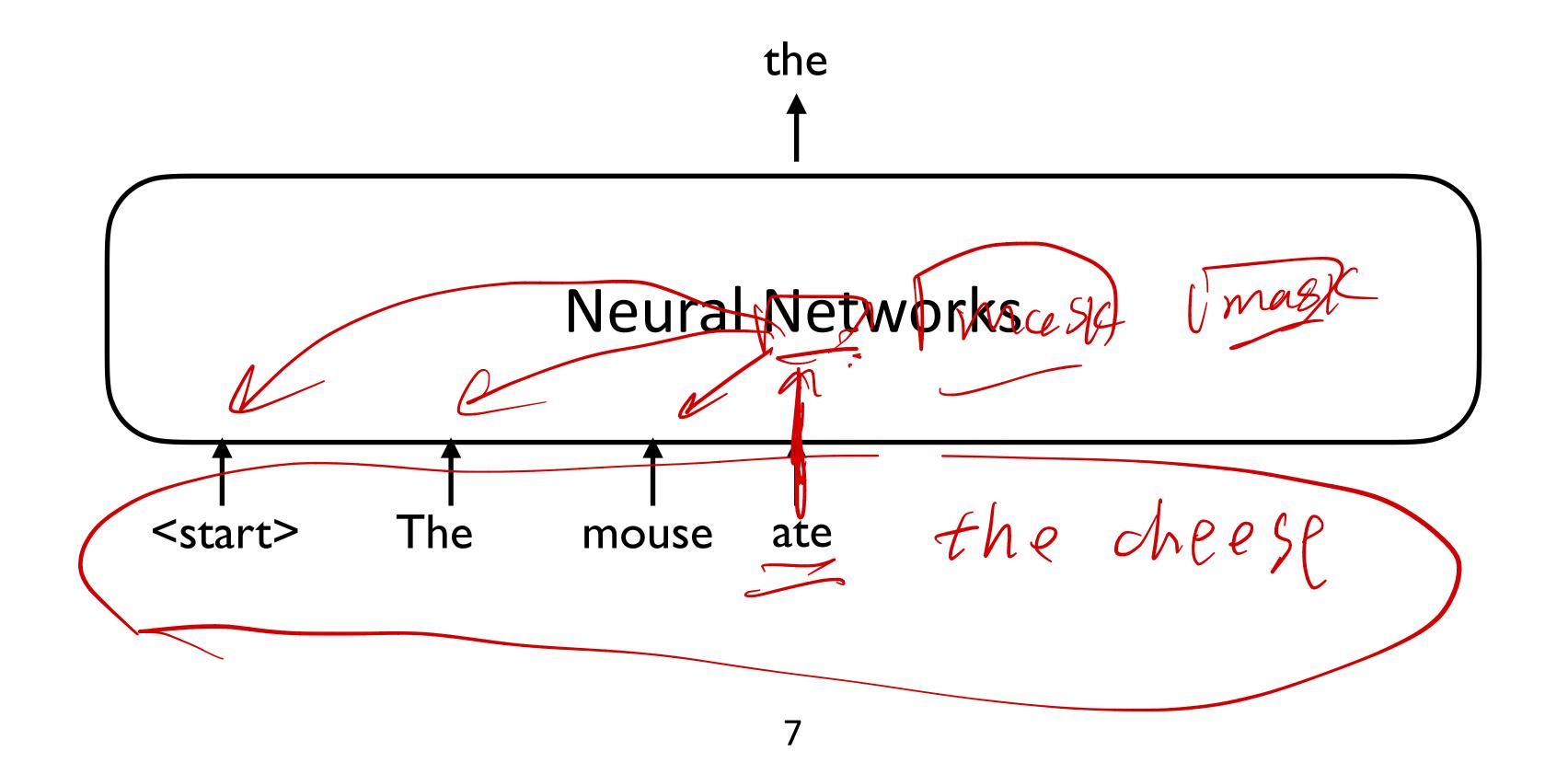
Neural language models are typically autoregressive



Neural language models are typically autoregressive

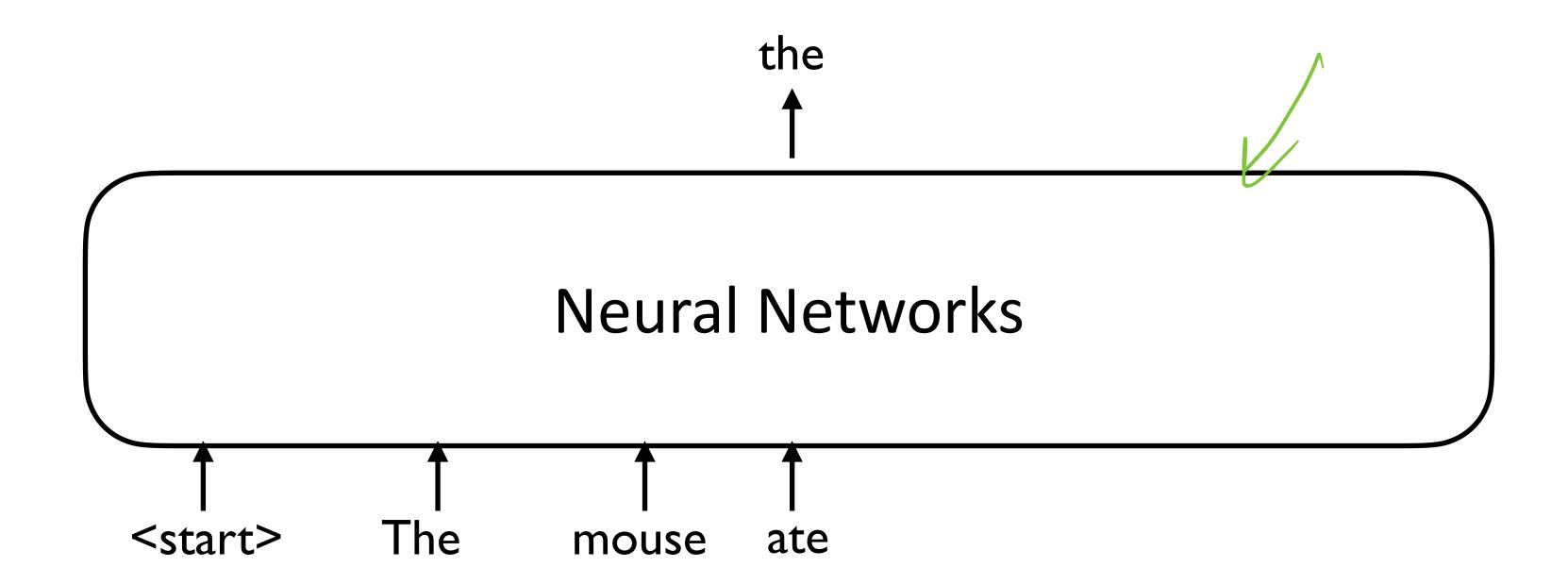


Neural language models are typically autoregressive



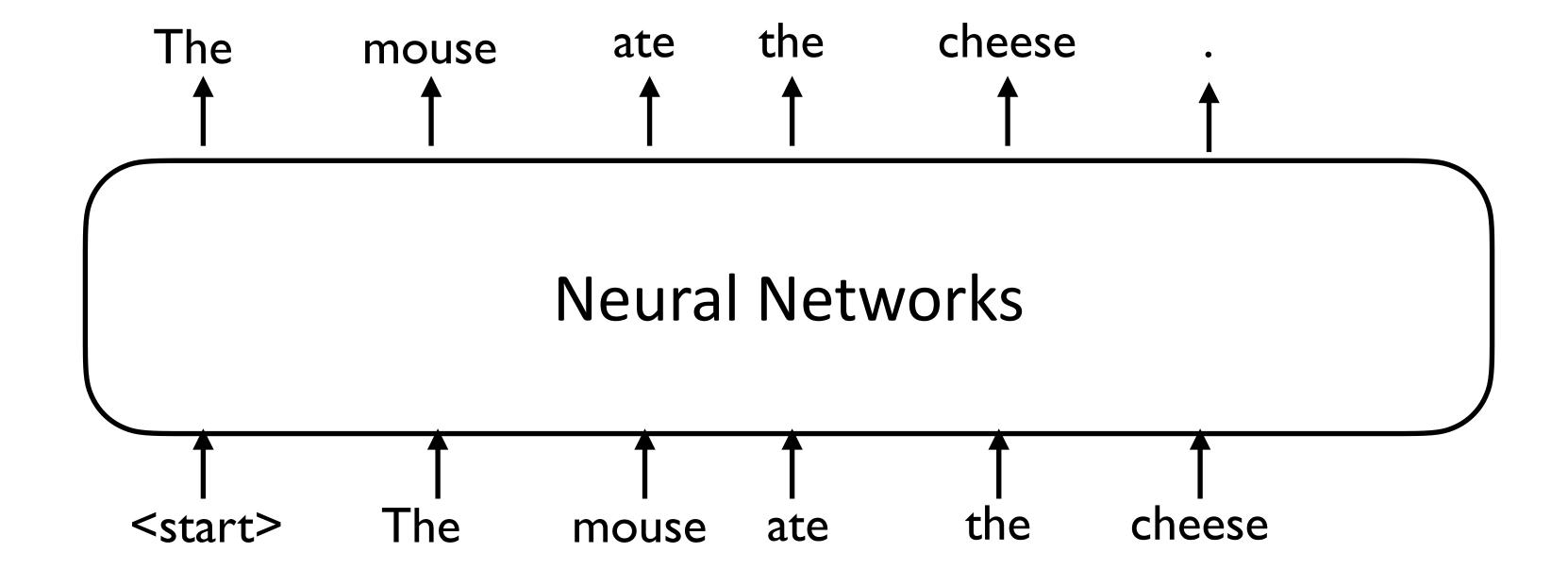
Neural language models are typically autoregressive

Data: "The mouse ate the cheese ."

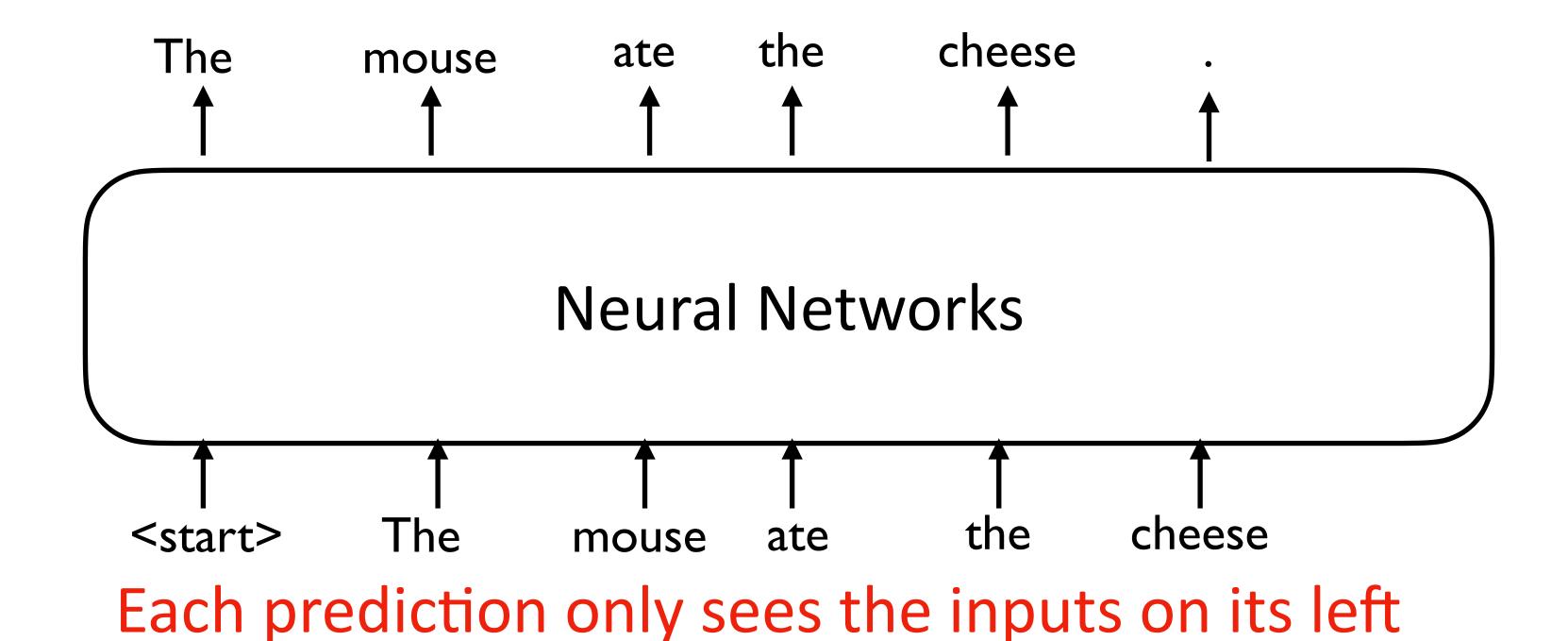


We can compute the loss on every token in parallel

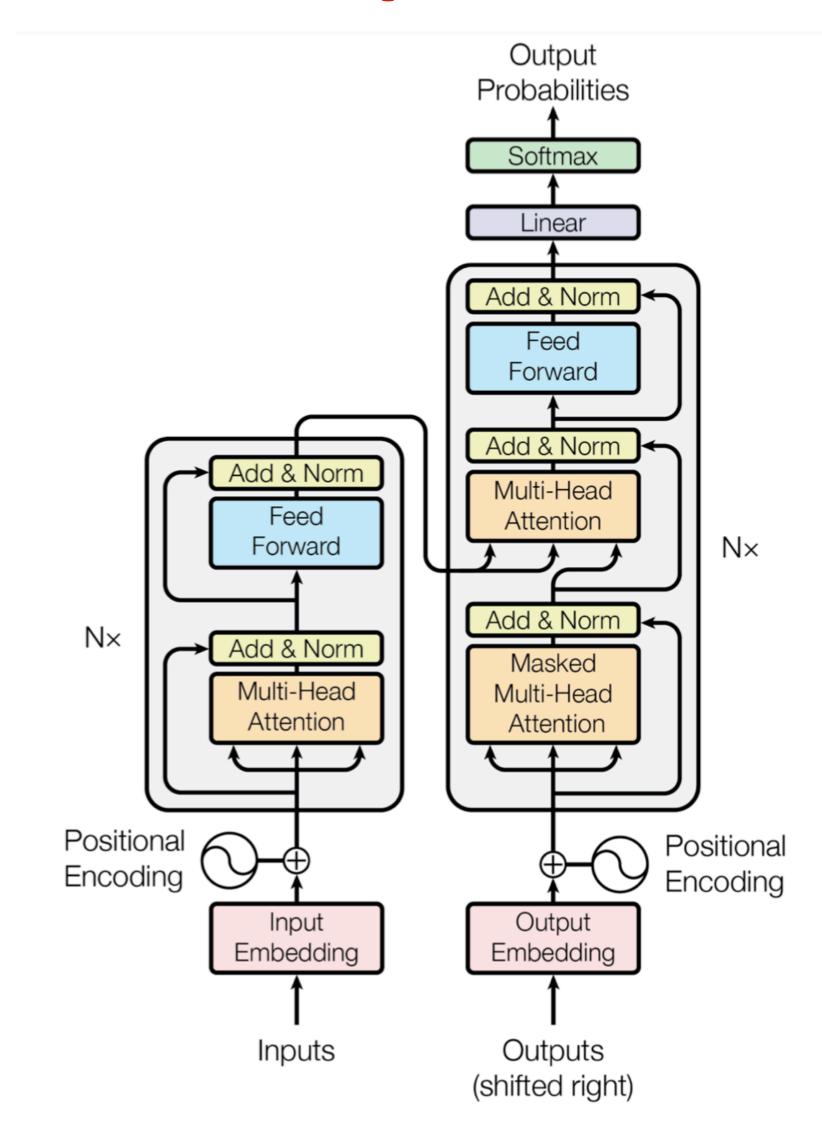
Neural language models are typically autoregressive



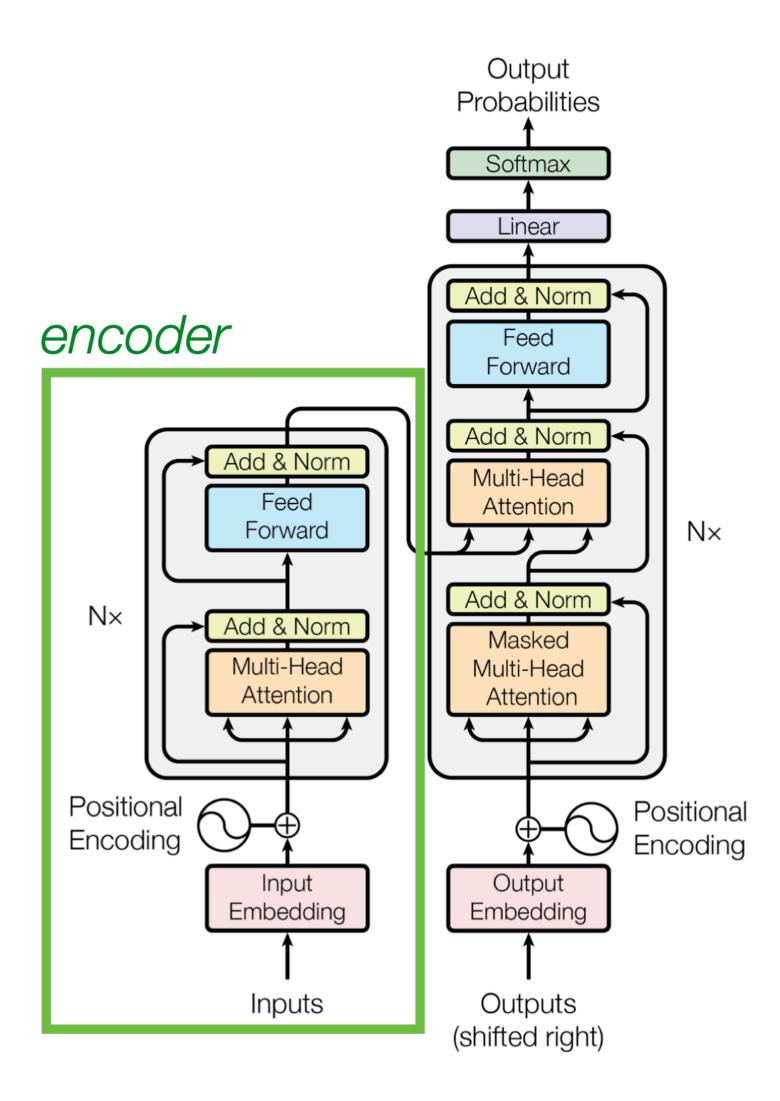
Neural language models are typically autoregressive



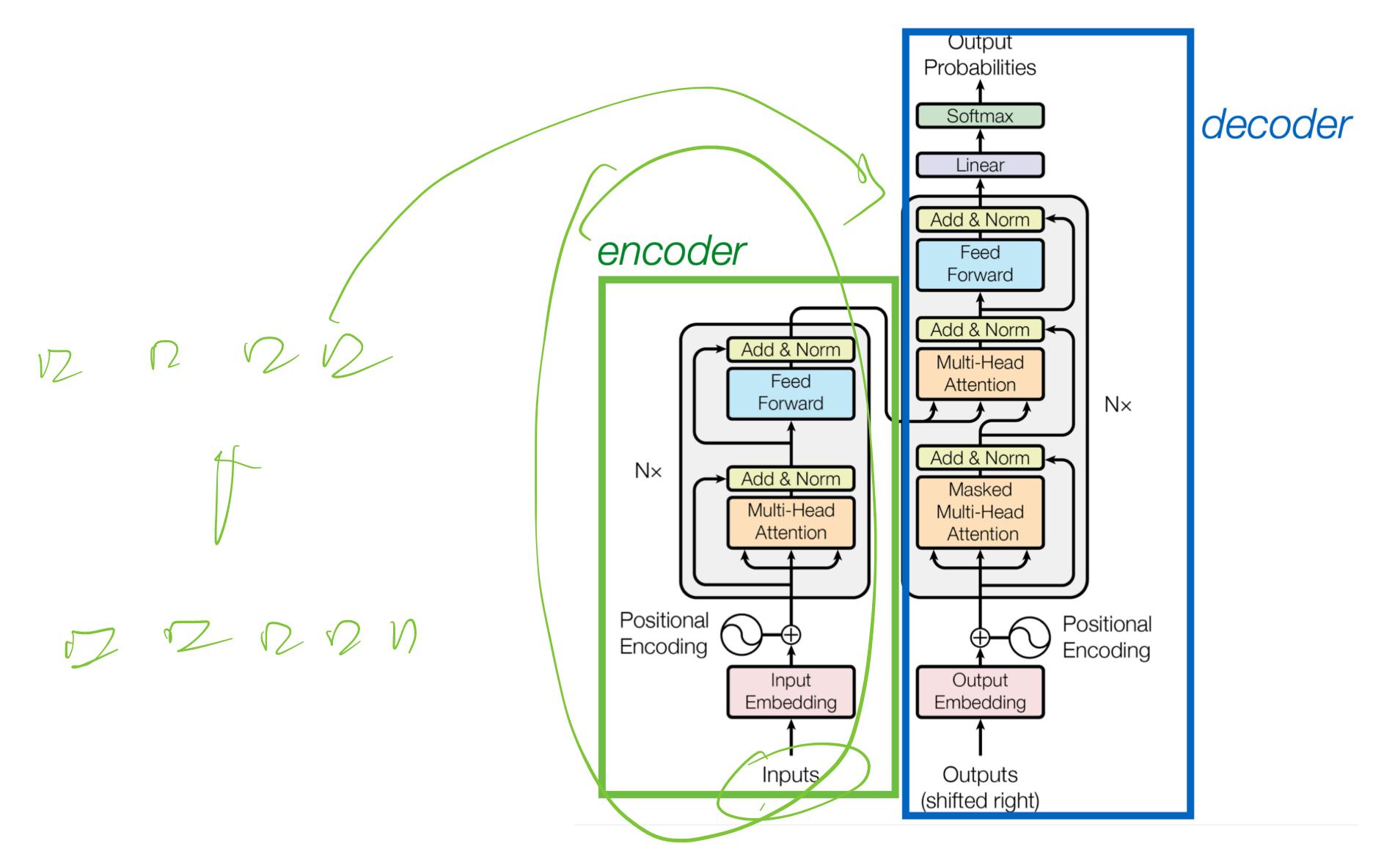
Recap: Transformer

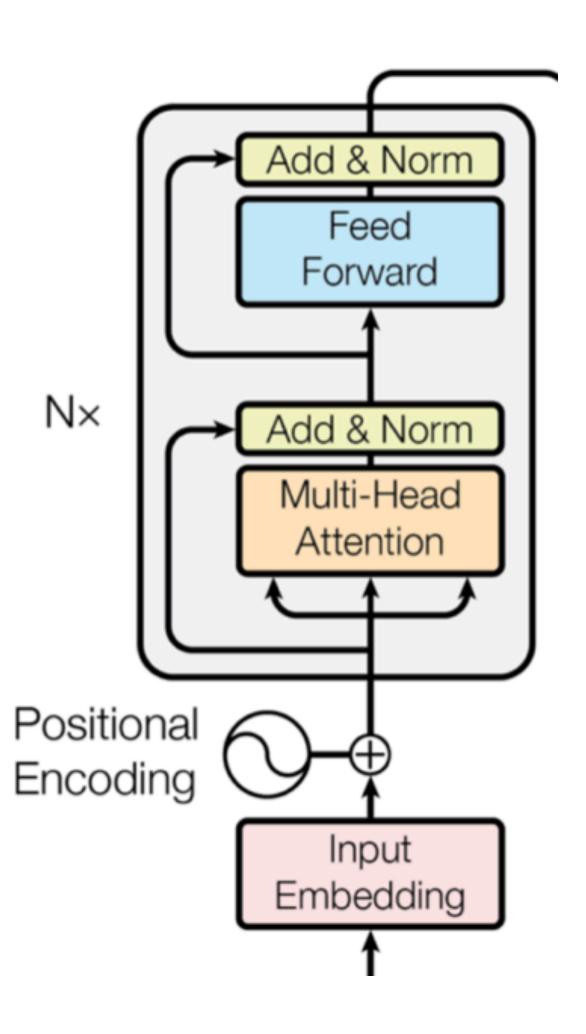


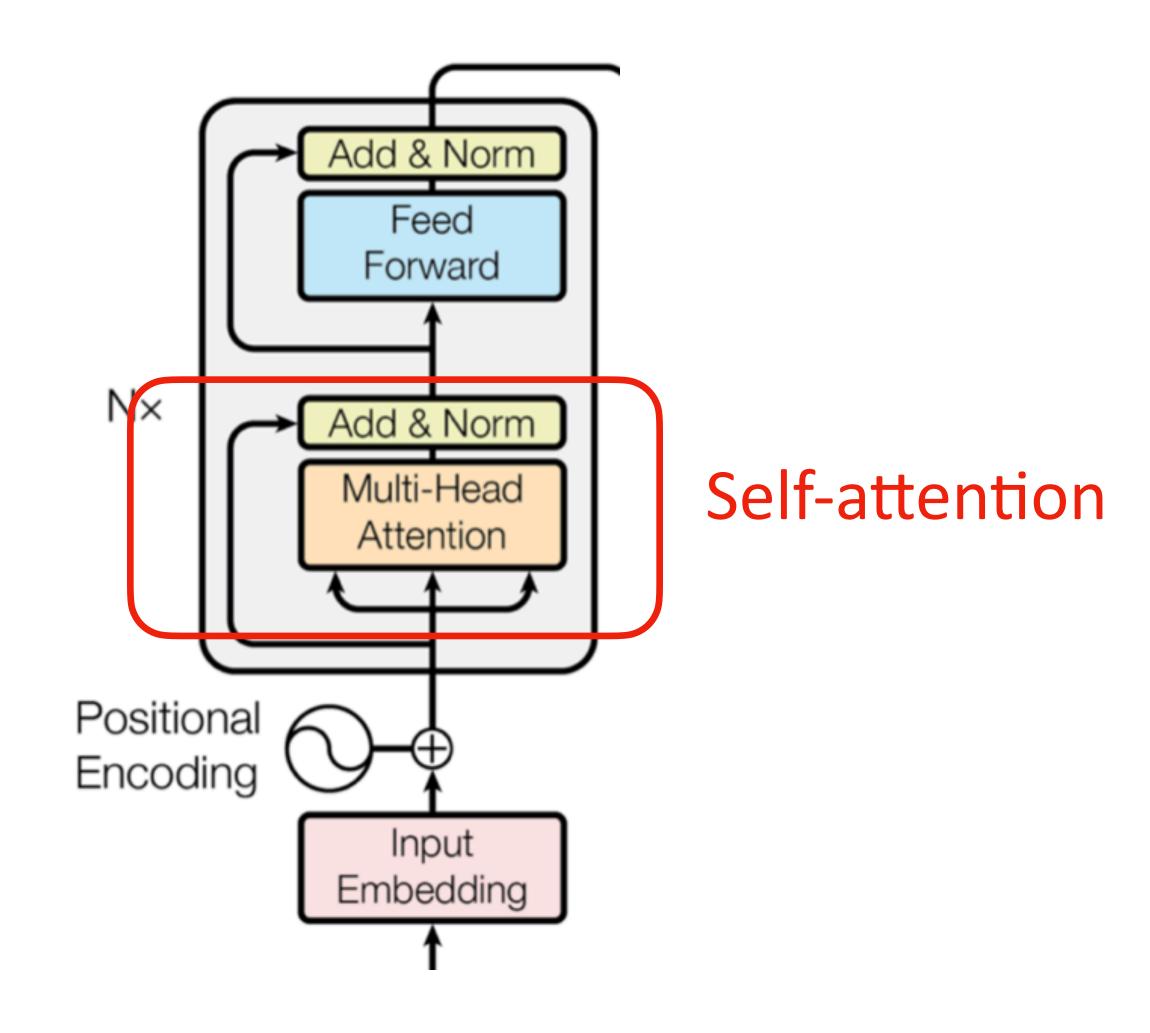
Recap: Encoder

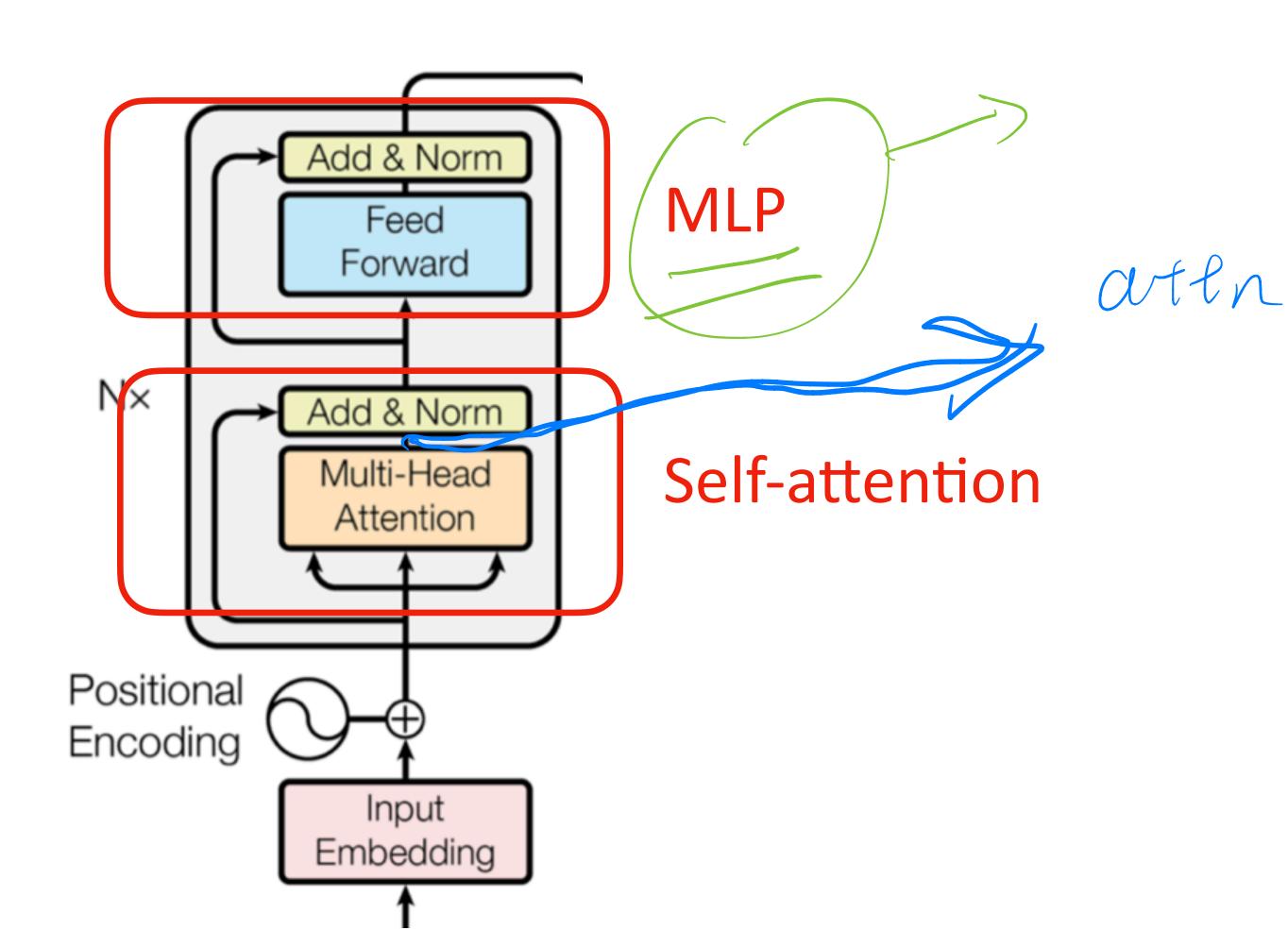


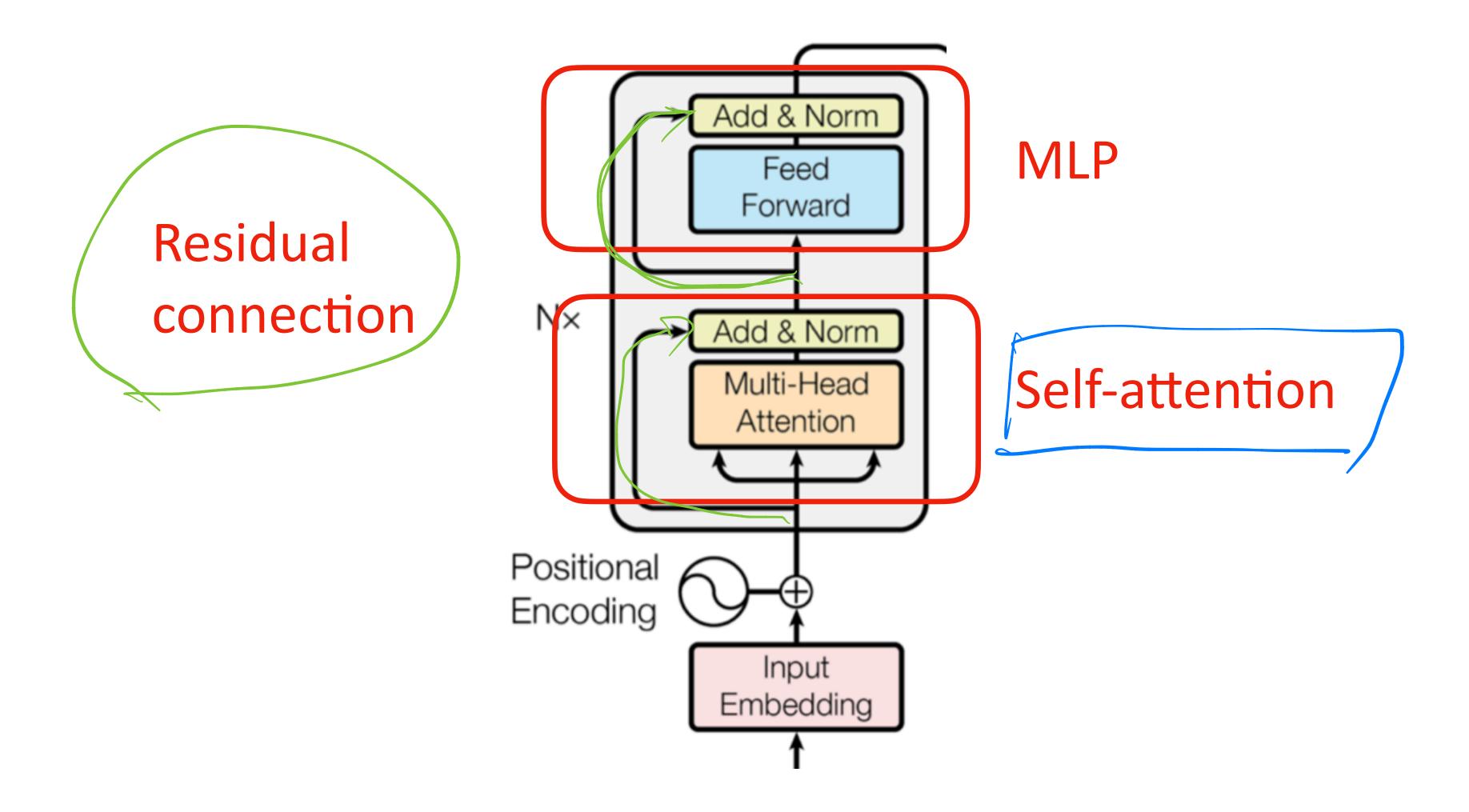
Recap: Decoder



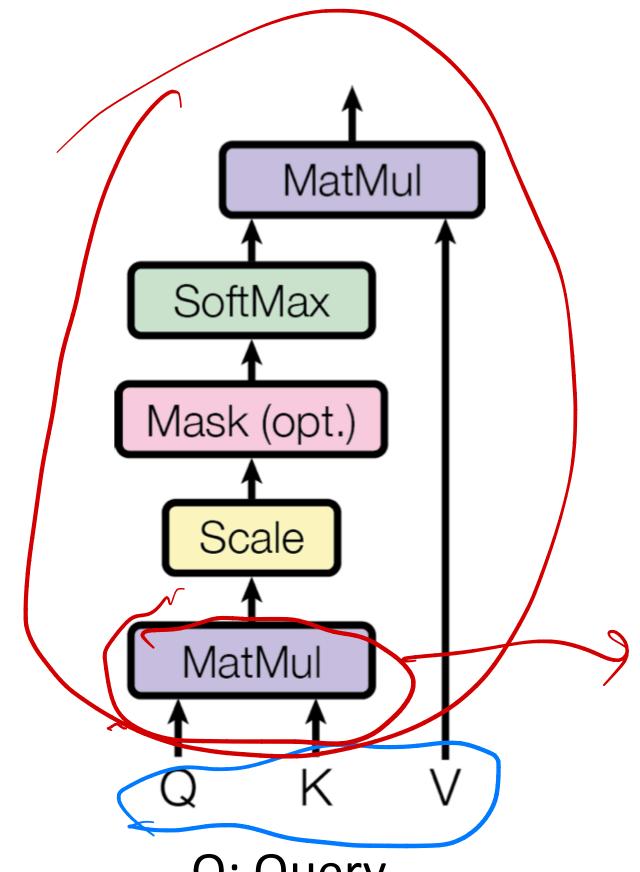








Scaled Dot-Product Attention



Q: Query

K: key

V: value

attention vector-[attn], atn2. utln3---Jamulite) dol produce Cprob 1, prob2 -tuking class Vector value recur

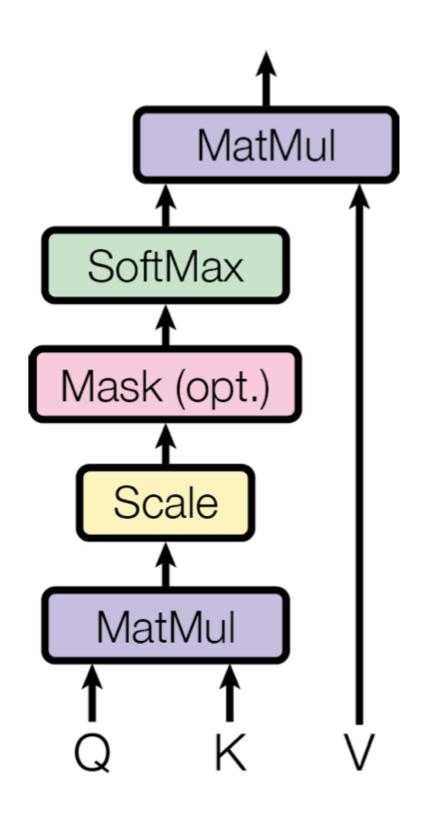
safemax L t1, t2, t, - - - tn) $= \left(\frac{e \times p(t_1)}{2 \times e \times p(t_i)}\right)$ $= \left(\frac{e \times p(t_1)}{2 \times e \times p(t_i)}\right)$ probability

probl-volvel + probz · value 2 offect = how much it affects +. not how it affects attn weight= [prob1, prob2, -- Robn)

high level attention neight effect Lattentien output)
weighted addition of values)

 $Q \in R^{n \times d} \quad K \in R^{m \times d} \quad V \in R^{m \times d}$

Scaled Dot-Product Attention



Q: Query

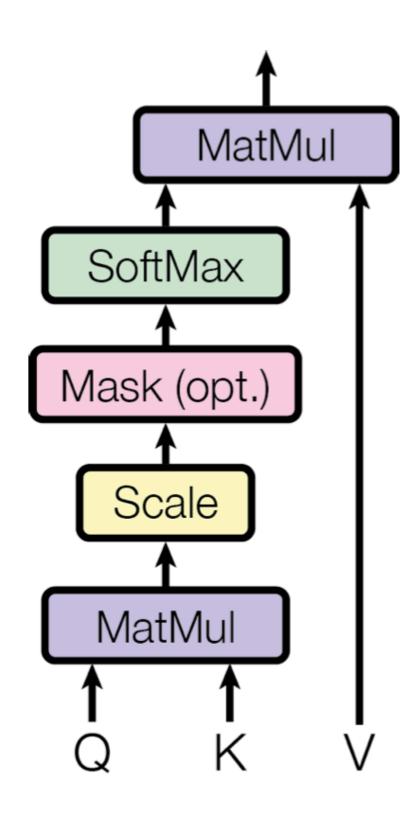
K: key

V: value

 $Q \in R^{n \times d} \quad K \in R^{m \times d} \quad V \in R^{m \times d}$

Scaled Dot-Product Attention

We have n queries, m (key, value) pairs

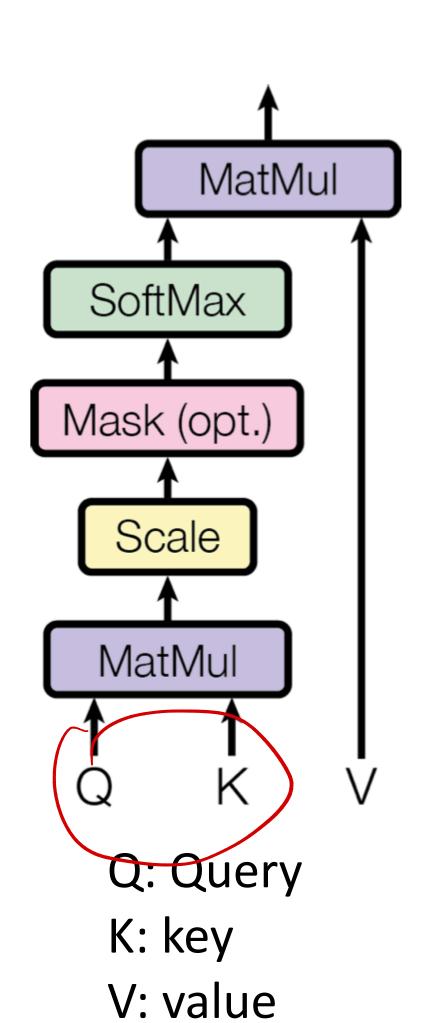


Q: Query

K: key

V: value

Scaled Dot-Product Attention



Attention weight = softmax(QK^T)

Q K

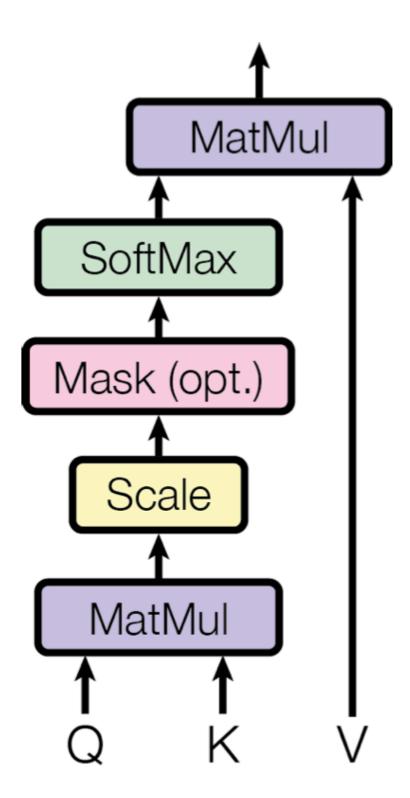
pais Wise athn Some

KER^{mxa} n+m Q E R nxd VER self attention;

 $Q \in R^{n \times d} \quad K \in R^{m \times d} \quad V \in R^{m \times d}$

Scaled Dot-Product Attention

We have n queries, m (key, value) pairs



Q: Query

K: key

V: value

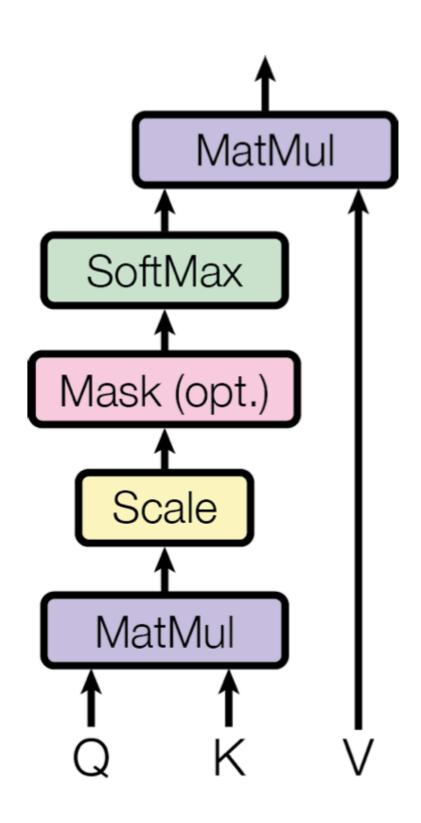
Attention weight = softmax(QK^T)

Dot-products grow large in magnitude

 $Q \in R^{n \times d} \qquad K \in R^{m \times d} \qquad V \in R^{m \times d}$

Scaled Dot-Product Attention

We have n queries, m (key, value) pairs



Attention weight = softmax(QK^{T})

Dot-products grow large in magnitude

Scaled Attention weight = softmax(-

Q: Query

K: key

V: value

du product Var (Piki + grkr + - - Edka) = [P.K. + 9 NC. + - - Enkla magnitude grous With d mean (9,7=0 Vor (9,) = C VorCa(k1) = C3 mear CKI) = 0 Vur(Ce)= Cz

Yor(x)

Var(a·x) = a2 Var(x)

Var (Jd) = Varx)

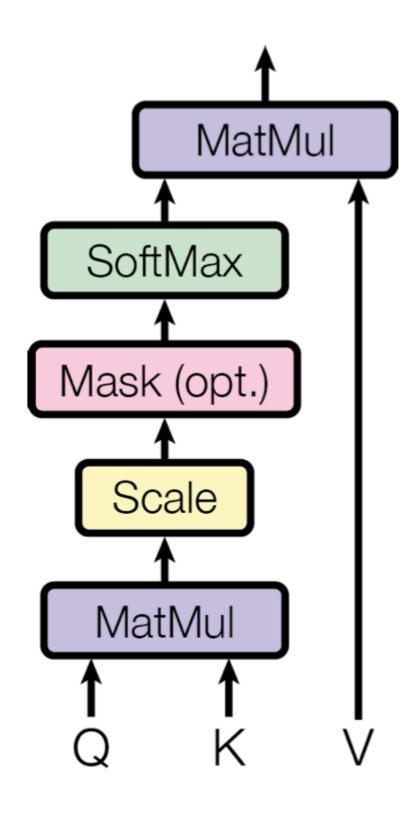
$$Q \in R^{n \times d} \qquad K \in R^{m \times d} \qquad V \in R^{m \times d}$$

$$K \subset \mathbb{R}^{m \times a}$$

$$V \in \mathbb{R}^{m \times a}$$

Scaled Dot-Product Attention

We have n queries, m (key, value) pairs



Attention weight = softmax(QK^{T})

Dot-products grow large in magnitude

Scaled Attention weight = softmax(
$$\frac{QK^T}{\sqrt{d_k}}$$
) Shape is mxr

Q: Query

K: key

V: value

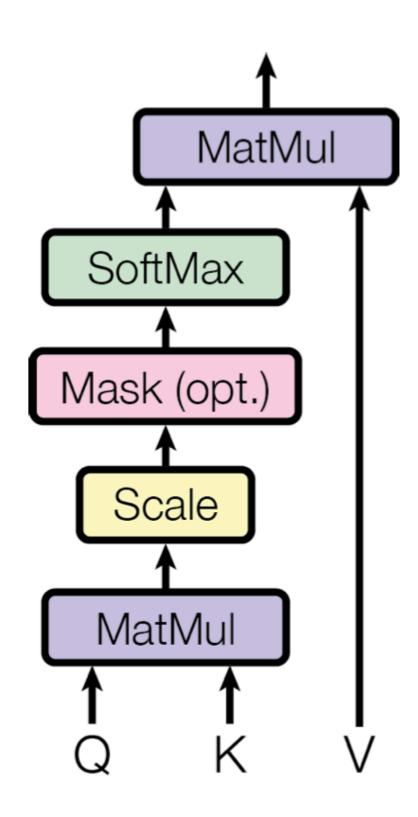
$$Q \in R^{n \times d} \quad K \in R^{m \times d} \quad V \in R^{m \times d}$$

$$K \subset \mathbb{R}^{m \times d}$$

$$V \in \mathbb{R}^{m \times a}$$

Scaled Dot-Product Attention

We have n queries, m (key, value) pairs



Attention weight = softmax(QK^T)

Dot-products grow large in magnitude

Scaled Attention weight = softmax($\frac{QK^{T}}{\sqrt{d_{k}}}$)

Attention weight represents the strength to "attend" values V

Q: Query

K: key

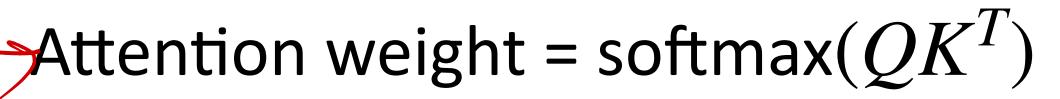
V: value

Recap: What is Attention

 $Q \in R^{n \times d} \quad K \notin R^{m \times d} \quad V \in R^{m \times d}$

hape is mxn

We have n queries, m (key, value) pairs

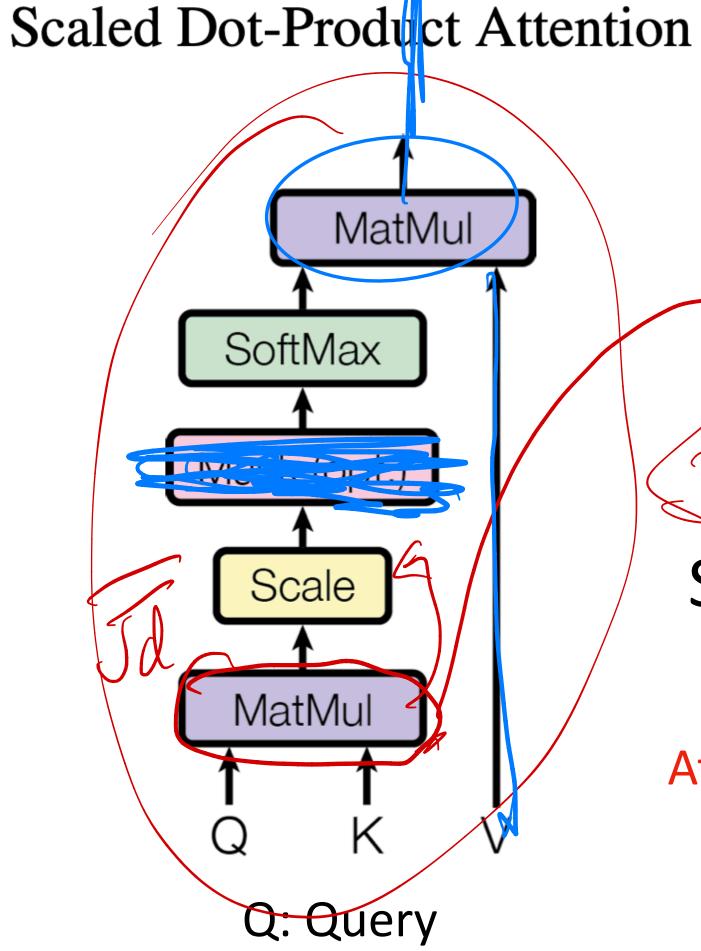


Dot-products grow large in magnitude

Scaled Attention weight = softmax(+

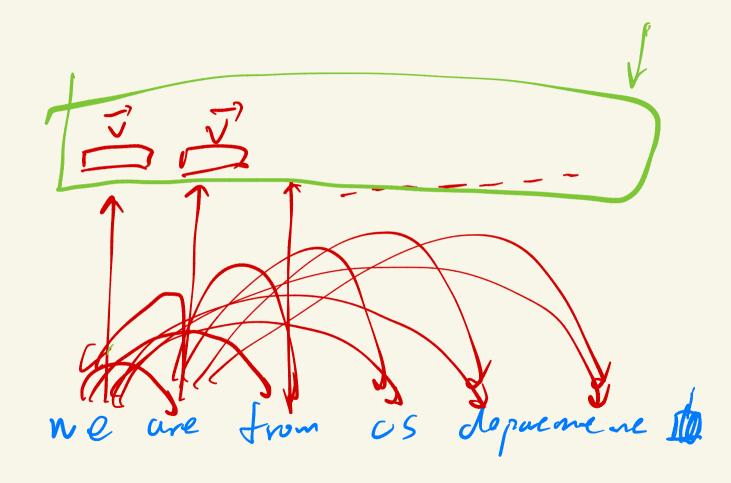
Attention weight represents the strength to "attend" va

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

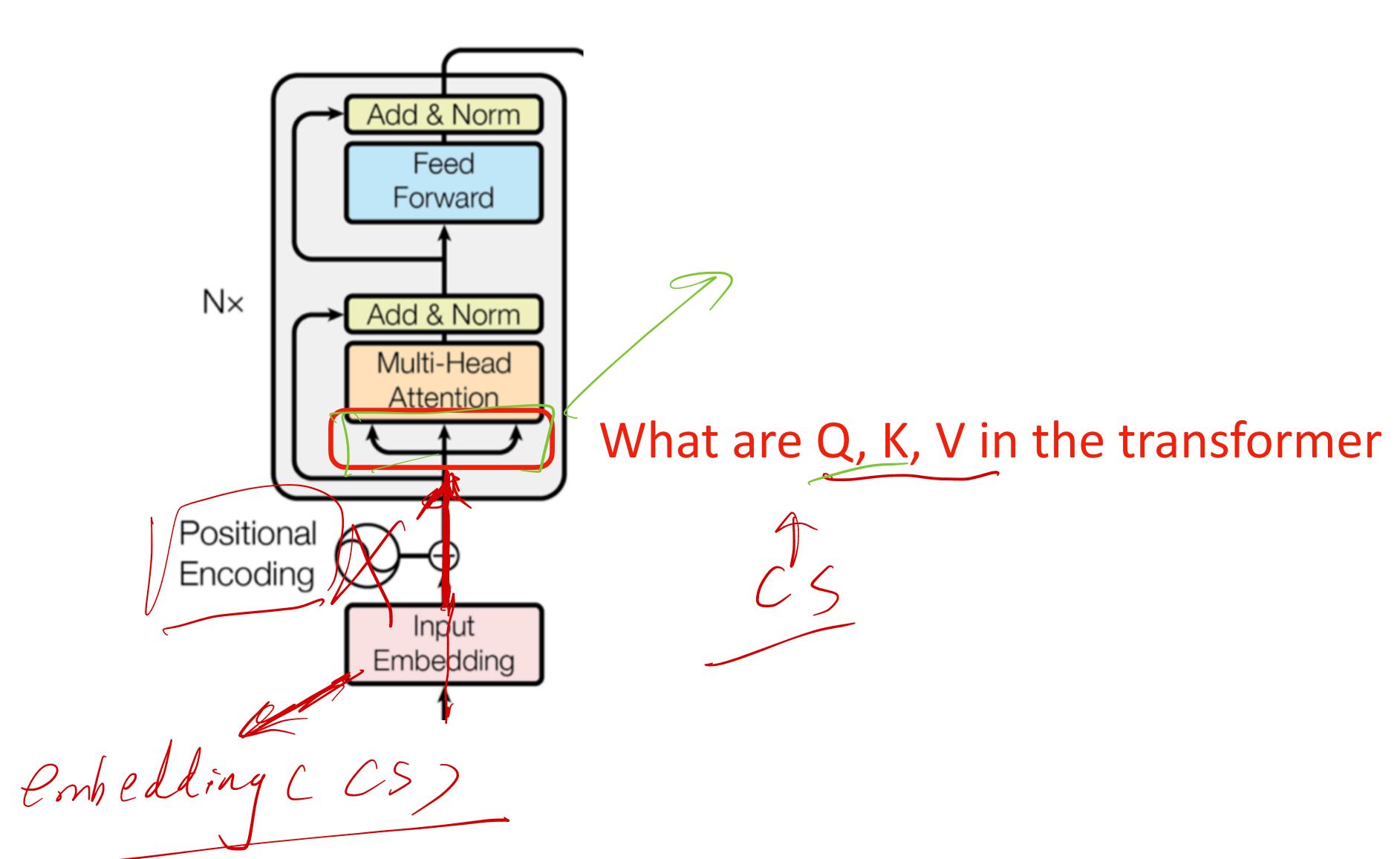


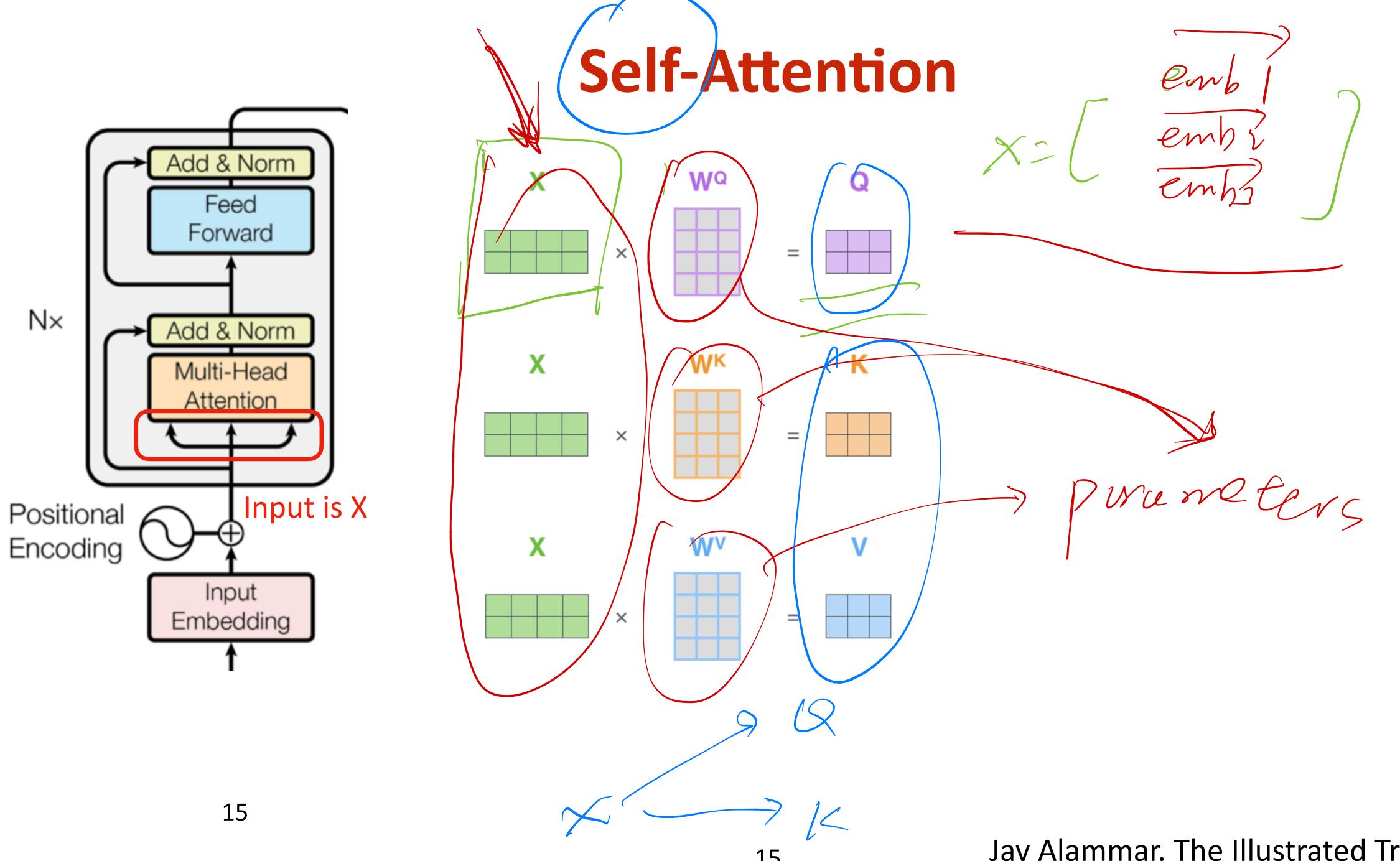
K: key

V: value



Q, K, V





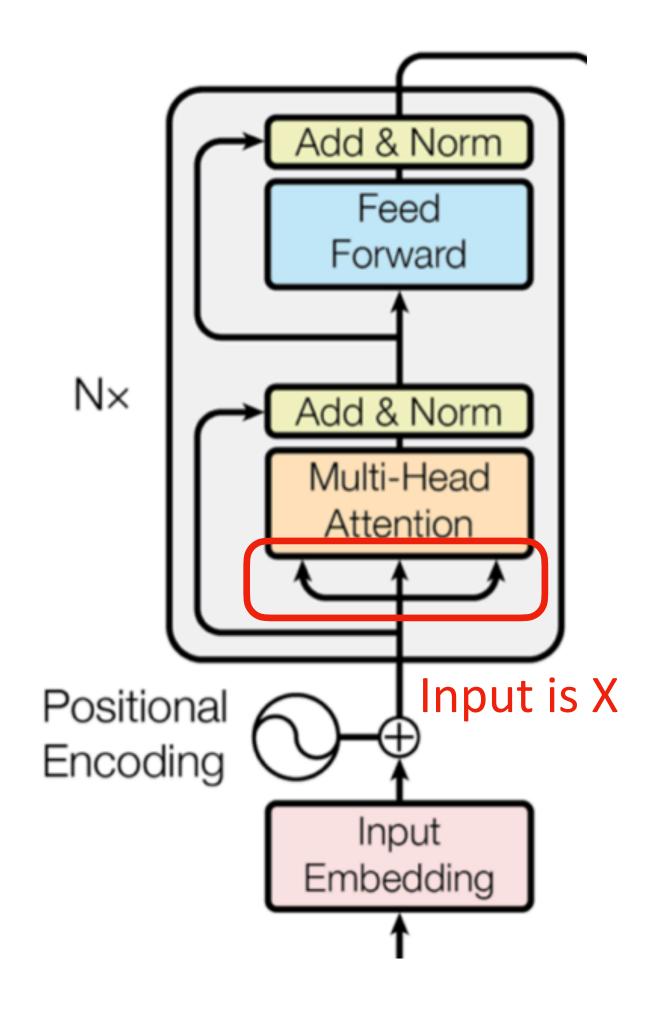
Jay Alammar. The Illustrated Transformer.

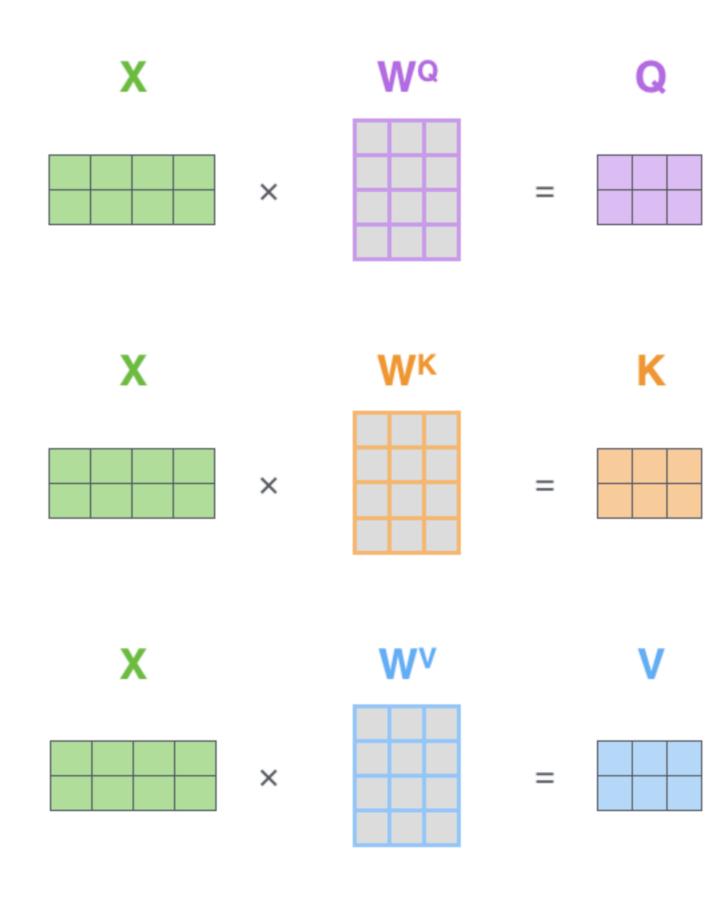
WA share parameter 1. neur multipliation.

3 3x5

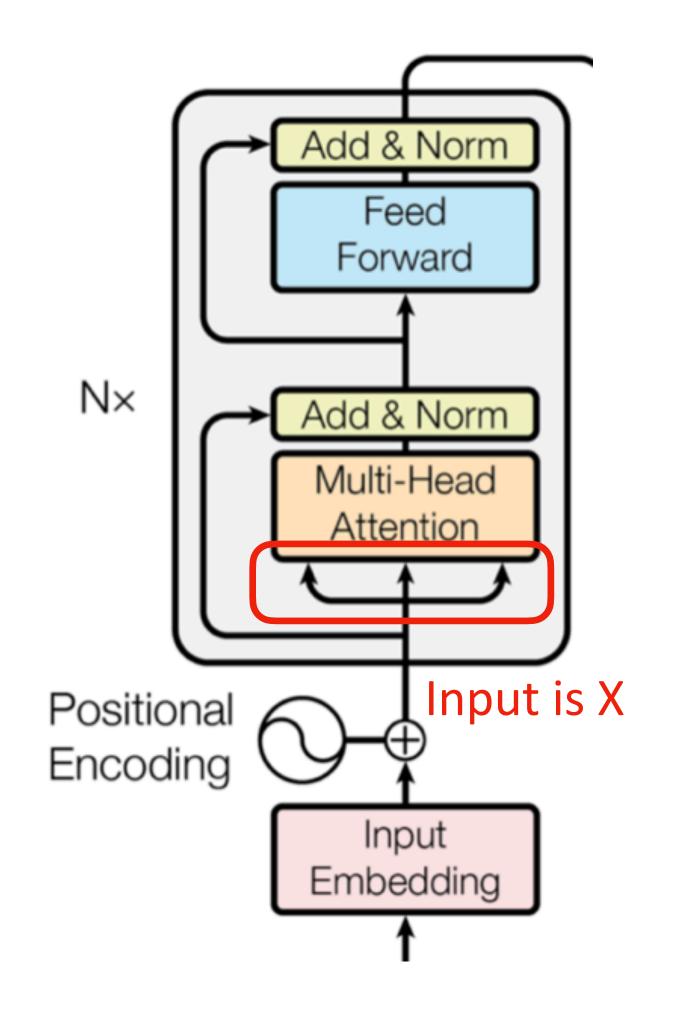
9. M

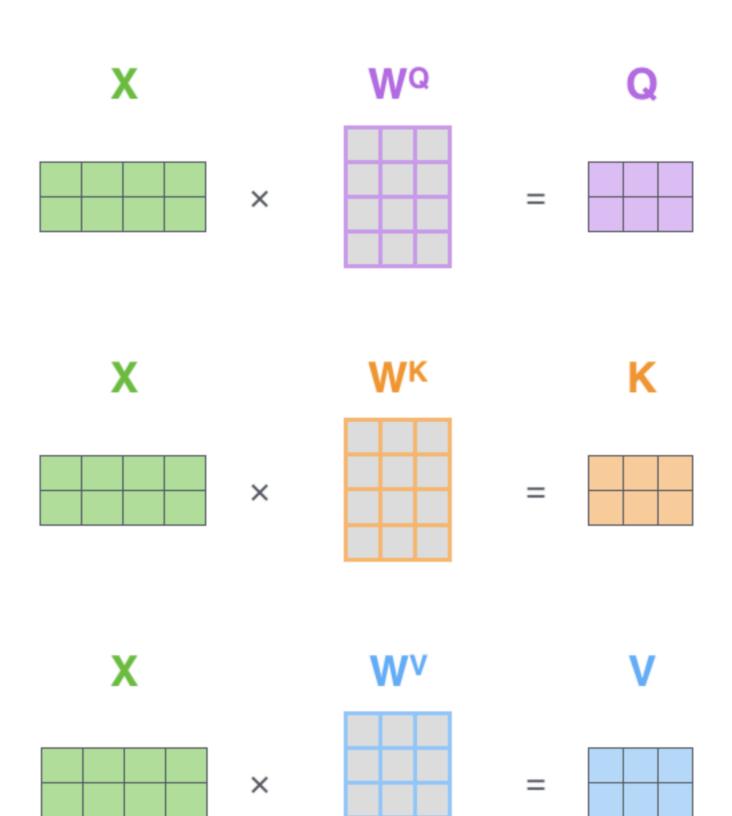
linear transformation



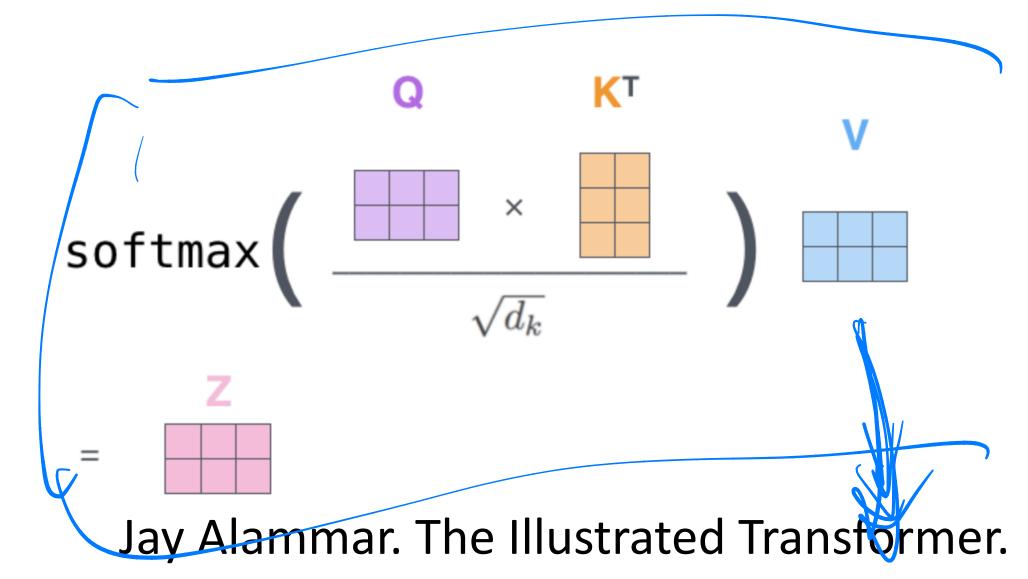


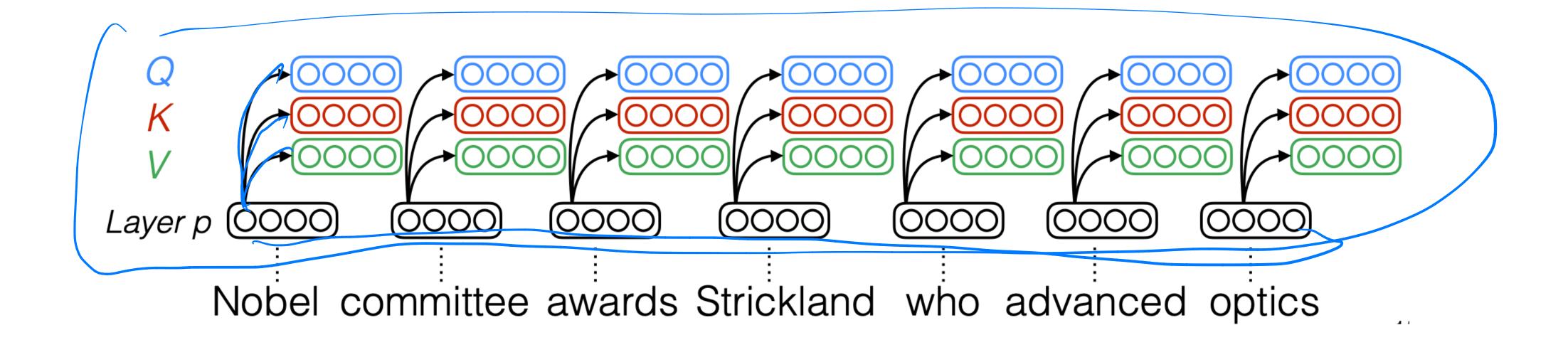
Query, key, and value are from the same input, thus it is called "self"-attention



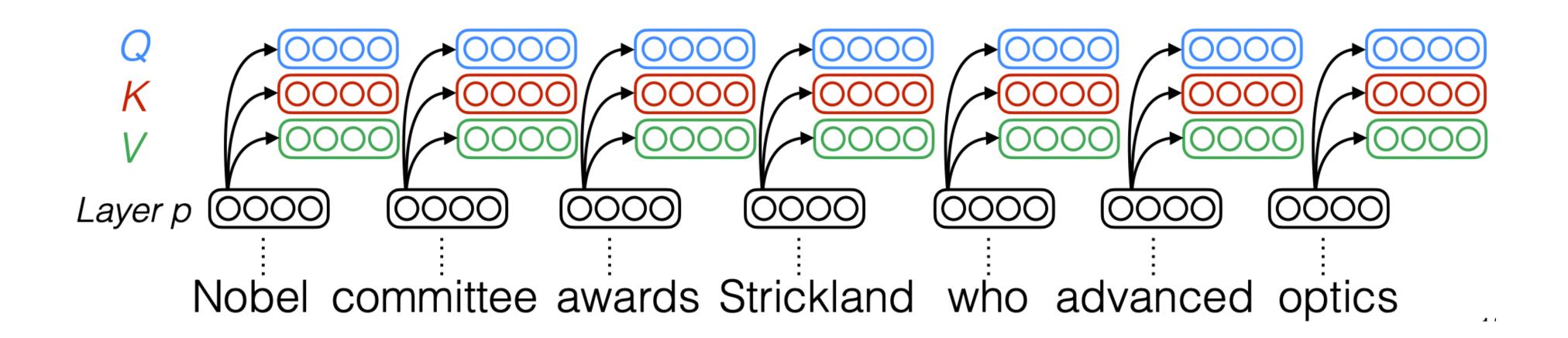


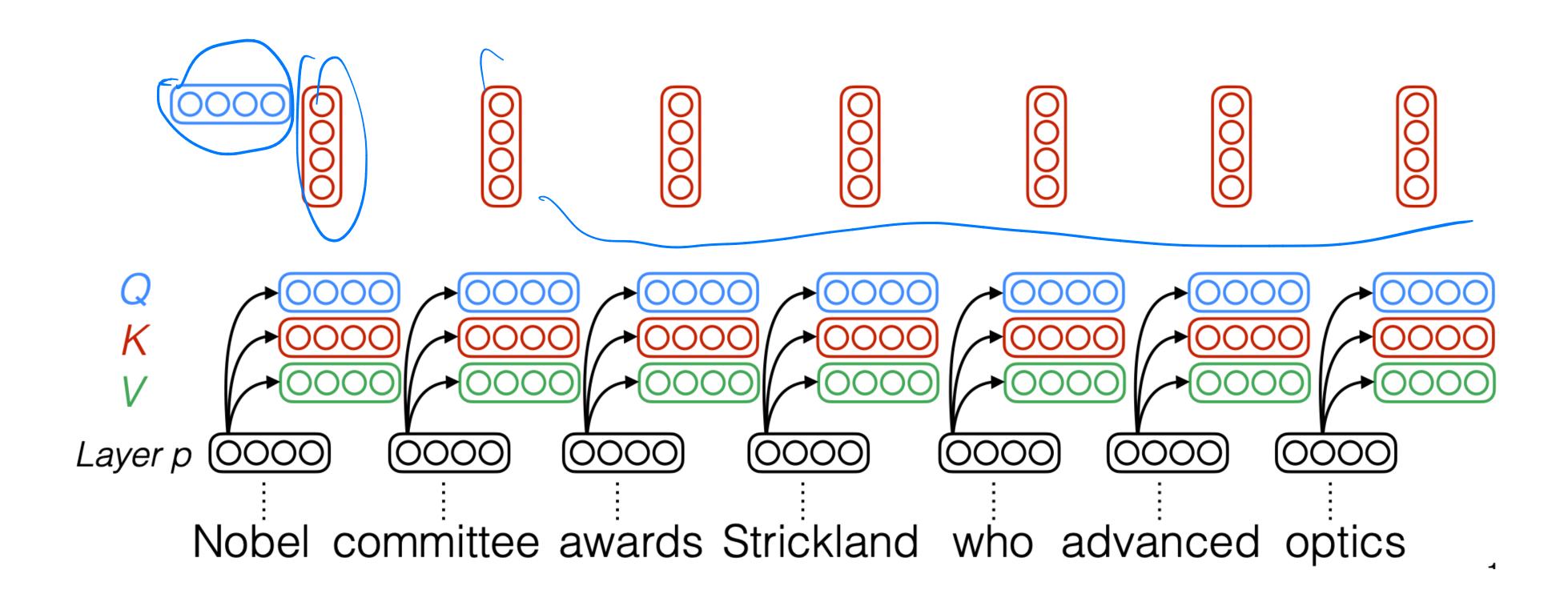
Query, key, and value are from the same input, thus it is called "self"-attention

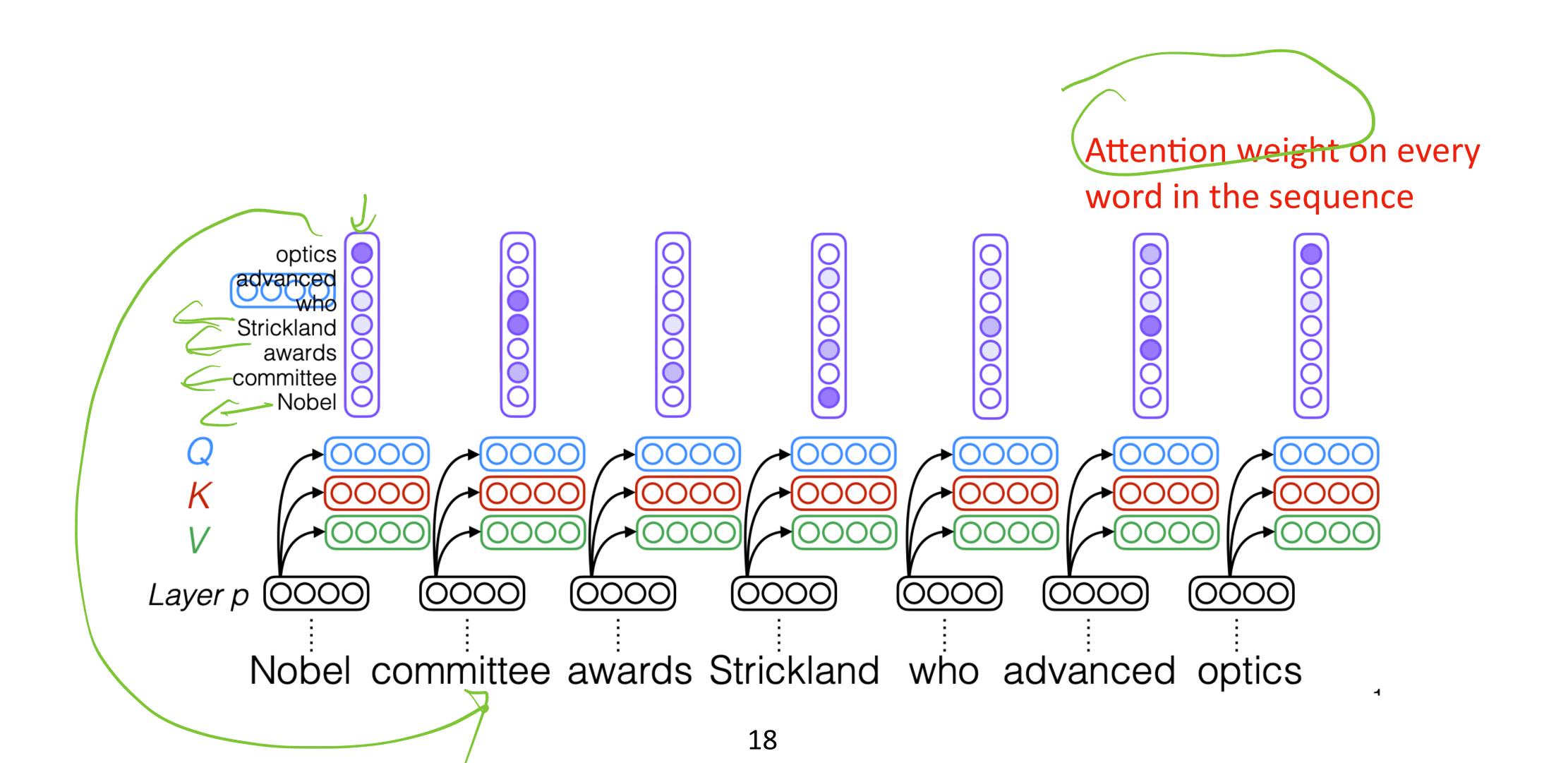


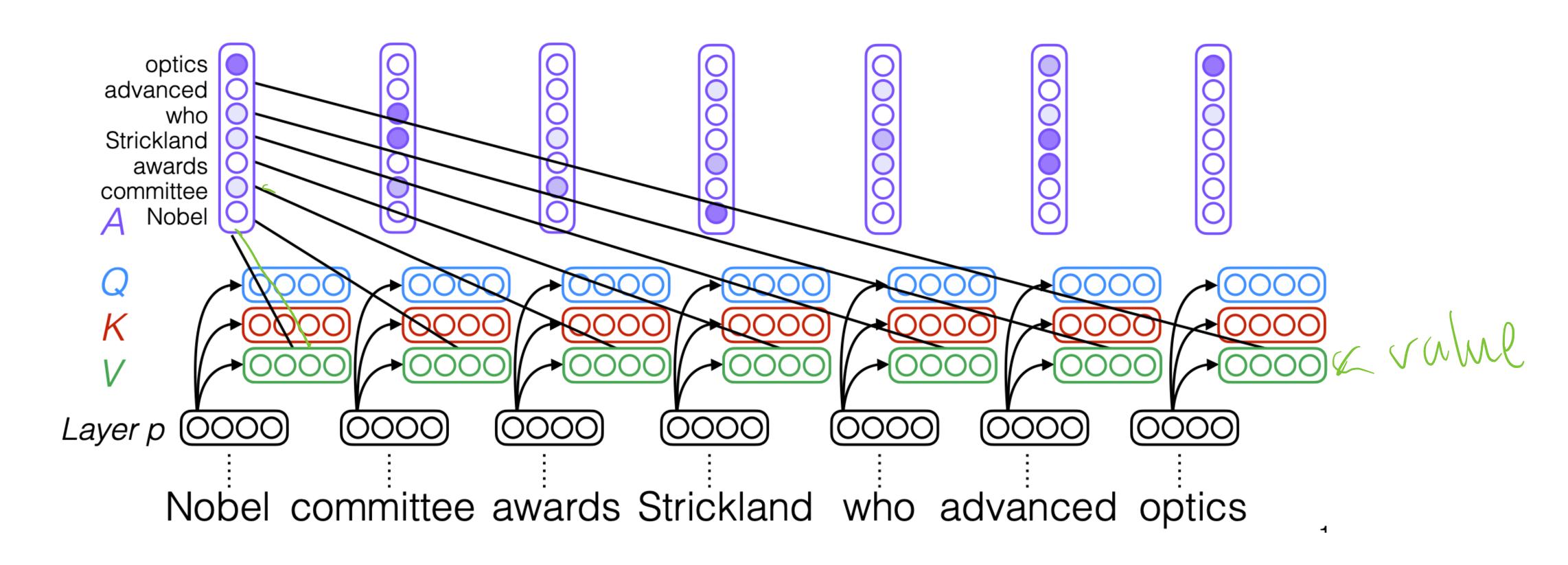


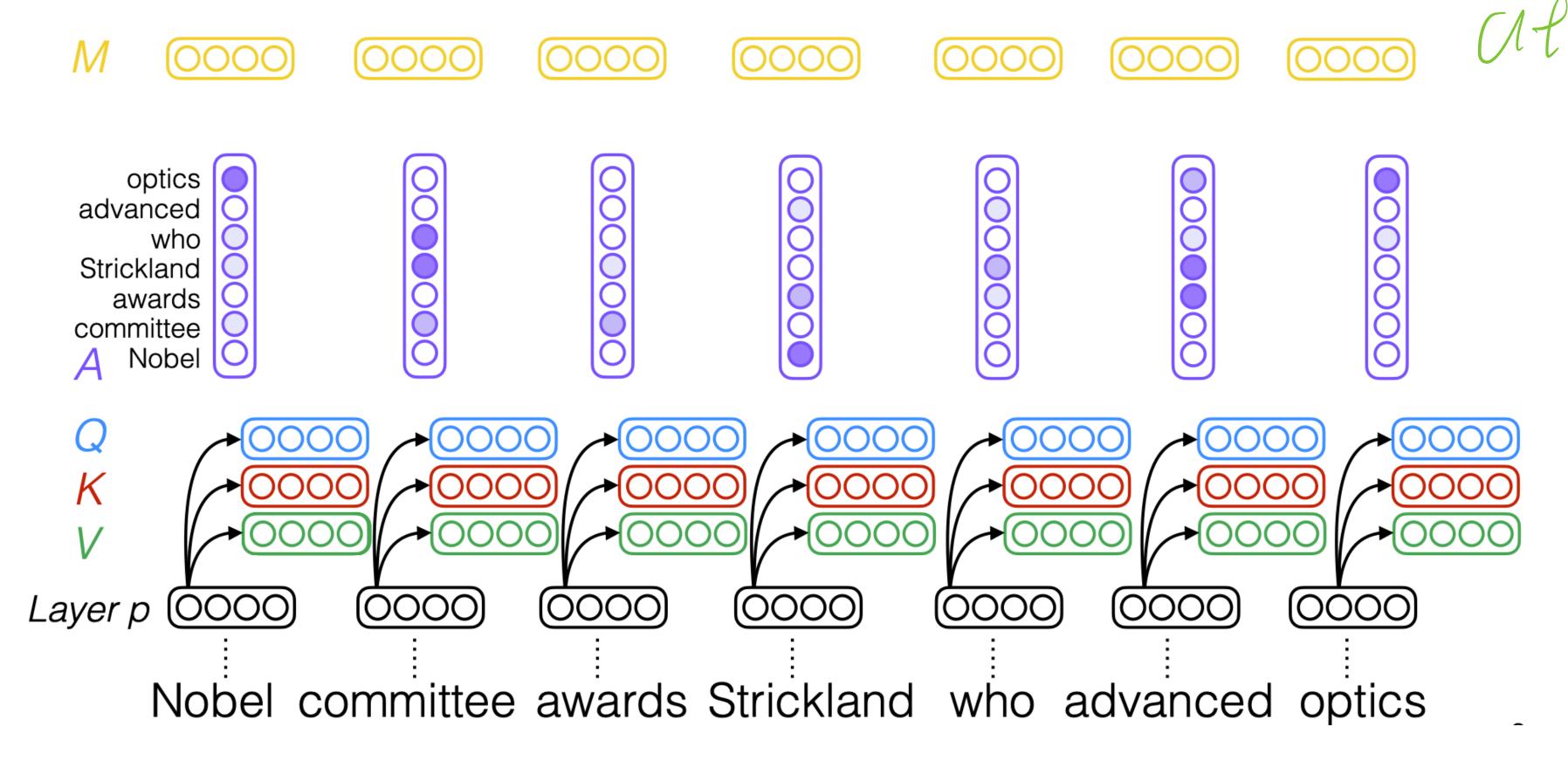
At each step, the attention computation attends to all steps in the input example



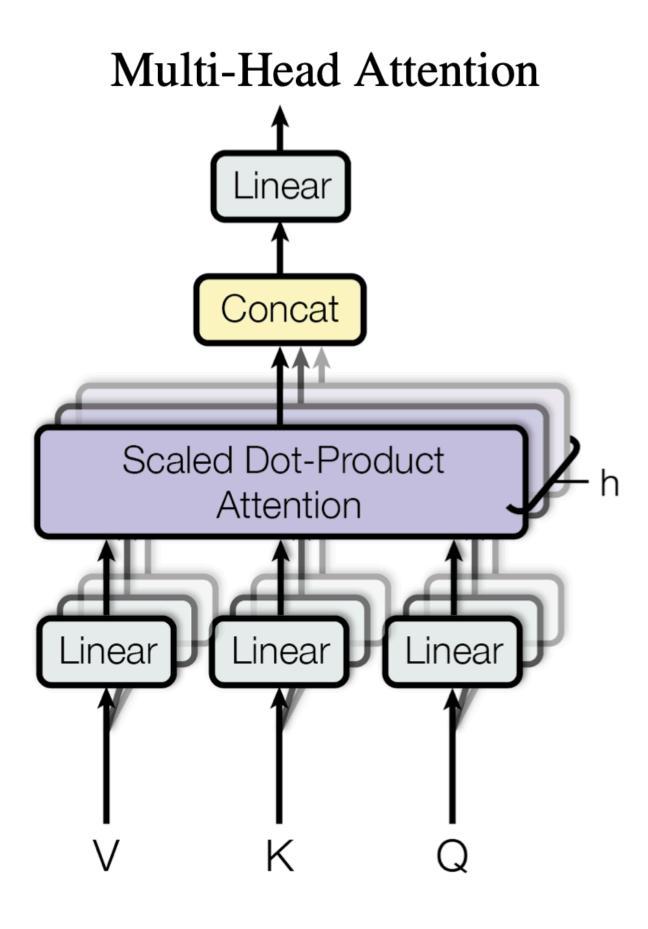


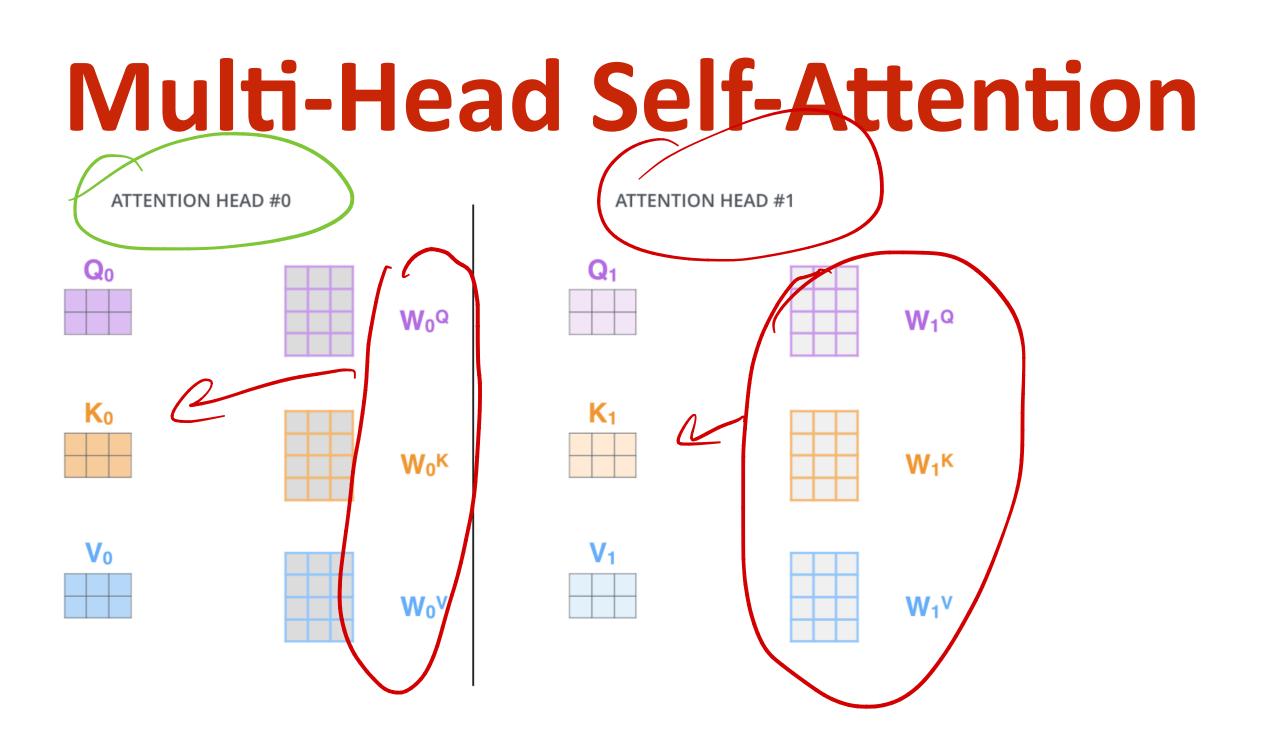


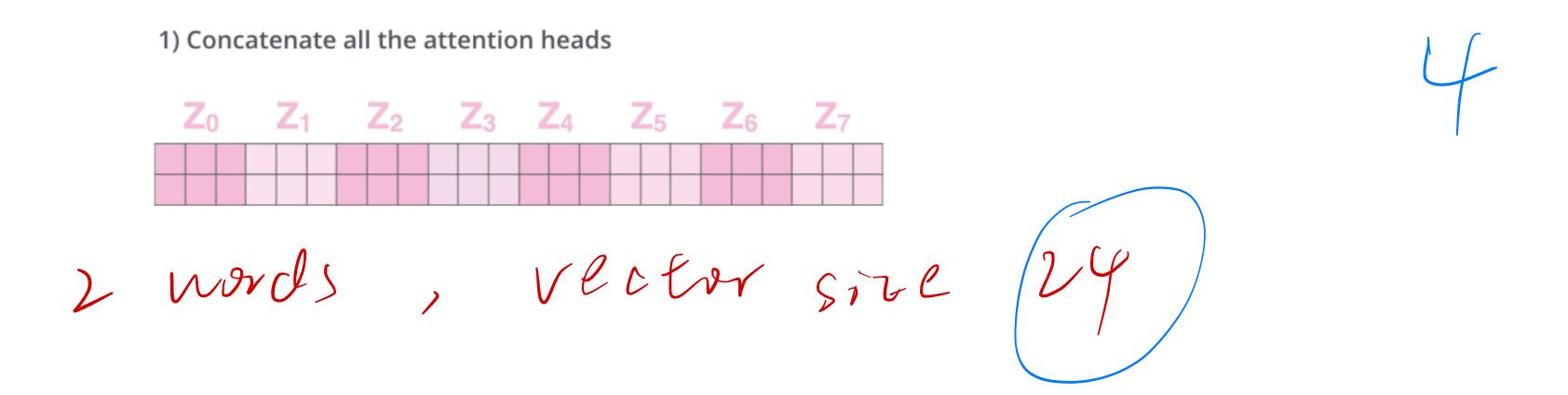


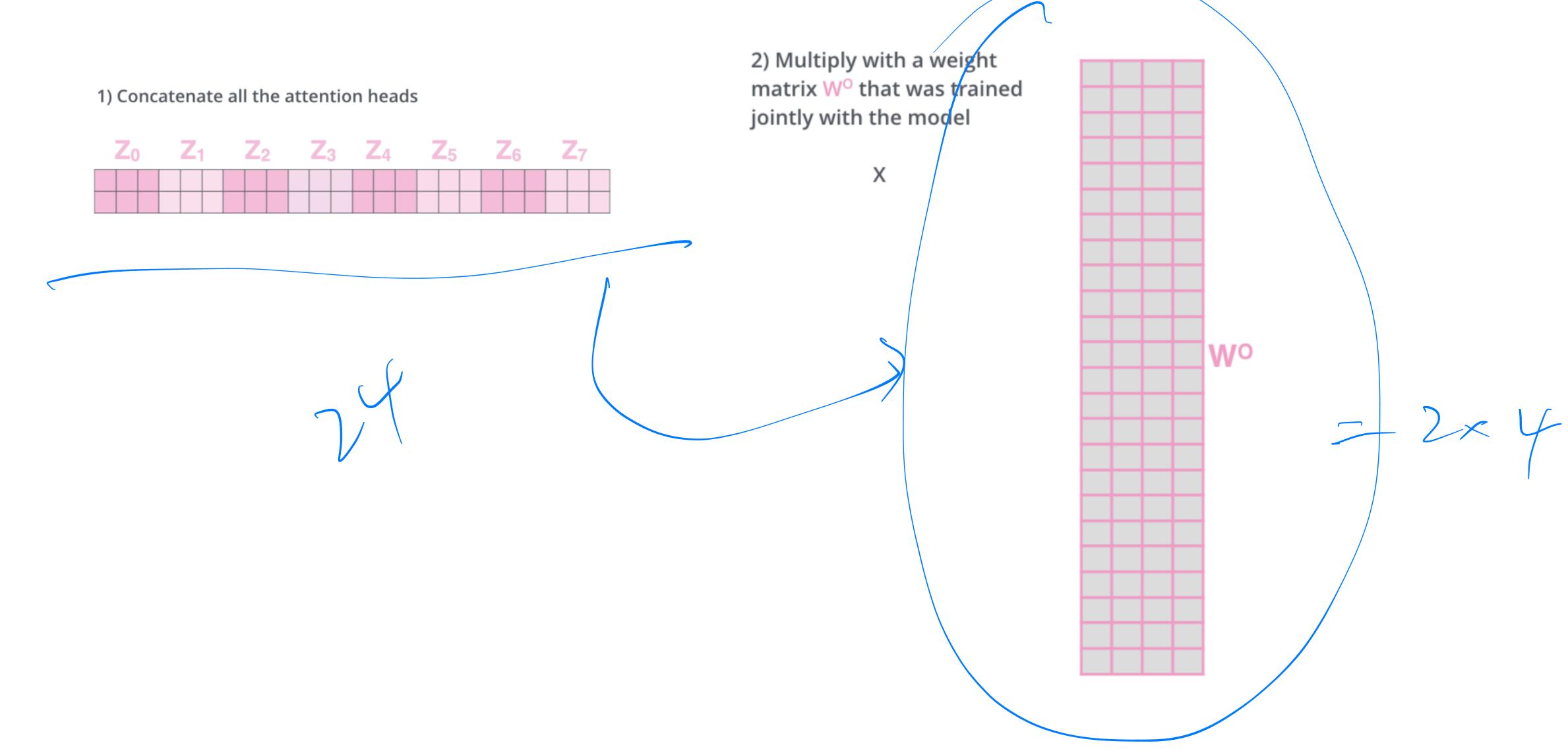


Multi-Head Attention



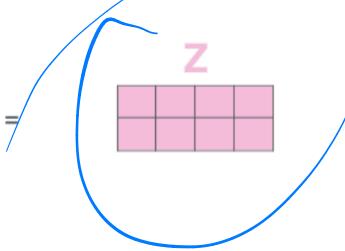


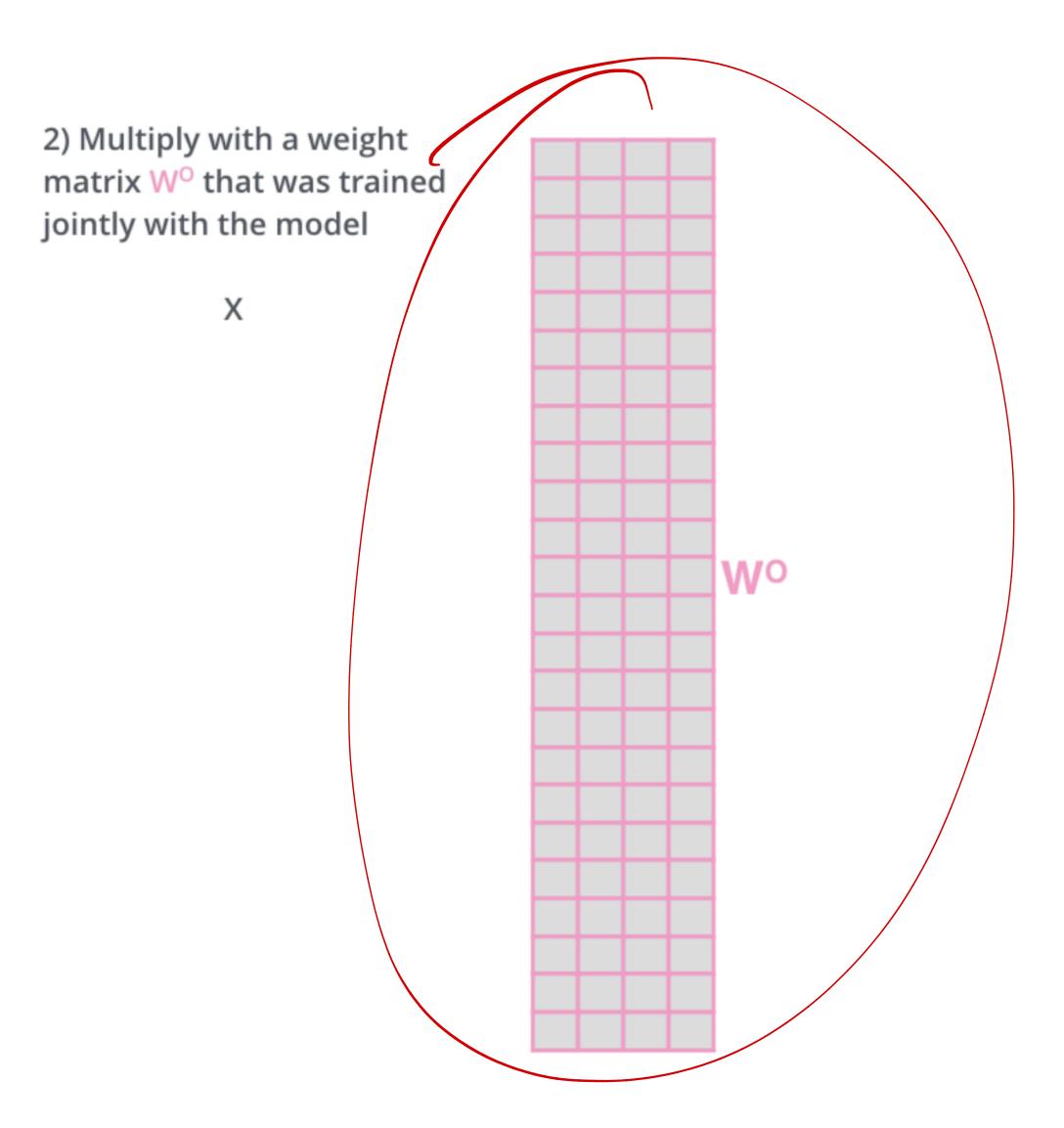


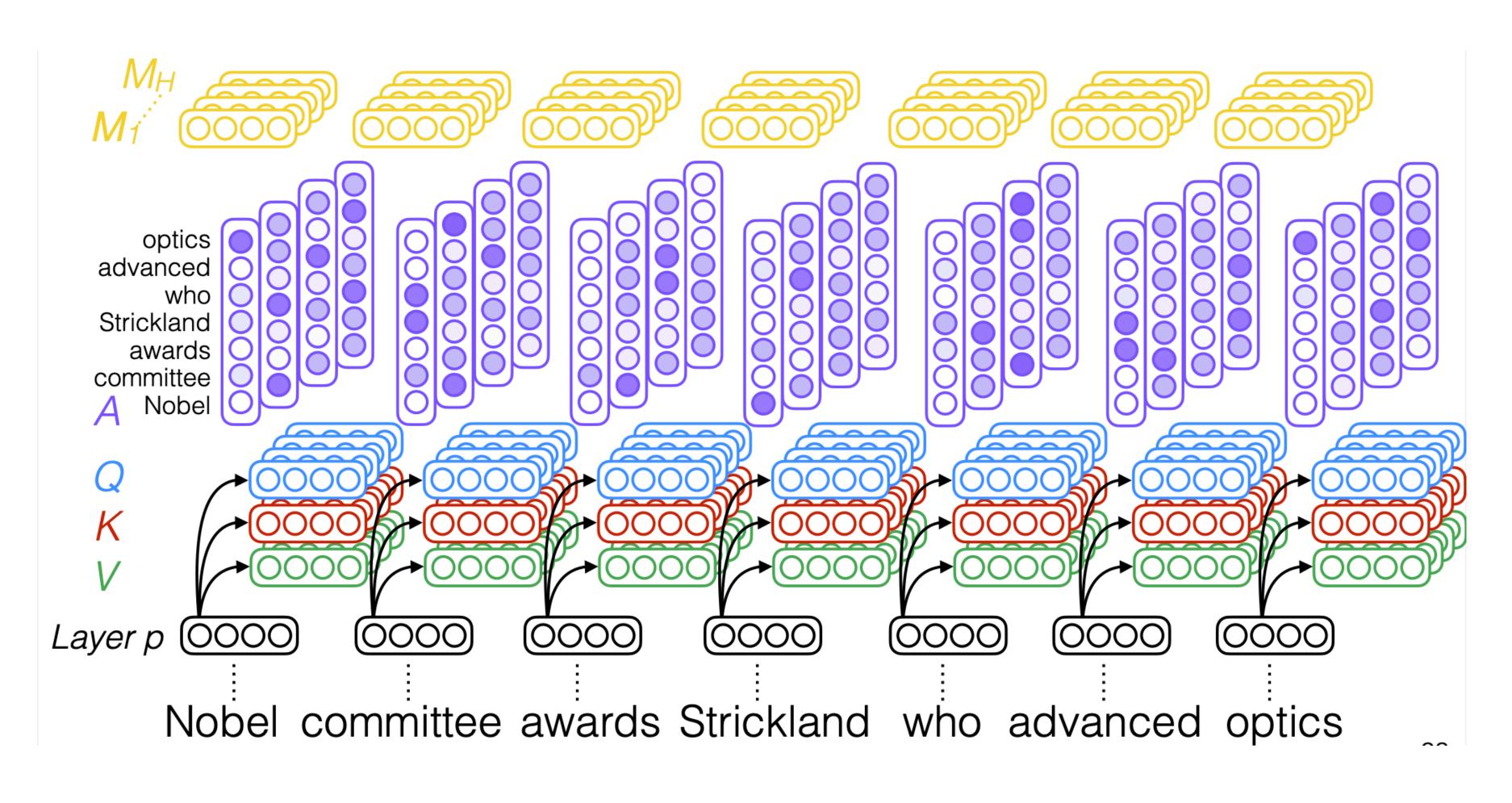


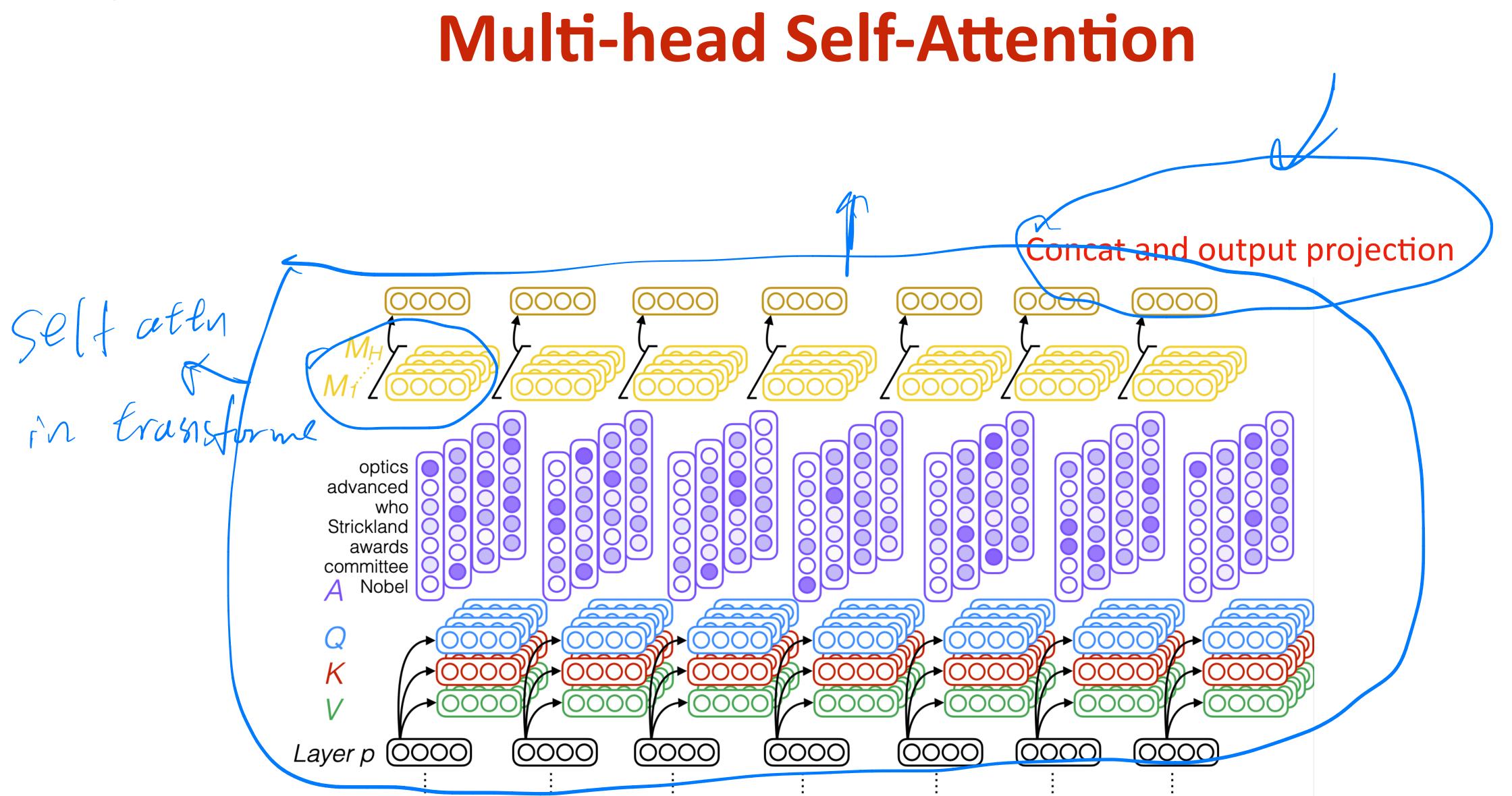
1) Concatenate all the attention heads

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

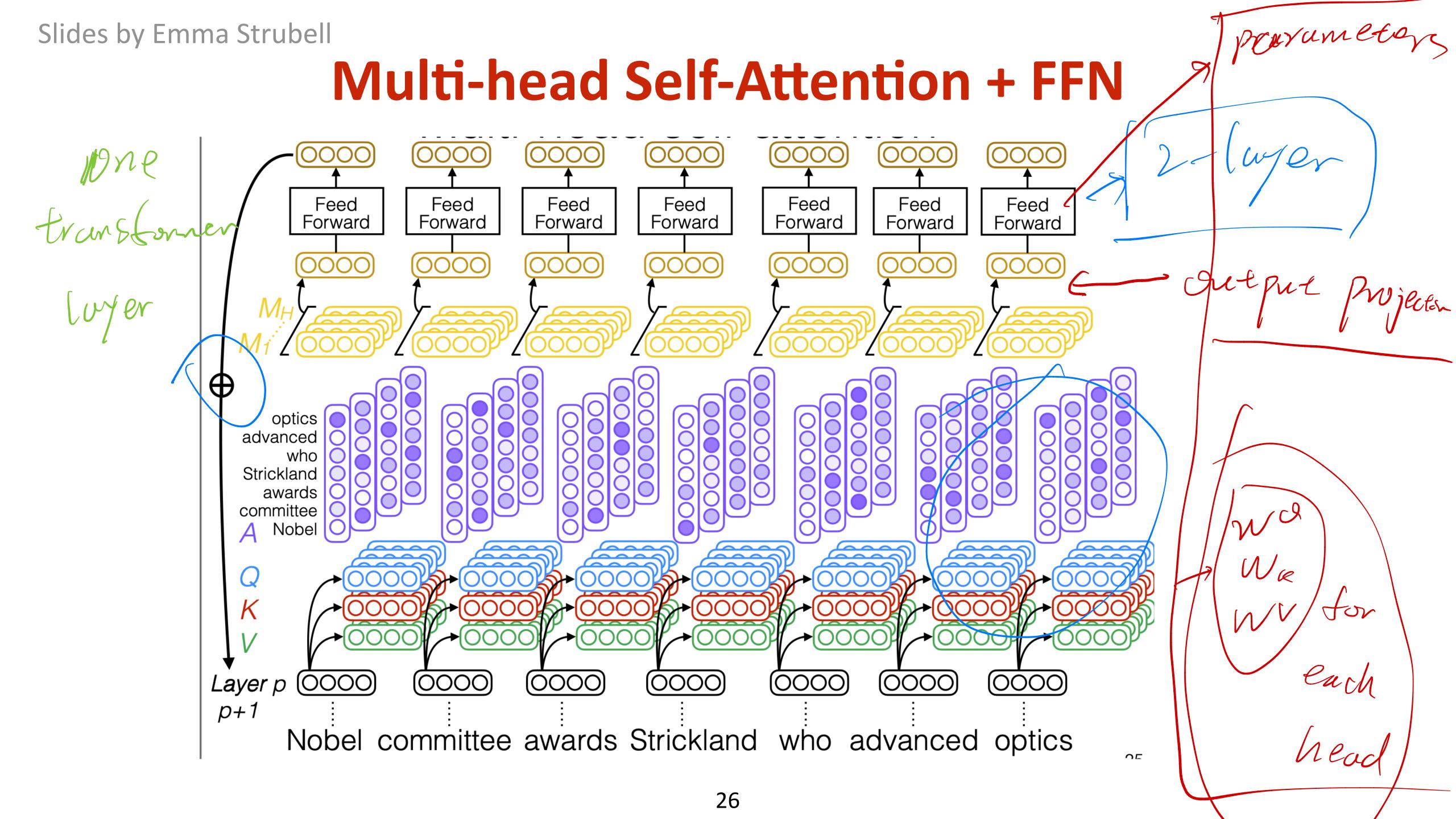








Nobel committee awards Strickland who advanced optics

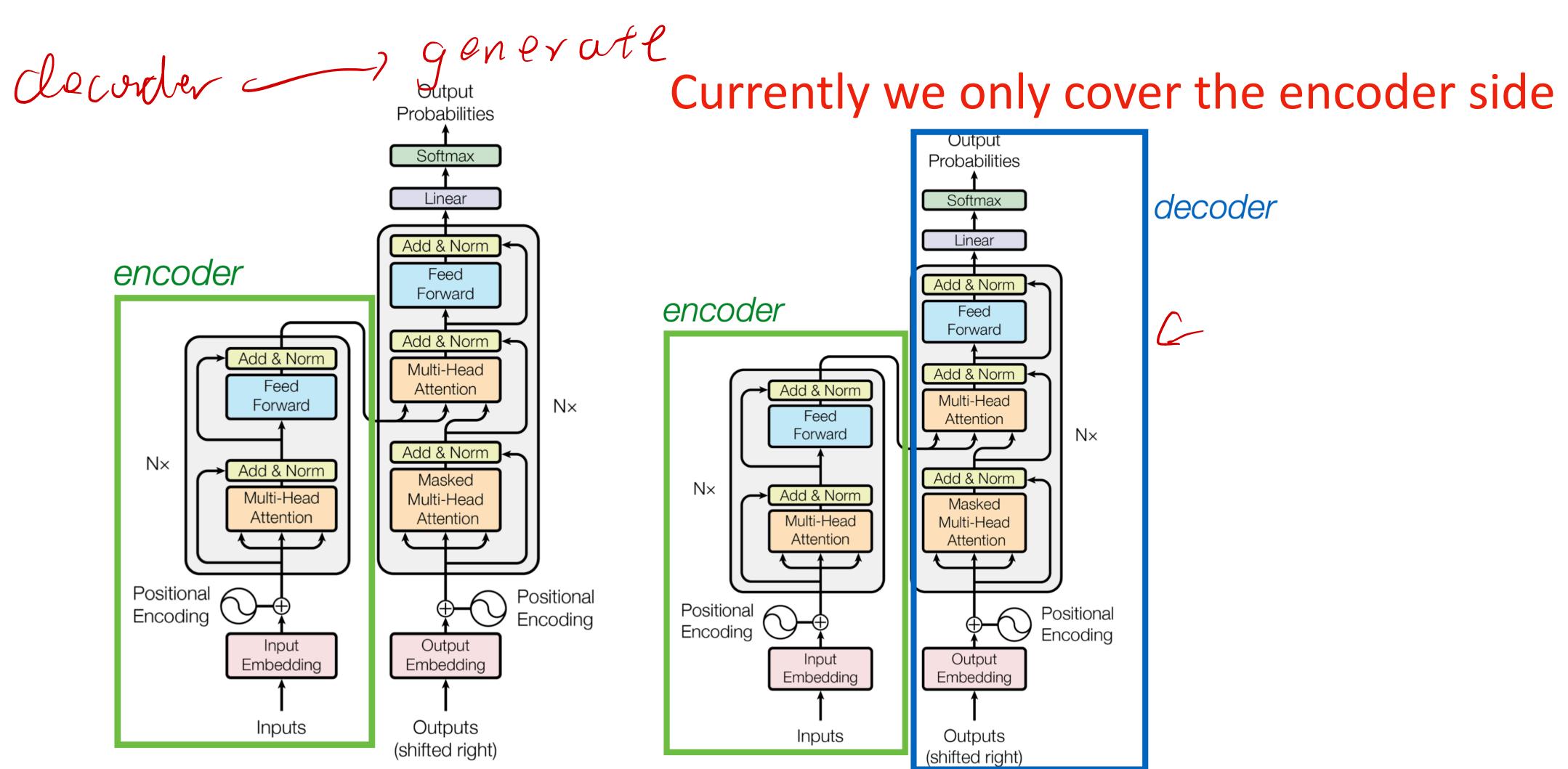


Transformer Encoder

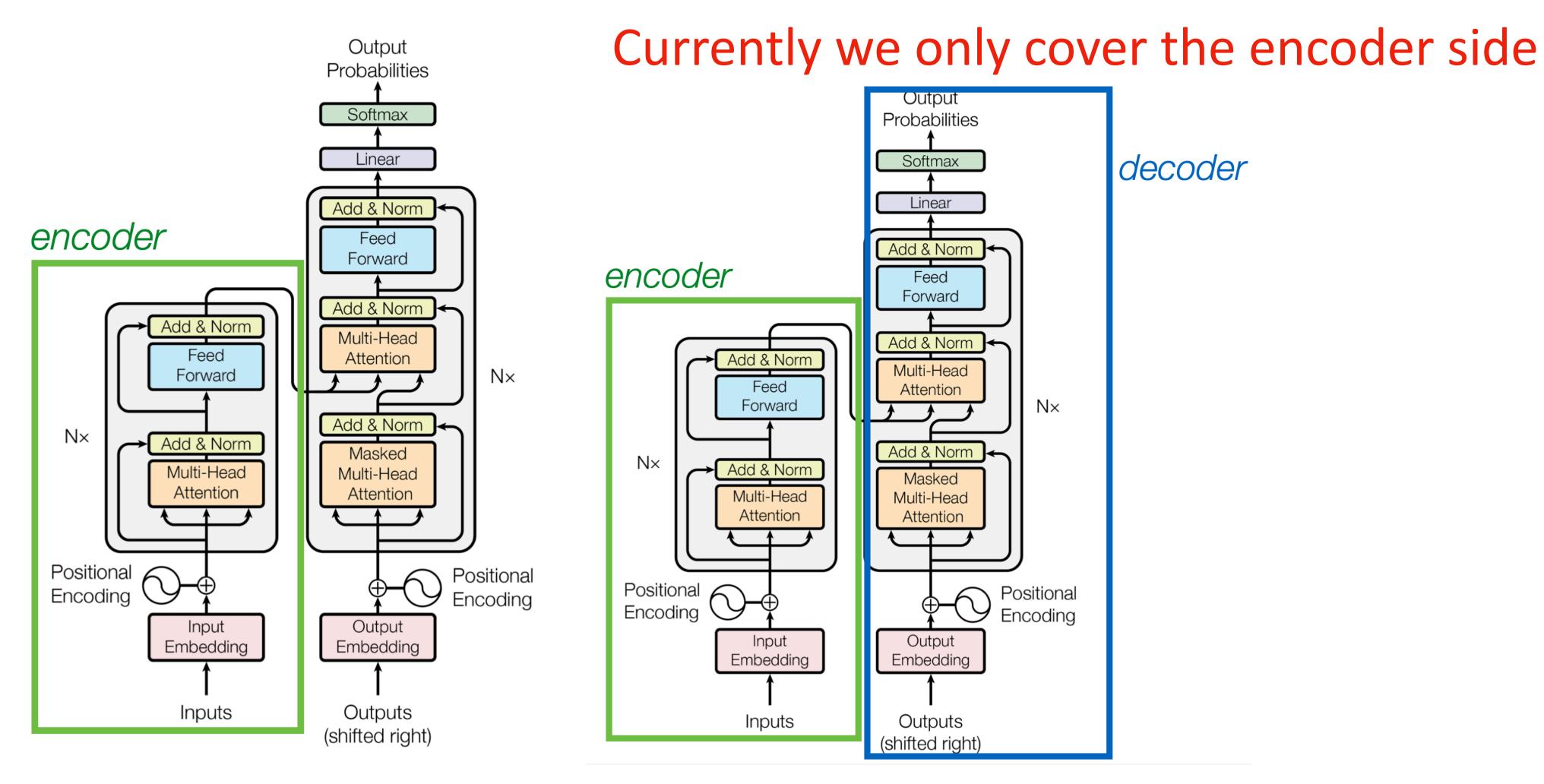
Output Probabilities Softmax Linear Add & Norm encoder Feed Forward Add & Norm Add & Norm Feed Forward $N \times$ Add & Norm $N \times$ Add & Norm Masked Multi-Head Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs (shifted right)

Currently we only cover the encoder side

encoder -> ger representation
Transformer Encoder

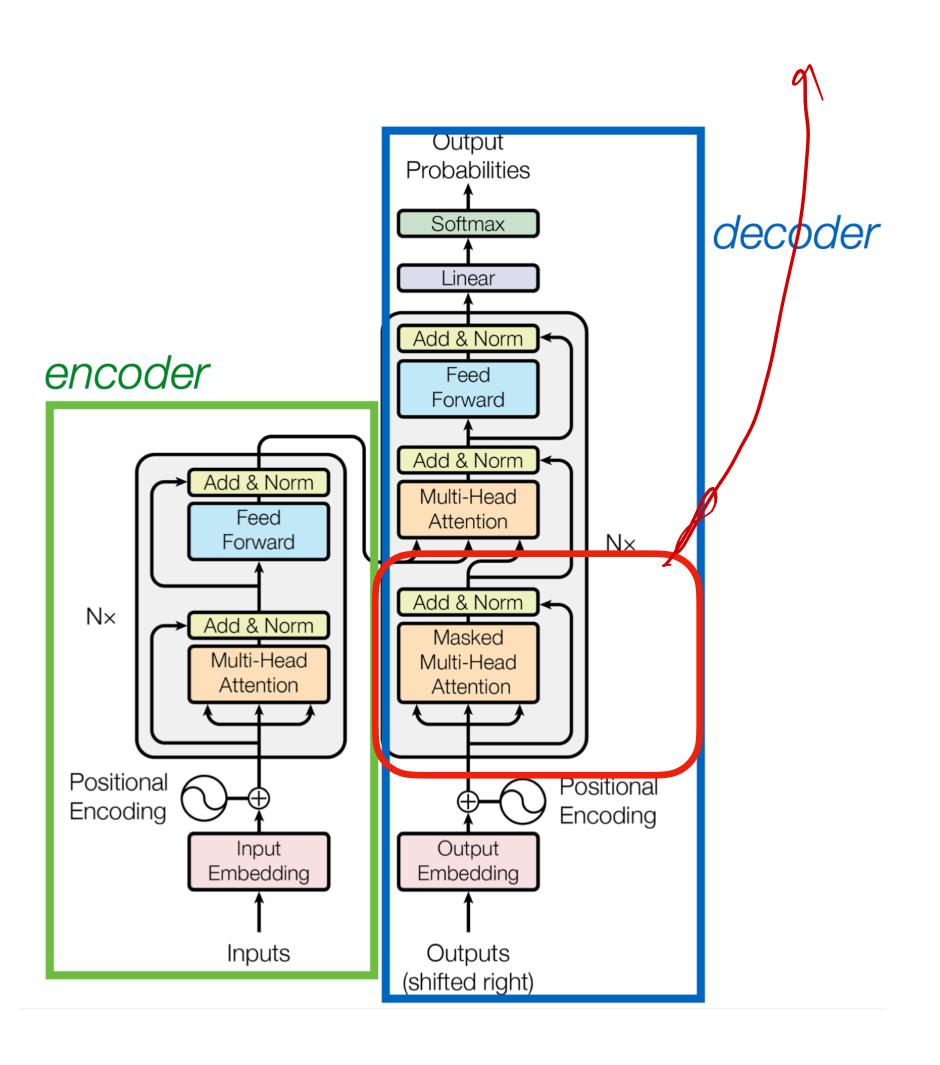


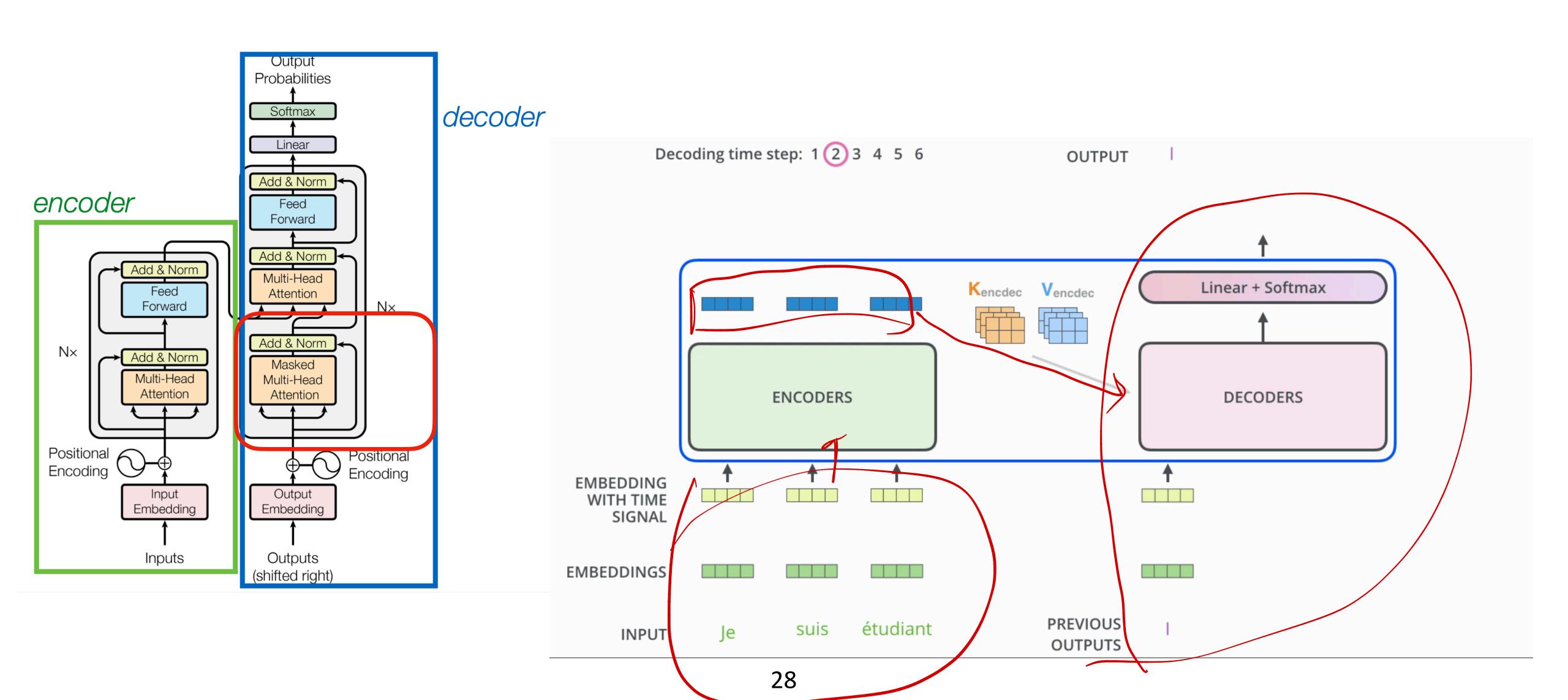
Transformer Encoder



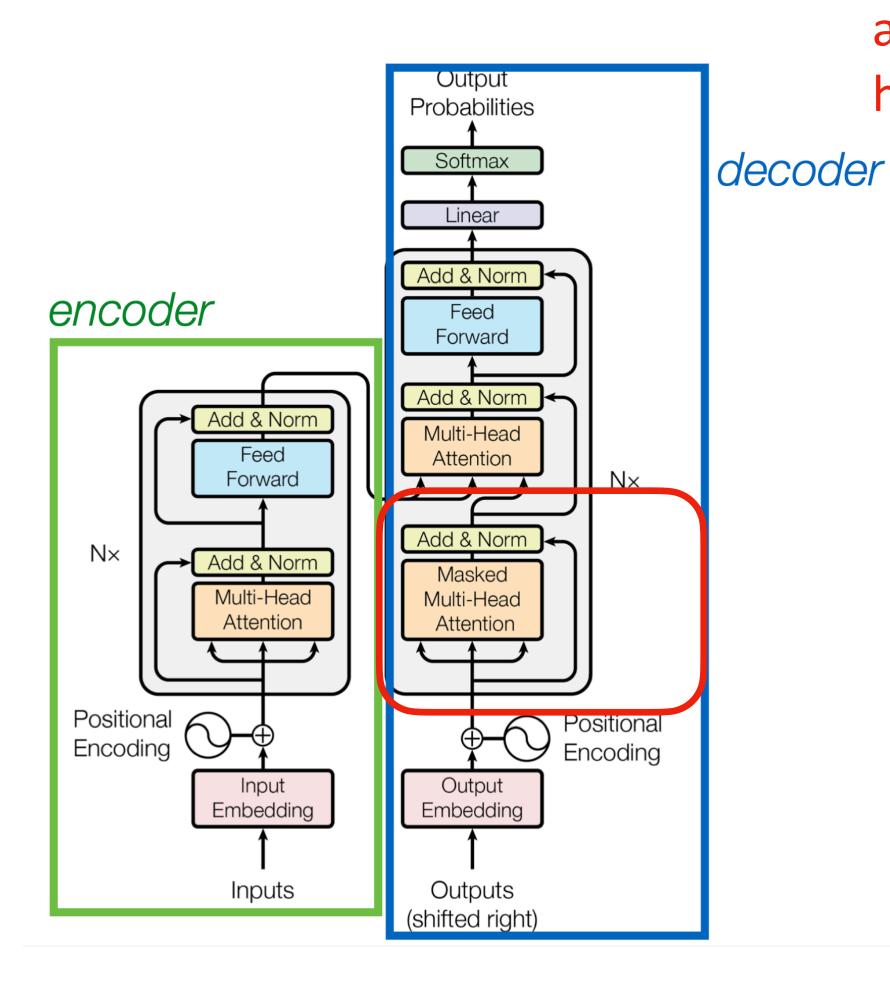
This encoder-decoder arch is originally proposed as a seq2seq arch, for classification tasks, often only encoder is used. And language models often only have a decoder

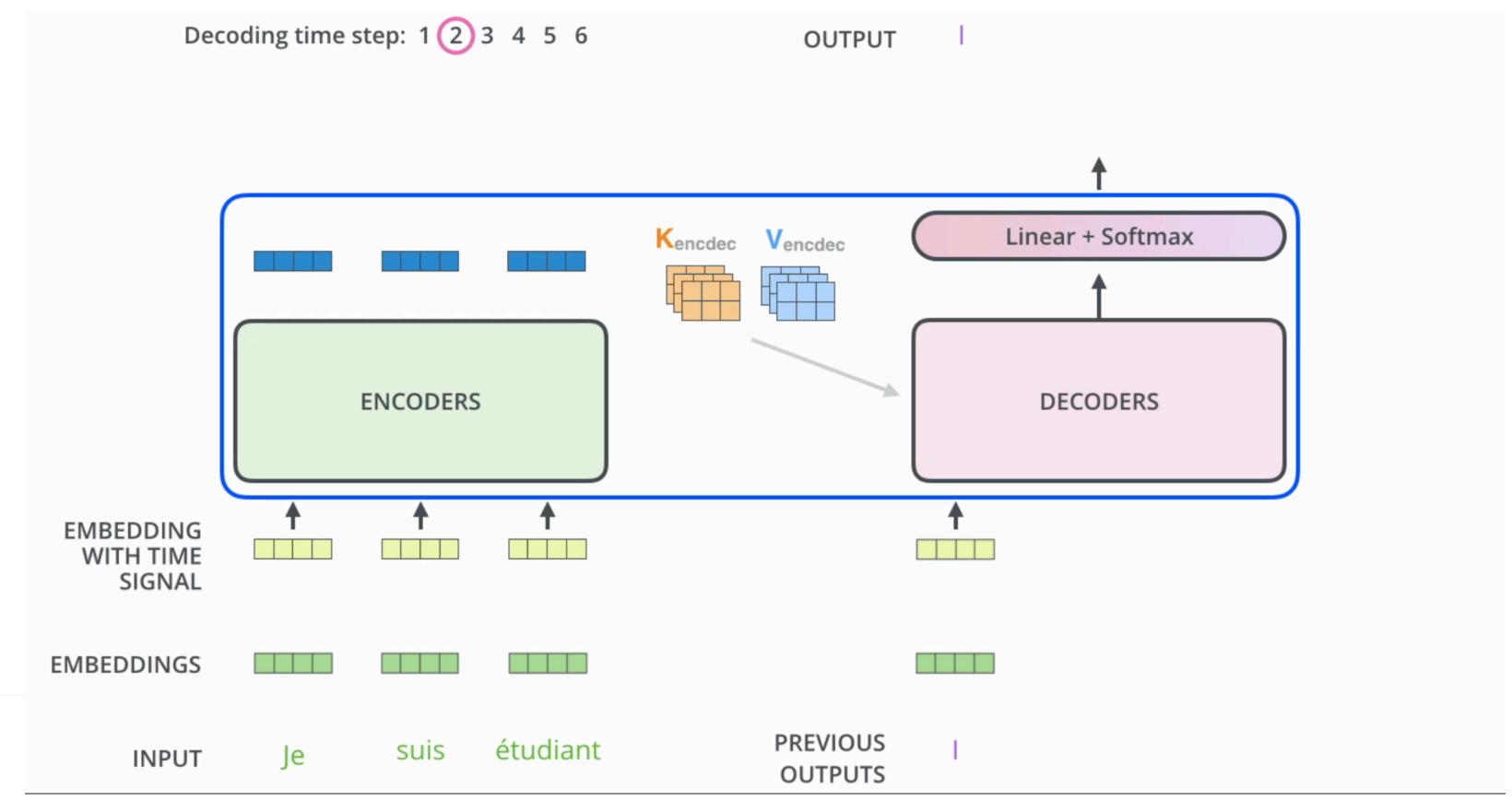
27





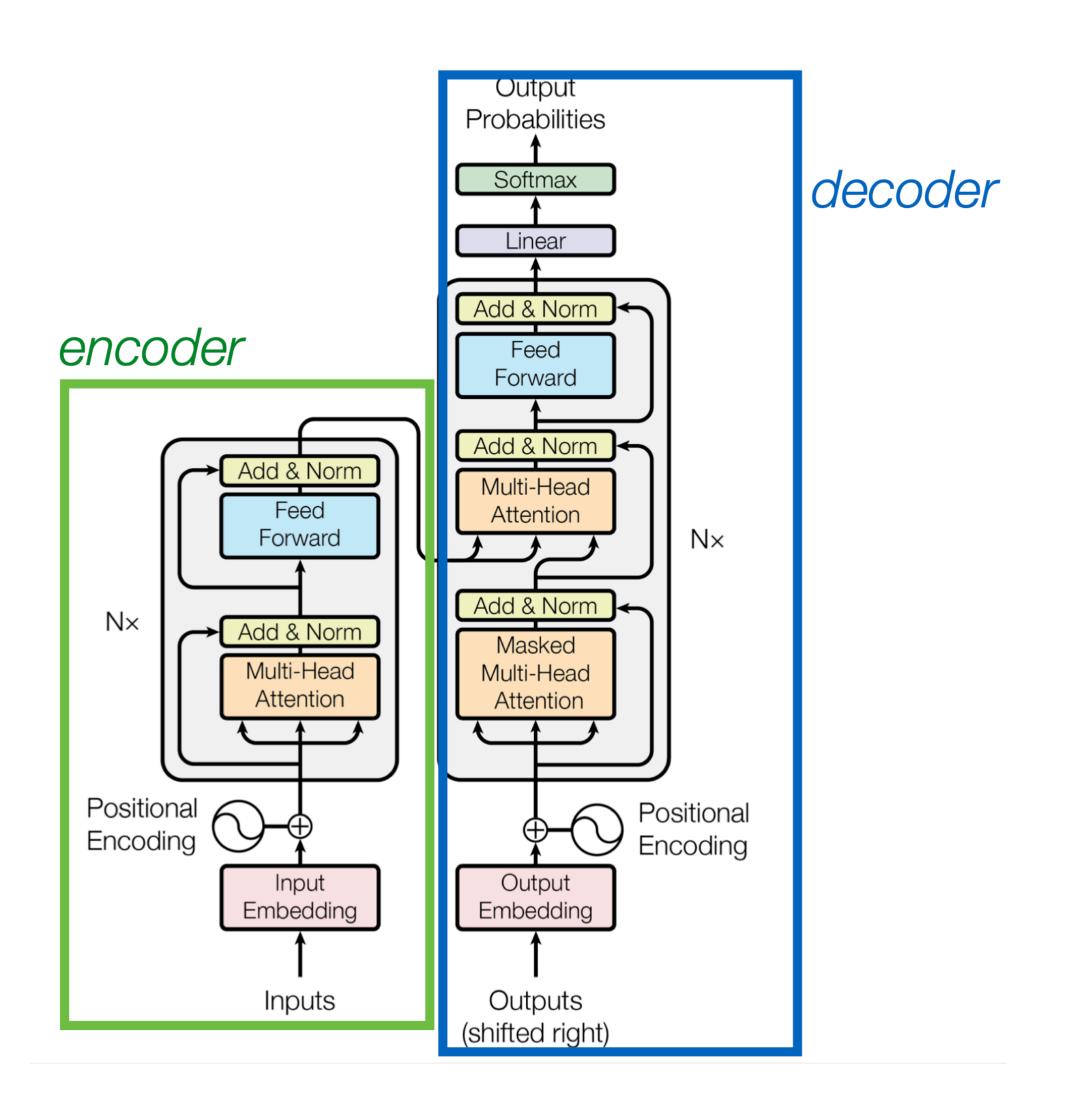
Typical attention attends to the entire sequence, while masked attention only attends to the ones on the left because future words have not been generated

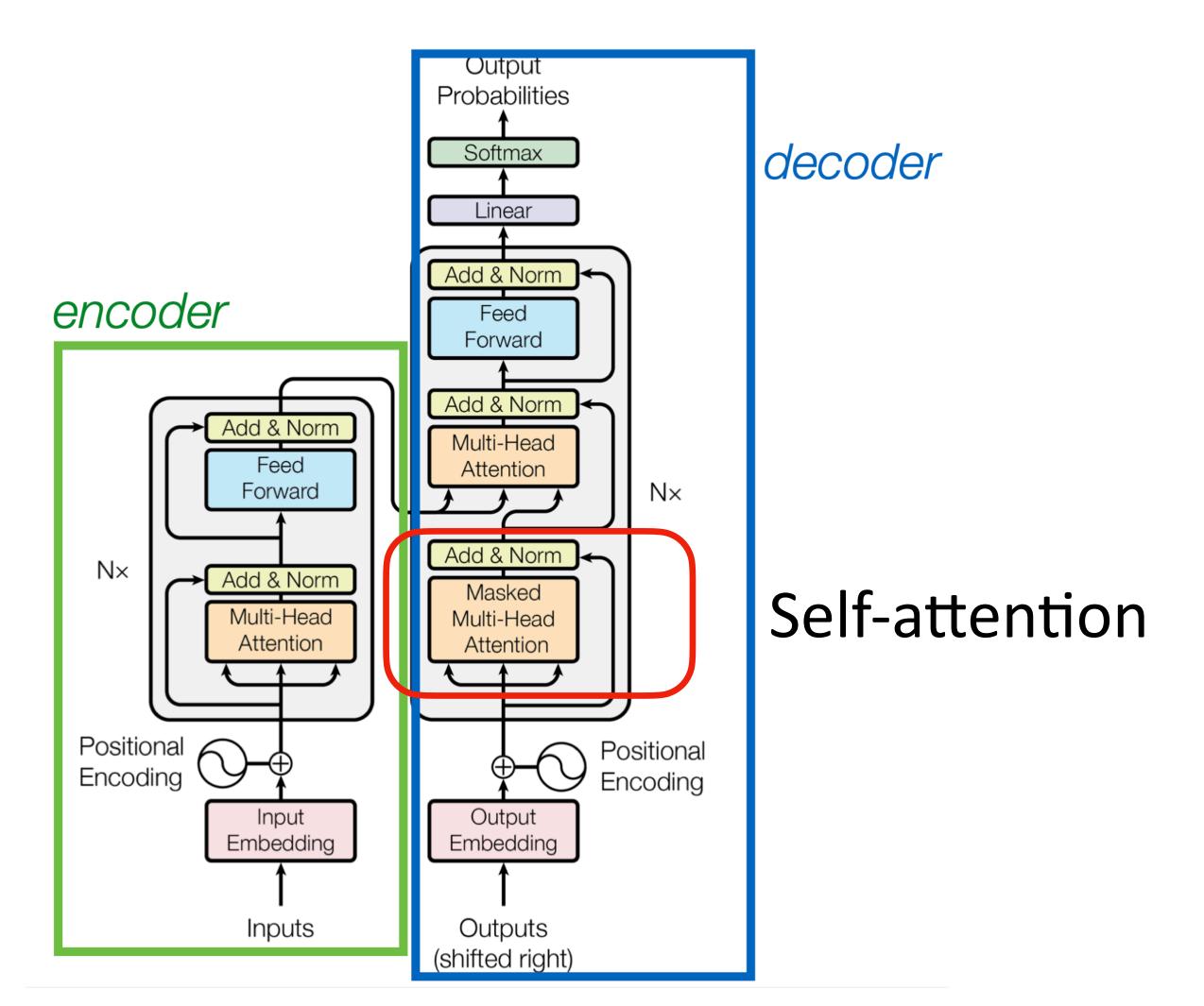


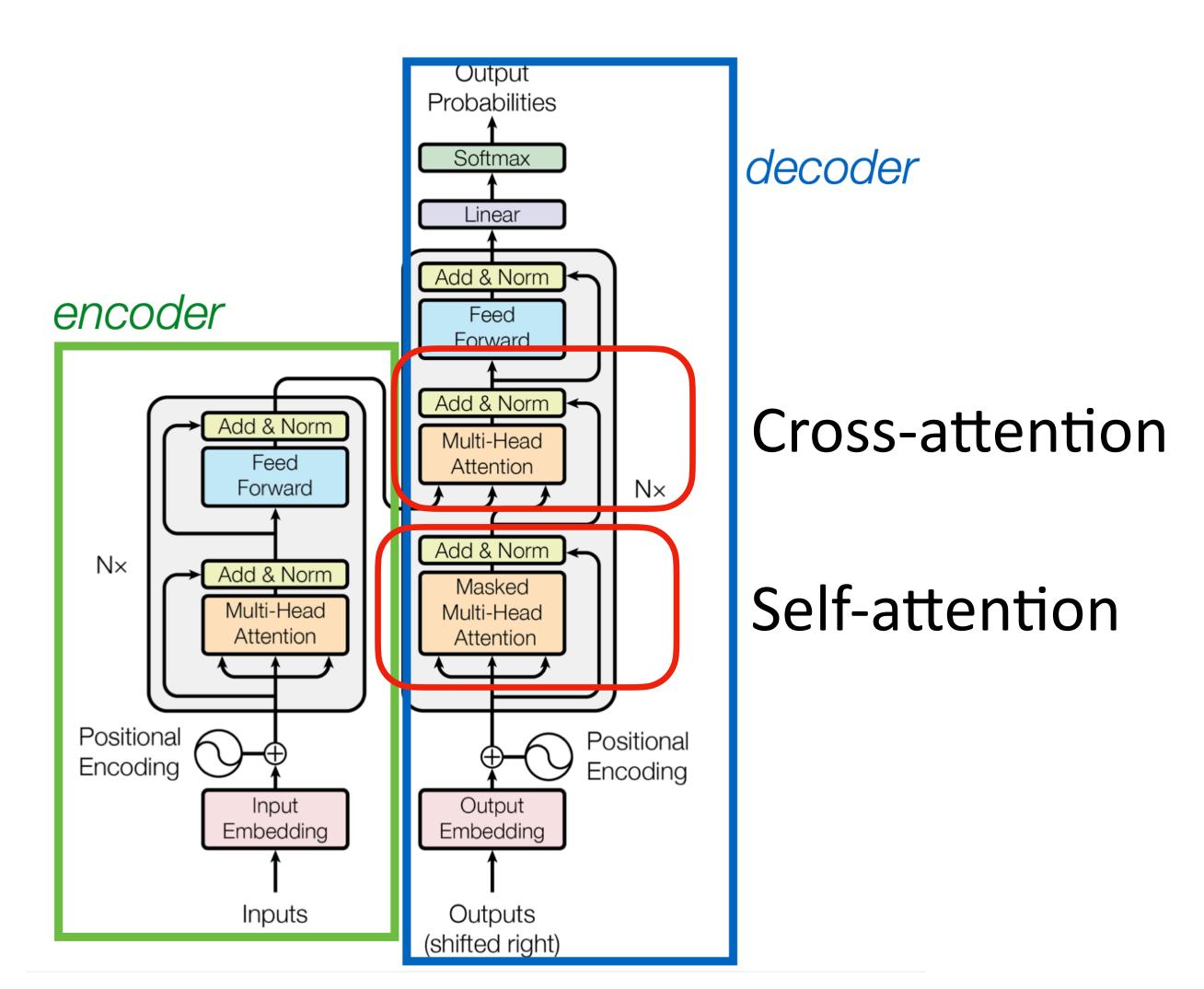


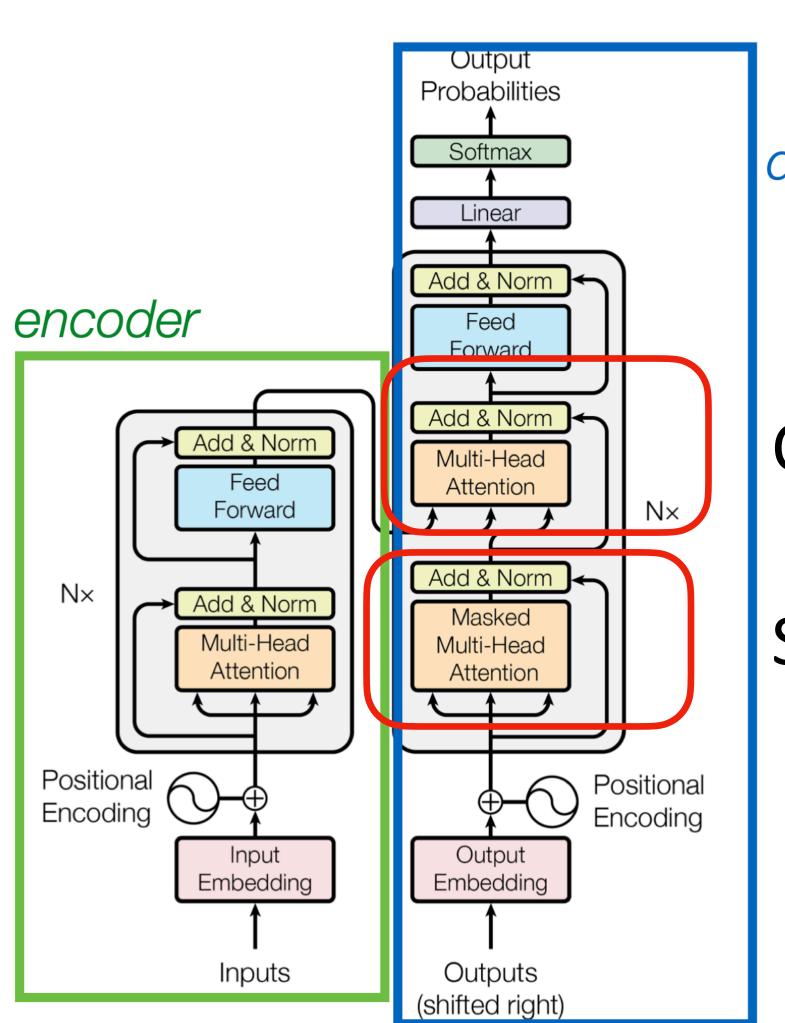
mosk implemeation? — attention neight = 0 **Masked Self-Attention Self-Attention** att veright / x valeue /

29 t wedge 2x valuel -









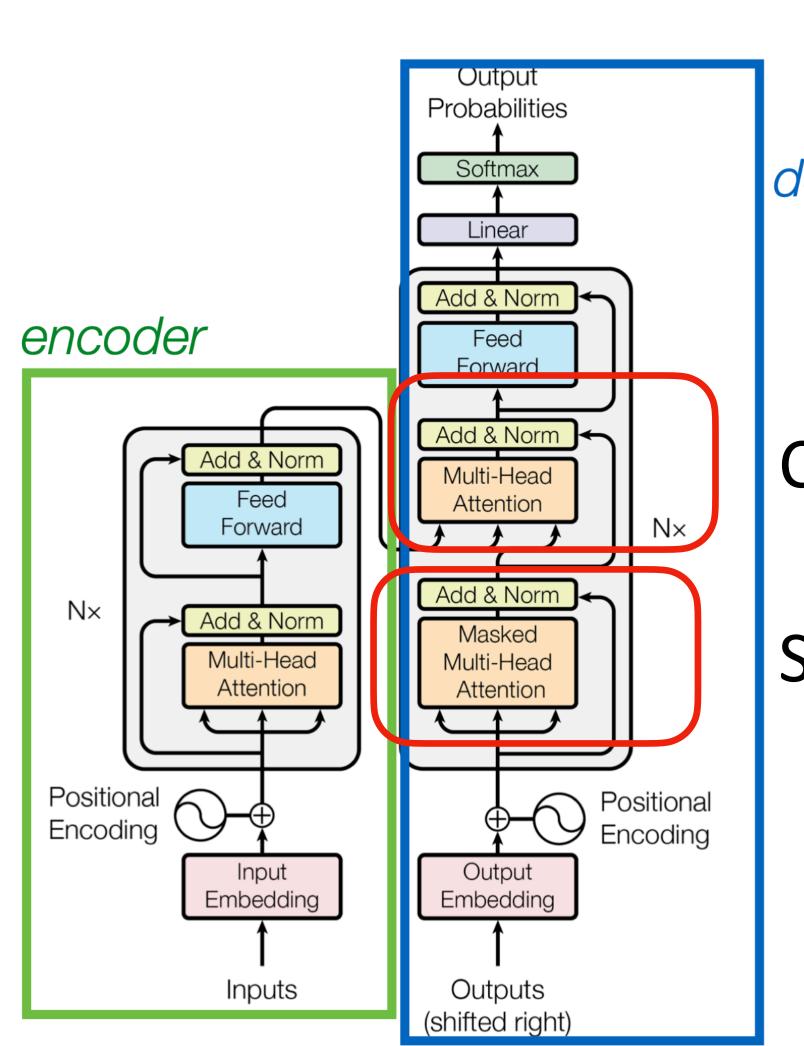
decoder

Cross-attention

Self-attention

Cross-attention uses the output of encoder as input

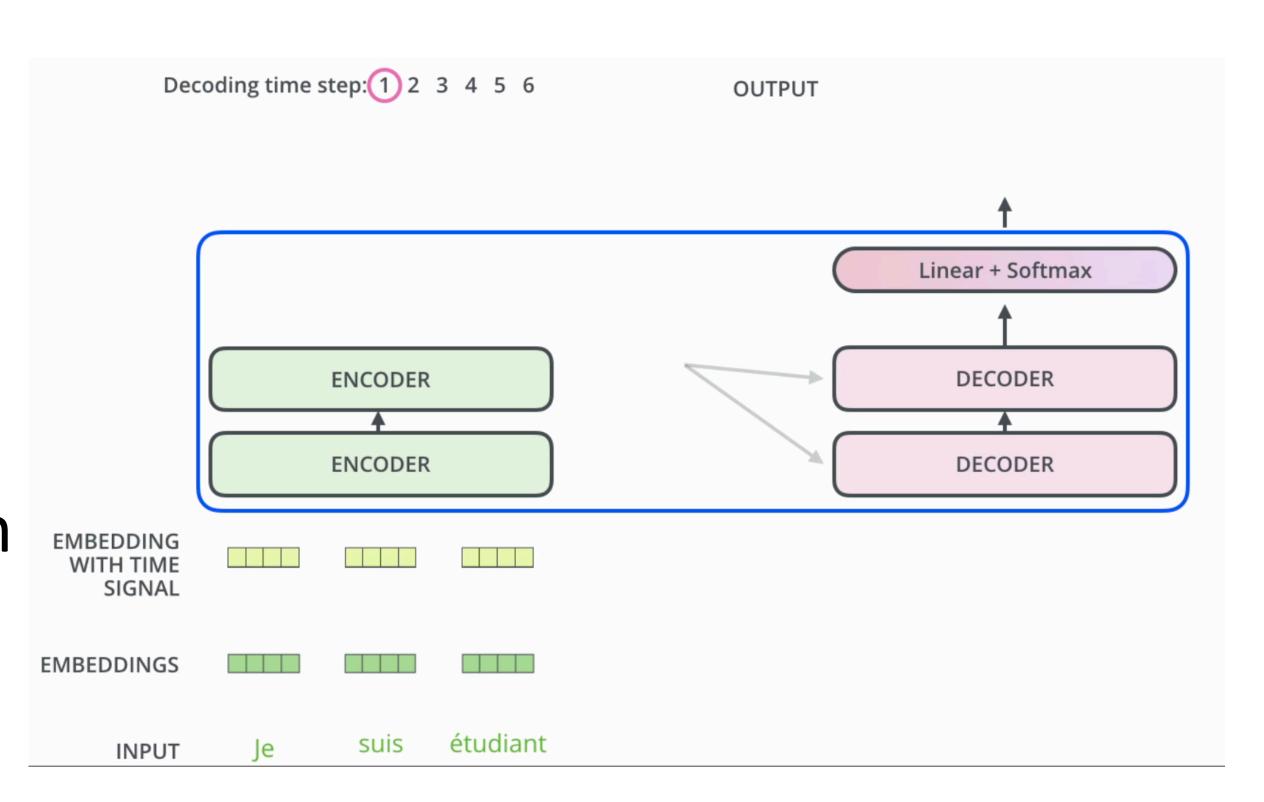
Transformer Decoder in Seq2Seq



decoder

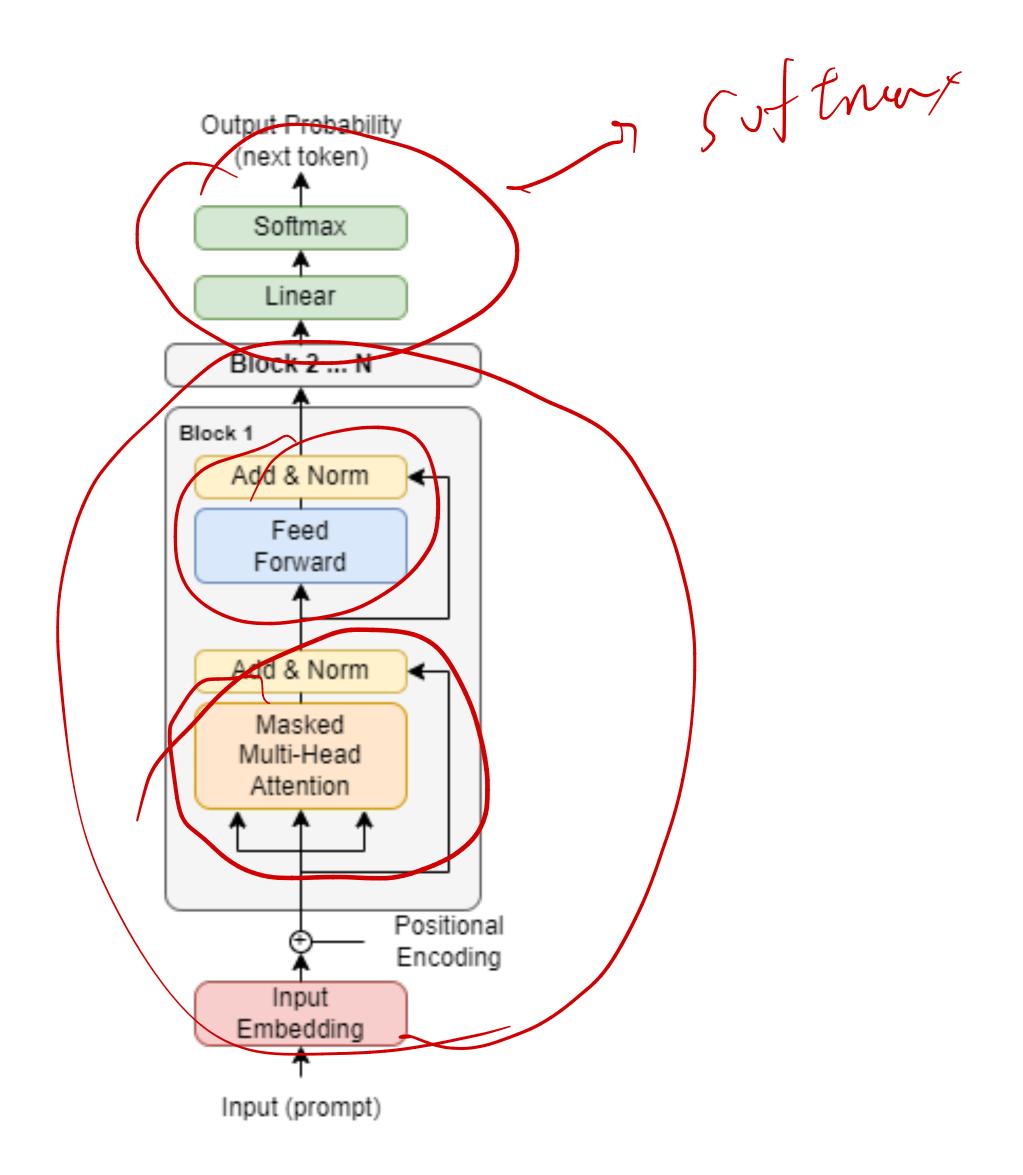
Cross-attention

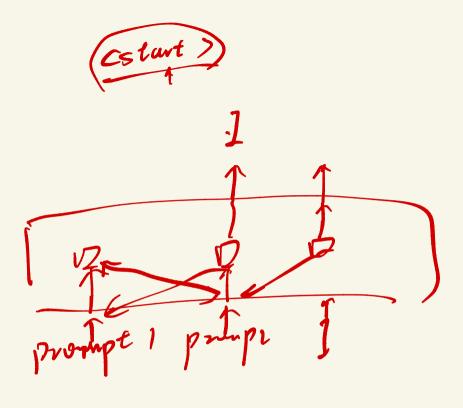
Self-attention



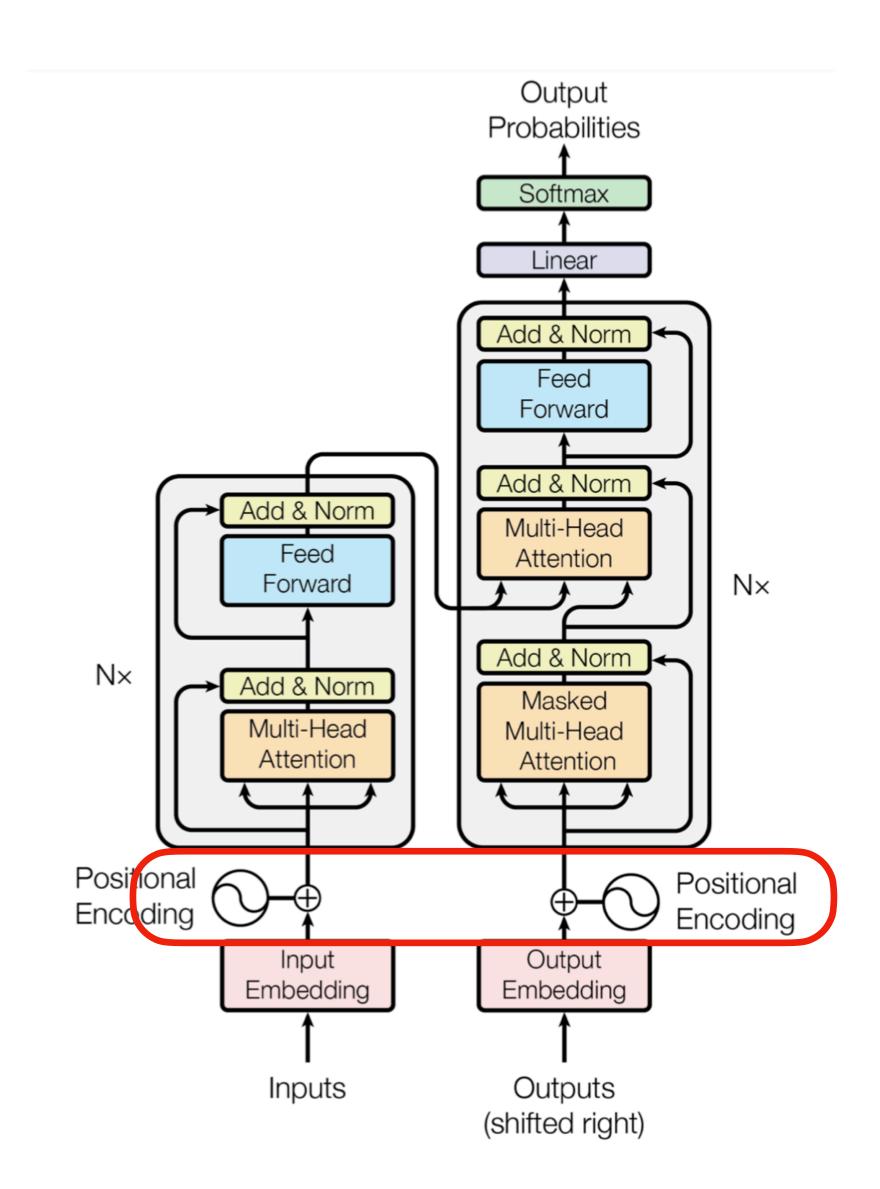
Cross-attention uses the output of encoder as input

Transformer Language Model (e.g., ChatGPT)

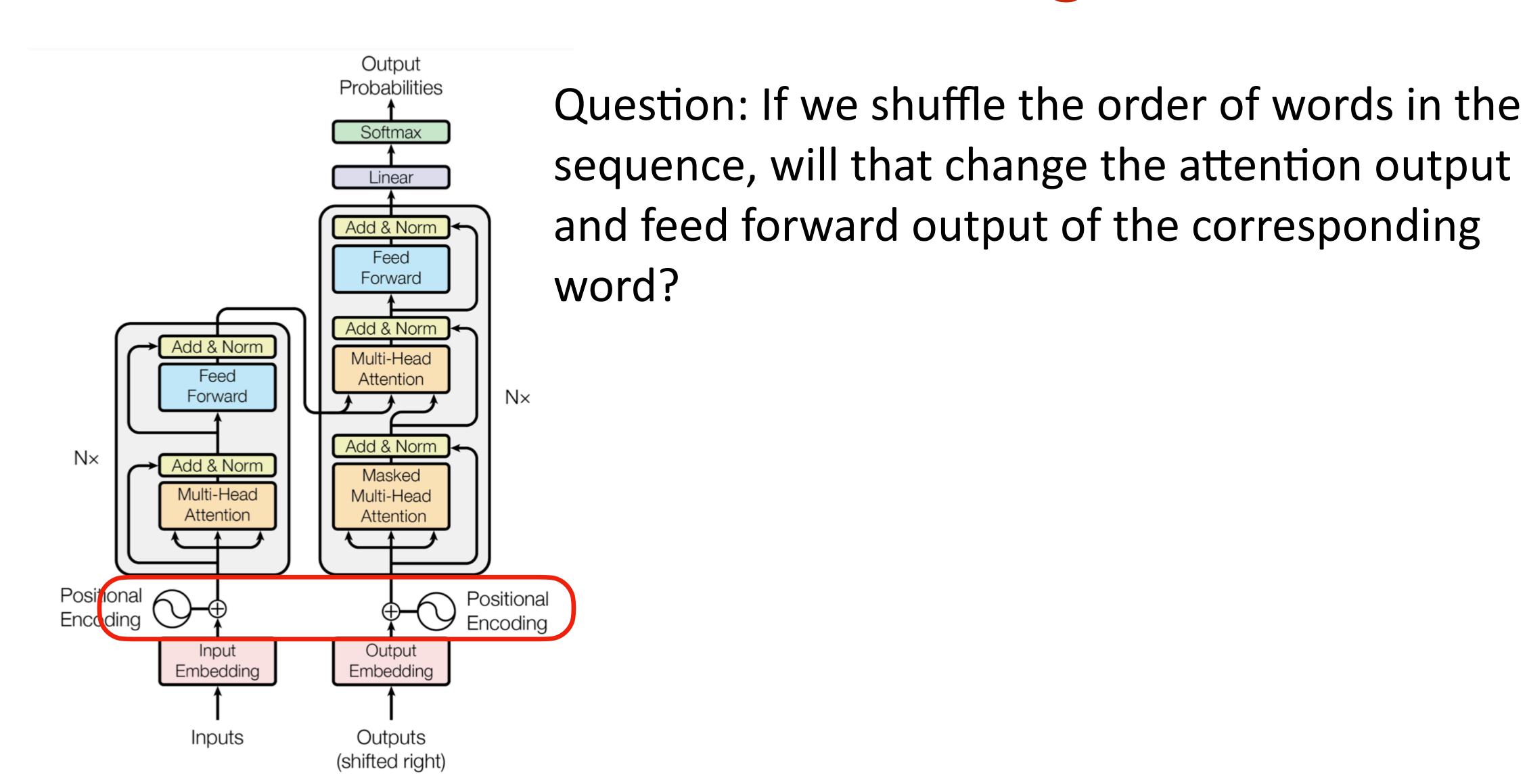




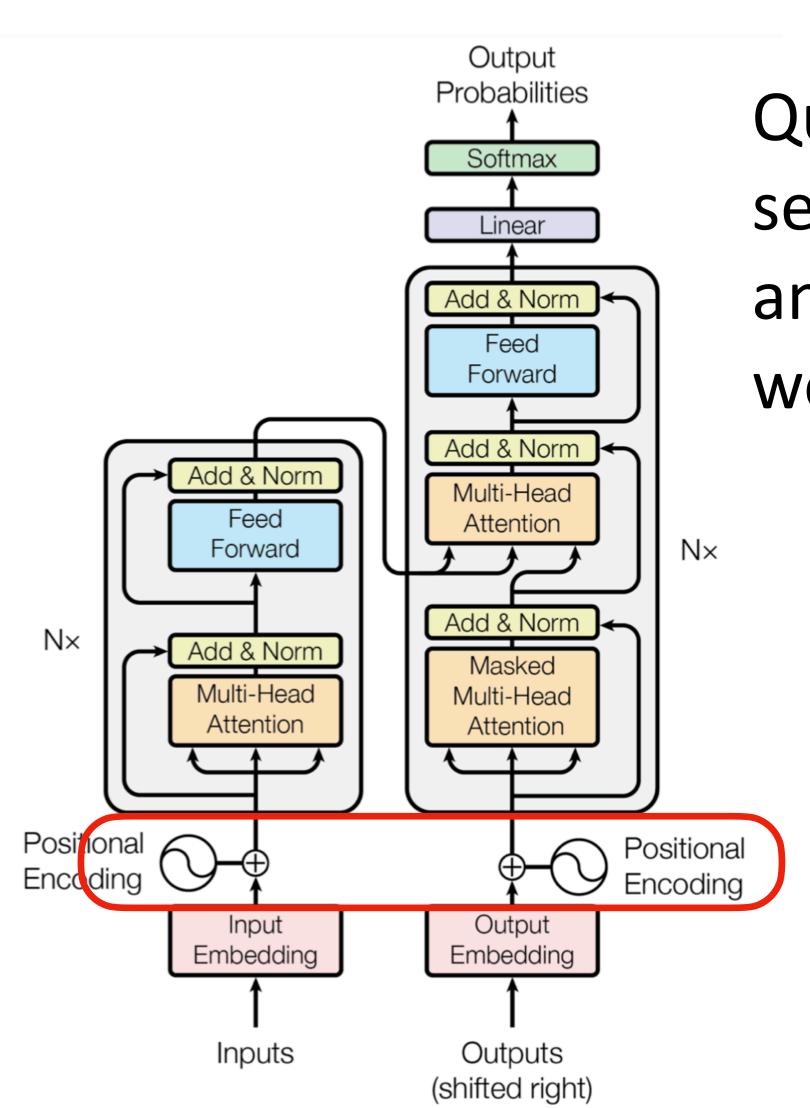
Position Embeddings



Position Embeddings



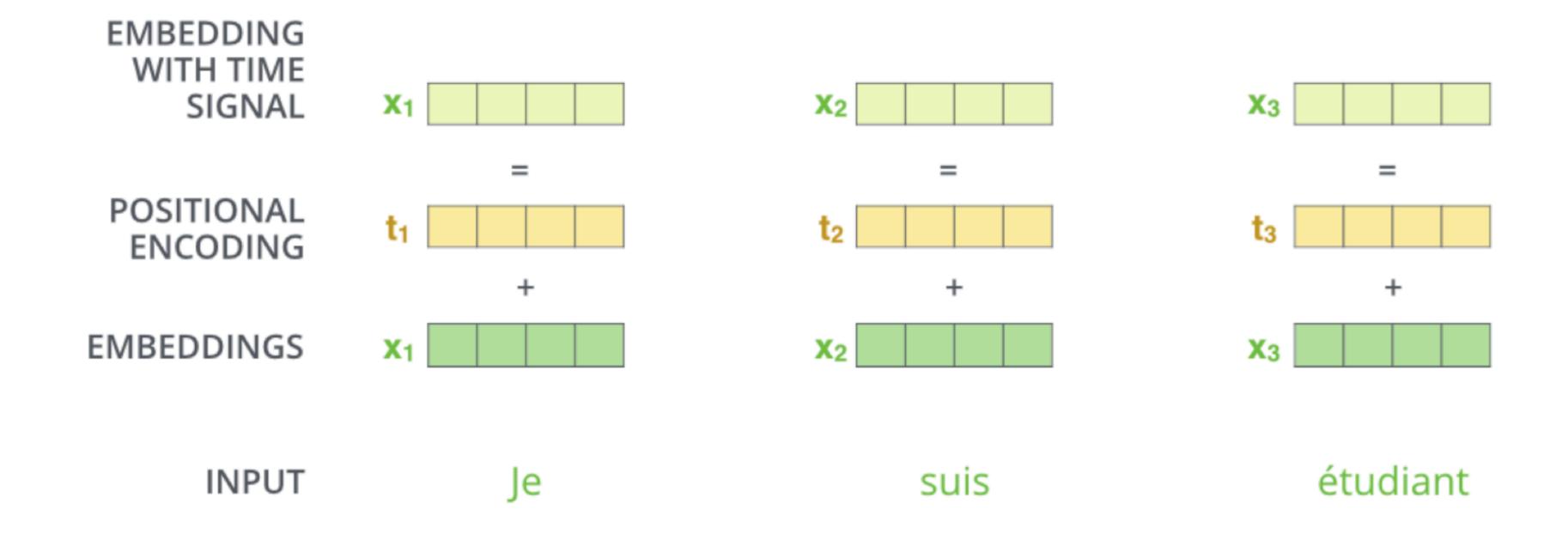
Position Embeddings



Question: If we shuffle the order of words in the sequence, will that change the attention output and feed forward output of the corresponding word?

Position embeddings are added to each word embedding, otherwise our model is unaware of the position of a word

Positional Encoding



Transformer Positional Encoding

$$PE_{(pos,2i)}=\sin(rac{pos}{10000^{2i/d_{model}}})$$

$$PE_{(pos,2i+1)} = \cos(rac{pos}{10000^{2i/d_{model}}})$$

Positional encoding is a 512d vector i = a particular dimension of this vector $pos = dimension of the word <math>d_model = 512$

Complexity

Layer Type	Complexity per Layer	Sequential Operations
Self-Attention	$O(n^2 \cdot d)$	$\overline{O(1)}$
Recurrent	$O(n \cdot d^2)$	O(n)
Convolutional	$O(\hat{k}\cdot n\cdot \hat{d}^2)$	O(1)
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)

n is sequence length, d is embedding dimension.

Complexity

Layer Type	Complexity per Layer	Sequential Operations
Self-Attention	$O(n^2 \cdot d)$	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)
Convolutional	$O(\hat{k}\cdot n\cdot \hat{d}^2)$	O(1)
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)

n is sequence length, d is embedding dimension.

Restricted self-attention means not attending all words in the sequence, but only a restricted field

Complexity

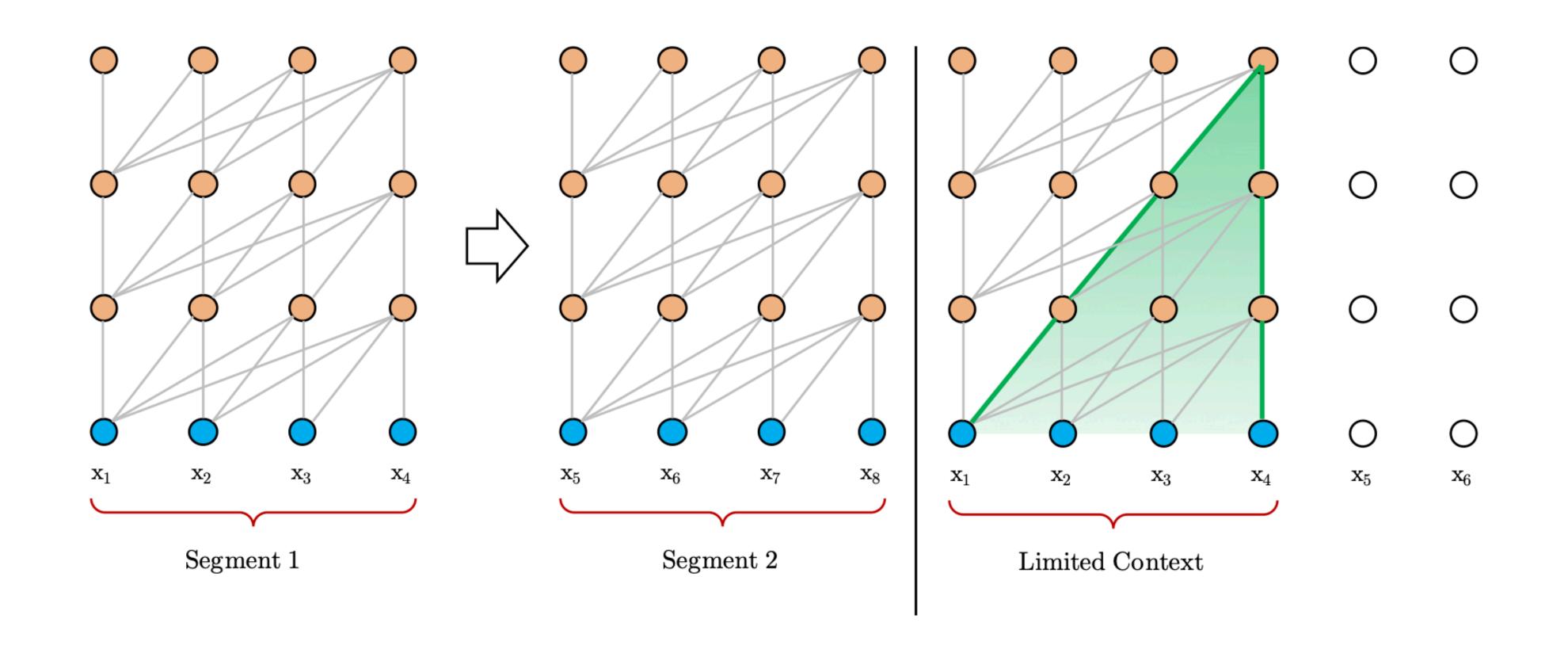
Layer Type	Complexity per Layer	Sequential Operations
Self-Attention	$O(n^2 \cdot d)$	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)
Convolutional	$O(\hat{k}\cdot n\cdot \hat{d}^2)$	O(1)
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)

n is sequence length, d is embedding dimension.

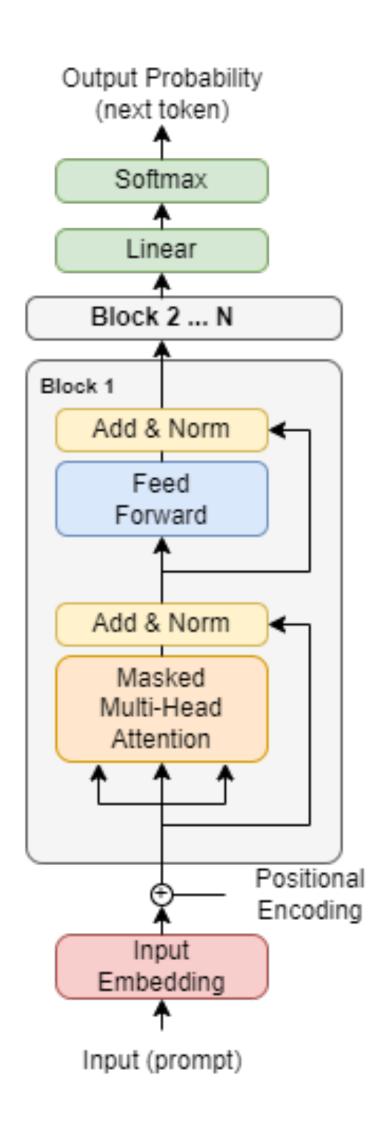
Restricted self-attention means not attending all words in the sequence, but only a restricted field

Square complexity of sequence length is a major issue for transformers to deal with long sequence

Language Model Training with Limited Context



Transformer Language Model (e.g., ChatGPT)



Language Model Pretraining

Target Data B

Source Data A (maybe a different task)

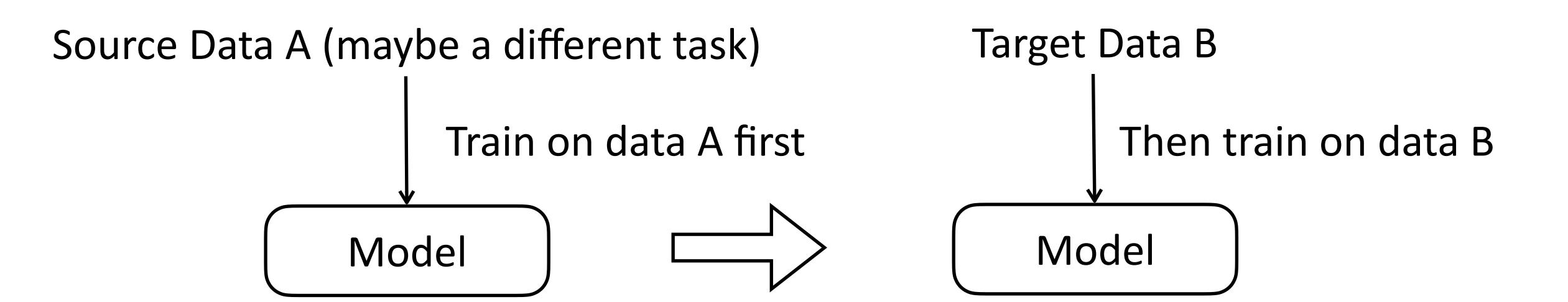
Target Data B

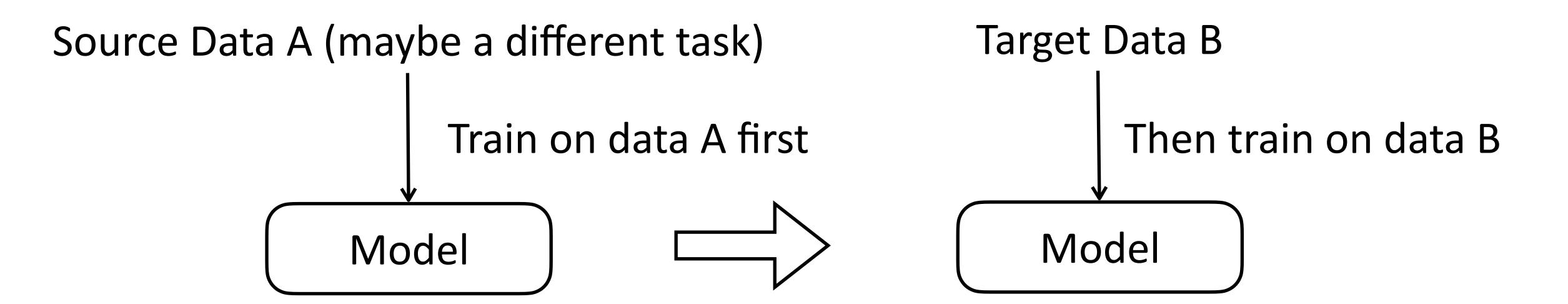
Source Data A (maybe a different task)

Train on data A first

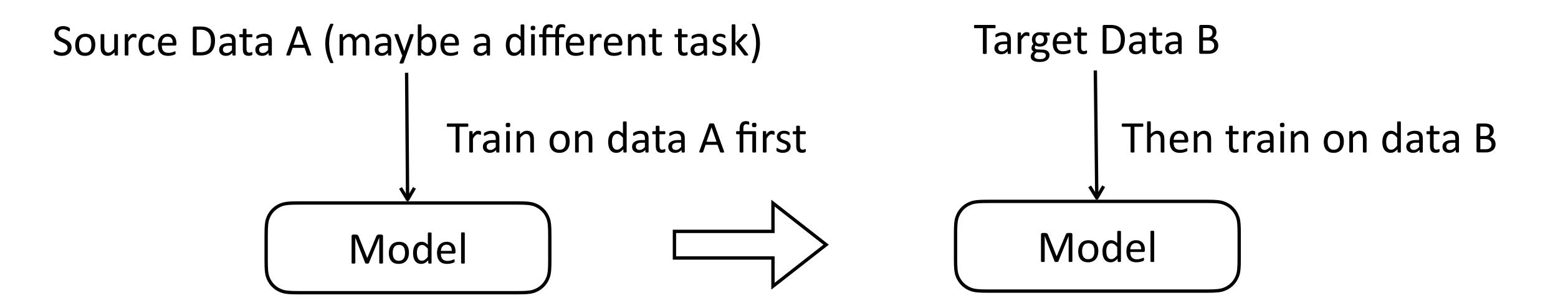
Model

Target Data B



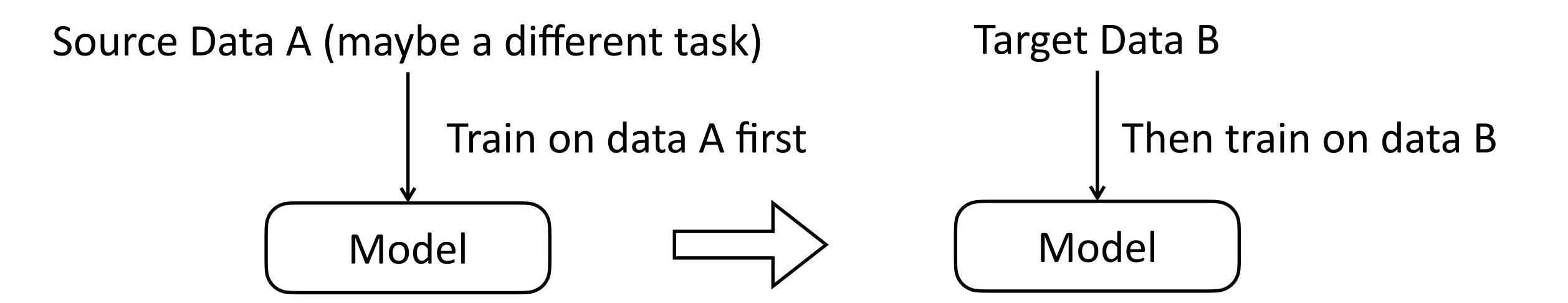


Classically, this is transfer Learning



Classically, this is transfer Learning

It is now called pretraining because of the scale of A



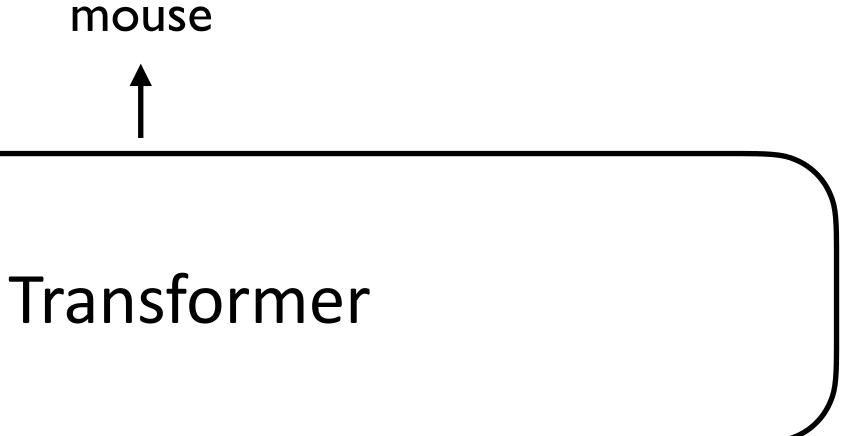
For supervised training, data A is often limited

How can we find large-scale data A to train?

Mask language modeling

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019.

Mask language modeling



the

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019.

cheese

[mask]

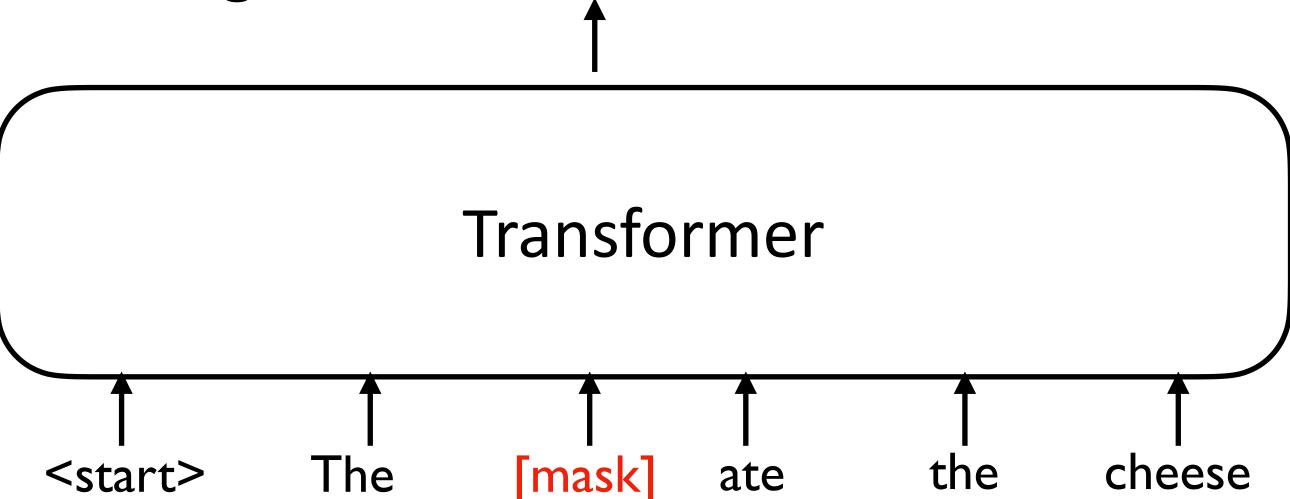
ate

The

<start>

mouse

Mask language modeling

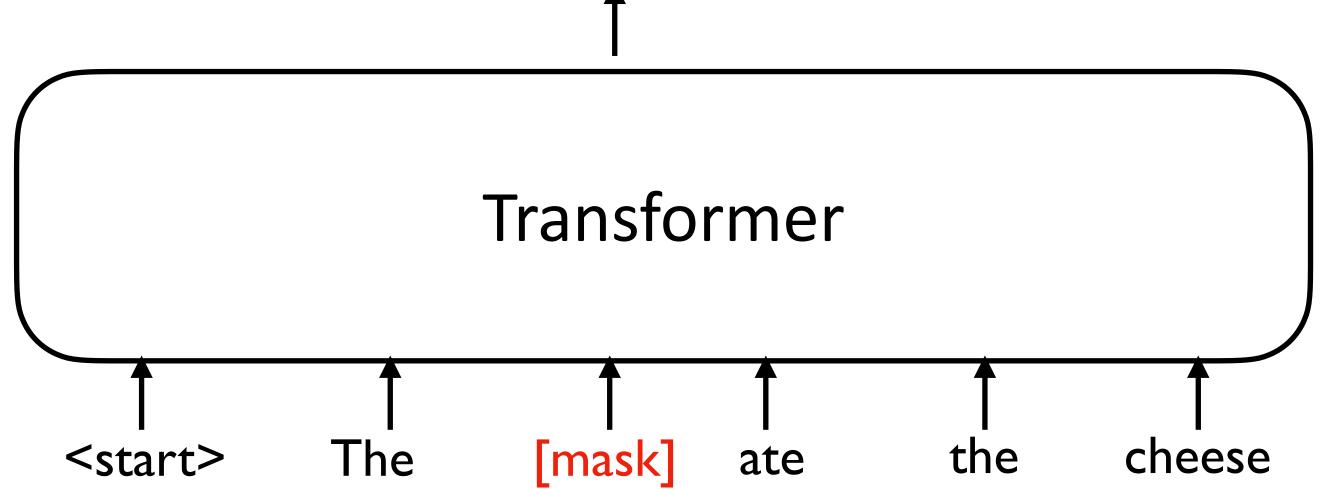


Construct a synthetic task from raw text only

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019.

Mask language modeling

mouse



Self-supervised Learning

Construct a synthetic task from raw text only

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019.

mouse

Mask language modeling

Transformer

the

Self-supervised Learning
Construct a synthetic task from raw text only
Can be made very large-scale

ate

[mask]

The

<start>

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019.

cheese

mouse

Mask language modeling

Transformer

start> The [mask] ate the cheese

Self-supervised Learning

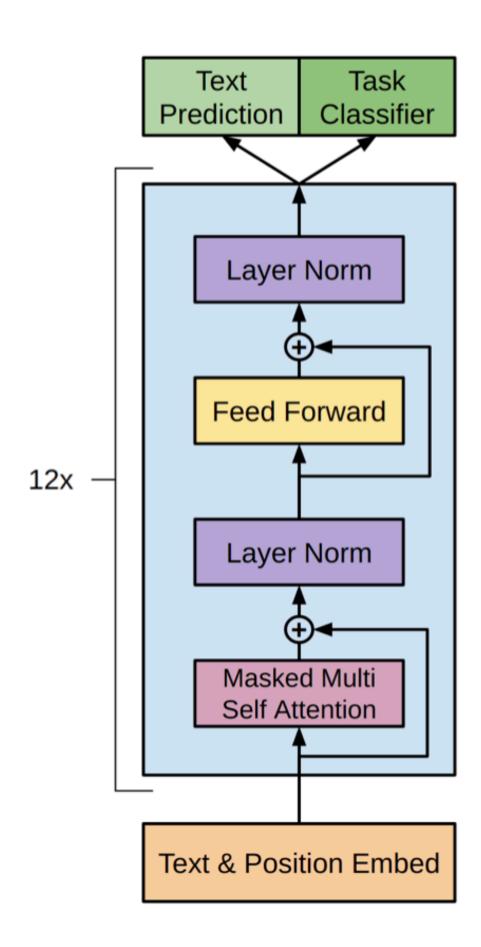
Construct a synthetic task from raw text only Can be made very large-scale

Is Bert a language model? Is it a generative model?

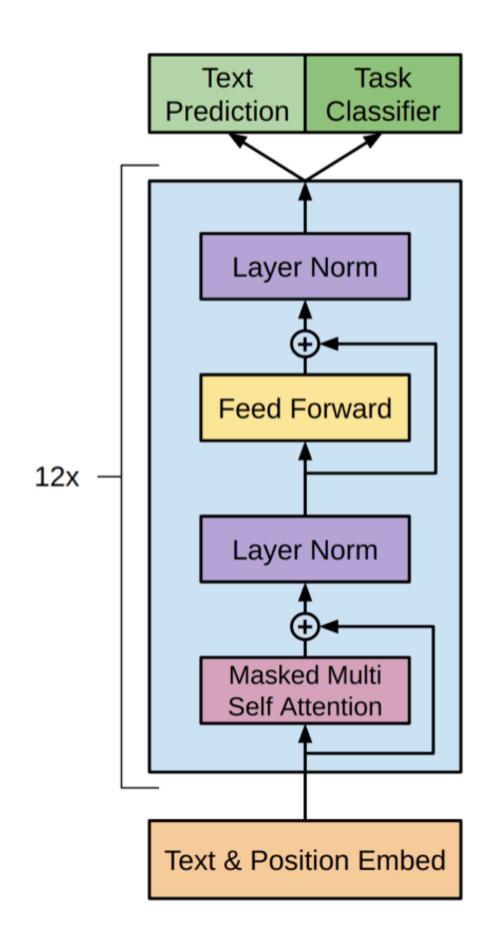
Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019.

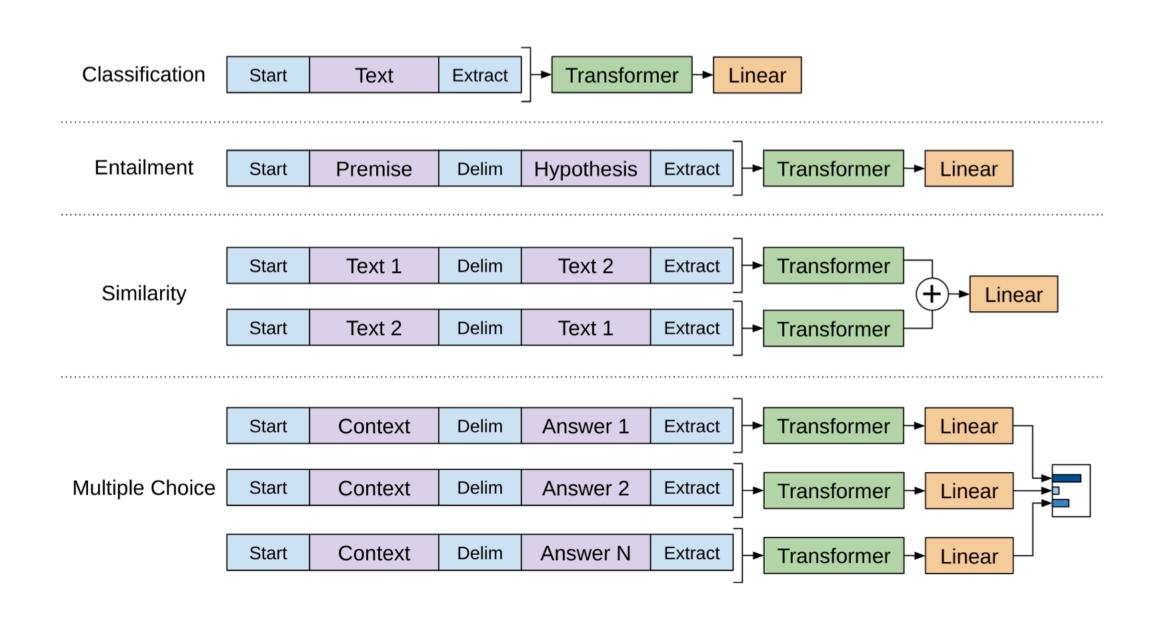
Generative Pre-Training (GPT)

Generative Pre-Training (GPT)



Generative Pre-Training (GPT)





Radford et al. Improving Language Understanding by Generative Pre-Training. 2018

Thank You!