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Multi-head Self-Attention

Recap
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Slides by Emma Strubell

Recap: Multi-head Self-Attention

Concat and output projection
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Recap: Multi-head Self-
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Recap: Transformer Encoder
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Recap: Transformer Encoder
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This encoder-decoder arch is originally proposed as a seq2seq arch, for classification tasks, often only

encoder is used. And language models often only have a decoder
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Recap: Masked Attention
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Recap: Masked Attention

Typical attention attends to the entire sequence, while masked
attention only attends to the ones on the left because future words
have not been generated
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Transformer Decoder in Seq2Seq
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Transformer Decoder in Seq2Seq
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Transformer Decoder in Seq2Seq
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Transformer Decoder in Seq2Seq
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Transformer Language Model (e.g., ChatGPT)
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Position Embeddings
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Transformer Positional Encoding
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Complexity

Layer Type Complexity per Layer Sequential f‘
Operations
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Complexity

Layer Type Complexity per Layer Sequential
Operations
Self-Attention O(n? - d) O(1)
Recurrent O(n - d?) O(n)
Convolutional O(k -n-d?) O(1)
Self-Attention (restricted) O(r-n-d) O(1)

n is sequence length, d is embedding dimension.

stricted self-attention means not attending all words in the
sequence, but only a restricted field
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Complexity

Layer Type Complexity per Layer Sequential
Operations
Self-Attention O(n? - d) O(1)
Recurrent O(n - d?) O(n)
Convolutional O(k -n-d?) O(1)
Self-Attention (restricted) O(r-n-d) O(1)

n is sequence length, d is embedding dimension.

Restricted self-attention means not attending all words in the
sequence, but only a restricted field

Square complexity of sequence length is a major issue for transformers to deal
with long sequence
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Language Model Training with

Limited Context
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Transformer Language Model (e.g., ChatGPT)
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Pretraining

Target Data B

17



Pretraining

Source Data A (maybe a different task) Target Data B
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Pretraining

Source Data A (maybe a different task) Target Data B

Train on data A first
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Pretraining

Source Data A (maybe a different task) Target Data B

Train on data A first Then train on data B
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Pretraining

— ’ﬁ/u,“/t
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Source Data A (maybe a different task) Target Data B
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C\Iﬁcally, this is transfer Learning
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Pretraining

Source Data A (maybe a different task) Target Data B

Train on data A first Then train on data B

—>

Classically, this is transfer Learning

It is now called pretrainir@ause of the scale ofD
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( Pretrainigg @iy /”/z\f)@b,vmg

Source Data A (maybe a different task) j\\4 Target Data B

Train on data A first Then train on data B
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For supervised training, data A is often limited \
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How can we find large-scale data A to trainD
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BERT

Mask language modeling

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. NAACL 2019.
19




BERT

Mask language modeling Mouse GAE’[CE ‘605/(

<start> The [mask] the @

(st %Z O 5€ ote fh@ Cmﬁg;g)

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. NAACL 2019.
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BERT Plose - potram

ask language modeling mOTuse (W%W

Transformer

<start> The [mask] ate the cheese / /7 [ 7[/

Construct a synthetic task from rags text only —
)7[ X/ C )
[ —

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. NAACL 2019.
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BERT

Mask language modeling mouse

Transformer

<start> The [mask] ate the cheese

Self-supervised Learning
Construct a synthetic task from raw text only

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. NAACL 2019.
19




BERT

Mask language modeling mouse

Transformer

<start> The [mask] ate the cheese

Self-supervised Learning
Construct a synthetic task from raw text only

Can be made very large-scale

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. NAACL 2019.
19




BERT

Mask language modeling mouse

Transformer

<start> The [mask] ate the cheese

Self-supervised Learning
Construct a synthetic task from raw text only

Can be made very large-scale

Is Bert a language model? Is it a generative model?

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers fcr

Language Understanding. NAACL 2019.
19




Generative Pre-Training (GPT)

Radford et al. Improving Language Understanding by Generative Pre-Training. 2018
20



Generative Pre-Training (GPT)

Text Task
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Radford et al. Improving Language Understanding by Generative Pre-Training. 2018
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Generative Pre-Training (GPT)
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Radford et al. Improving Language Understanding by Generative Pre-Training. 2018
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Suppose | just want to do a sentence classification
task, bidirectional or masked attention is better?
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Suppose | just want to do a sentence classification

task, bidirectional omasked atte@is better for
pretraining?”
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Pretraining Data

We want to start with clean text

W I kl p e d I a z In the late 1980s, the Hong Kong Government anticipated a strong demand for

university graduates to fuel an economy increasingly based on services. Sir Sze-Yuen
Chung and the territory's governor, Sir Edward Youde, conceived the idea of

B O O kS establishing a third university, in addition to the pre-existing University of Hong Kong
and Chinese University of Hong Kong.m

Planning for the "Third University", as the university was known prqvisionally, began in
1986. On 8 November 1989, Charles, Prince of Wales (now King (iarles 1) laid the
foundation stone of the campus,®! which was constructed at the Kohima Barracks site
in Tai Po Tsai on the Clear Water Bay Peninsula. The site was earmarked for the
construction of a new British Army garrison to house the 2nd King Edward VII's Own
and 7th Duke of Edinburgh's Own Gurkha Rifles,®! but plans for its construction were

shelved after the 1984 signing of the Sino-British Jom cIaratlo sulted in the
downsizing of army presence in Hong Kong.['°!

Originally scheduled to finish in 1994, the planning committge/for the é/mversny decided
in 1987 that the new institution should open its doors three years early, in keeping with

the community's need and in fulfilment of the wishes of Youde, who died in 1986.1'11[12]
The university was officially opened by Youde's successor as governor, Sir David
Wilson, on 10 October 1991.3] Several leading scientists and researchers took up
positions at the university in its early years, including physicist Leroy Chang who arrived
in 1993 as Dean of Science and went on to become vice-president for academic affairs.
[14] Thomas E. Stelson was also a founding member of the administration.! !

23



Pretraining Data Reality

In practice, the@ the most viable option for data collection.

In the digital era, this is the go-to place for general domain human knowledge.
T/ \

O

But web data can be challenging to work with i l@?e,u{\) BN 9%//
Copyright and usage constraints, privacy
HUPylislit din

Data is noisy, dirty, and bias\efl/ S
/ N

v
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Example Noisy Web Data

<html 4 lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>Best Coffee Beans 2025 | Best Coffee Beans 2025 | Buy Coffee Now!</title>
<meta name="description” content="best coffee beans best coffee beans best coffee be
<link rel="canonical" href="http://example.com/best-coffee?utm_source=spam&utm_campa
<meta property="og:title" content="Best Coffee Beans 2025">
<script type="application/ld+json">
{"@context":"http://schema.org","@type":"Article", "headline":"Best Coffee Beans 2025’
</script>
<script>
// tracking & A/B test noise
(functionQ{try{var u="https://trk.example.net/p.js?id=UA-XXX";var s=document.crea
window.__AB__={"exp" :"homepage-v1l7", "bucket" :Math.random()<0.5?'A':'B'};
</script>
<style>
/* inline CSS with dead classes */
.hero {background:url(data:image/png;base64,1VBORWOKGgoAAAANSUhEUgAA. . .);height :48(
.hidden{display:none} .cookie{position:fixed;bottom:0;background:#000;color:#fff;pc
@media (max-width: 600px){ .table{display:block;overflow:auto} }
</style>
</head>
<body id="top" class="post post post-1234" oncopy="return false">
<!-- BECIN Cookie bpanner, auplicated -->
div class="cookie" role="dialog" aria-live="polite">
We use cookies to improve your experience. <button id="ok">0K</button>
</div>
<div.class="Cookie" siyre="aispruy.none">We use cookies <a href="/privacy?ref=popup":
<!-- END Cookie banner -->

<noscript><img src="https://track.example.org/pixel.gif?1id=abc" alt=""></noscript>

<header>
<h1>Best Coffee Beans 2025<,/nl>

<div class="ratinyg >xxxxx 4.9/5 (3,214)</div>
<div class="breadcrumbs">

<a href="/">Home</a> » <a href="/category?c=cof¥%66ee">Coffee</a> » Best Coffee B¢
</div>




Web Data Pipeline

Content is posted to the web
Web crawlers identify and download a portion of the content

The data is ﬁﬁered and cleane
)

L _—
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Web Data Pipeline

General Idea
1. Start with a set of seed websites
2. Explore outward by following all hyperlinks on the webpage.
3. Systematically download each webpage and extract the raw text.

Explore
Seed URLs P g Target URLs Crawl ATML >crape | Raw Texts
Contents
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How to Clean Text Data
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How to Clean Text Data

1. Remove noisy, spammy, templated, and fragmented texts
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How to Clean Text Data

1. Remove noisy, spammy, templated, and fragmented texts
2. Select higher quality texts from a massive candidate pool
3. Avoid toxic and biased content
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What Defines Good Pretraining Data?
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2. Diverse (covers many domains)
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What Defines Good Pretraining Data?

Clean (fluent)
Diverse (covers many domains)

Non-trivial (a trivial case is to learn from massive documents and each
has no more than 20 words)

“high-quality”

“intelligence” of the data is high, generally requiring a lot of knowledge and
reasoning to predict the next word
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How to Identify High-Quality Content
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How to Identify High-Quality Content

¢ Rule-based Heuristics
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How to Identify High-Quality Content

Rule-based Heuristics
Classifiers (how to use GPT4 to help train GPT57?)
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Notable Datasets

Wikipedia dataset
CommonCrawl

Colossal Clean Crawled Corpus (C4)
FineWeb

Dolma
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Wikipedia Dataset

NOMIC atlas

[ 4
> . 3 i .
L WMoth:

Contains cleaned articles (65M) written in many ﬁmh o
languages (~350). m:

The dataset is built from the Wikipedia dumps
and split per language.

Fach example contains a cleaned article with
stripped markdown and unwanted sections.

The data fields are id, url, title, and text.

Conveniently available on HuggingFace.
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CommonCrawl

Non-profit organization that provides open
access to large scale web crawls

Petabytes of web pages are available

Monthly crawls and dumps
o Re-crawled web pages and fresh dumps
(bi)monthly
o The dumps are ~k billion pages

Dates back to 2008
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CRAWL

Overview

Access to the corpus hosted by Amazonis free.

in our corpus using the Commeon Crawl URL Index,

Number of Page Captures
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After the text is cleaned, now we need to convert it into a batch of training data

The Steelers enjoy a large,
widespread fanbase

They currently play their
home games at Acrisure
Stadium.

nicknamed Steeler Natiotr. |

Raw Clean Text

Preprocessing Clean Text

Tokenization

T

' The',' Steel’, 'ers',' enjoy',' a

l_largel’ I’I’ I_Widel’ Isprel’ Iadl’ l_fanl’
wase', ' nick', 'na’, 'med’, ' Steel', 'er’,

' Nation', ./,

'_play/,

They', ' currently/,

1
’

__their',' home',' games’,
‘at', ' A, 'cris!, 'ure', ' Stadium’, .

Batching
/———P

(580, 109027, 1313, 25224, 9,
21333, 3, 38133, 21328, 711, 1206,
37381, 128910, 75, 4805, 109027,
55, 82580, 4, 0)

(10659, 82423, 11300, 2362,
5367, 275217, 98, 61, 58531, 3407,
88259, 4,0,0,0,0,0,0,0,0)

Tokenized
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Tokenizing Text
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Tokenizing Text

A tokenizer takes text and turns it into a sequence of discrete tokens
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Tokenizing Text
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Tokenizing Text

A tokenizer takes text and turns it into a sequence of discrete tokens

A vocabulary is a list of all available tokens

Example:“A hippopotamus ate my homework”™

Vocab Type Example

Character—le\/el [l l, I I, lhl' lil’ Ipl, Ipl, IOI, lpl' IOI, 'tl, Ial' Iml, lul, 31
ISI, I l' Ial, ltl' lel’ [ I, lml' Iyl, I I' lhl’ IOI, lml' Iel,
|W| IOI Ir_l |(| I l]

subword-level ['A', 'hip', '##tpop', '##tota', '##mus', 'ate', 'my', 'homework’, 9
[ l]

word-level ['A', '"hippopotamus', 'ate', 'my', '"homework',6 '.'] 6
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Word-Level Tokenization

rule-based (split text by spaces, punctuation, and other similar heuristics)
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Open vocabulary problem
-~ Many words may never appear in training data (becomes [UNK])
~ This is more severe in other low-resource languages
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Word-Level Tokenization

rule-based (split text by spaces, punctuation, and other similar heuristics)

Challenges

Open vocabulary problem
-~ Many words may never appear in training data (becomes [UNK])
~ This is more severe in other low-resource languages

Words with typos also get tokenized as [UNK]
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Character-Level Tokenization

Vocab Type Example

Character-|e\/e| [l l, I l' lhl, lil, lpl’ Ipl, IOI, lpl, 'O" ltl, lal, lml' lul’ 3/]
IS" I l, Ial, lt', lel' I l, lml, lyl’ I l, lhl’ lOl’ lml' Iel,
lwl, IOI, |r|, 'k', l.l]

subword-level ['A', 'hip', '##tpop', '##fota', '##mus', 'ate’', 'my', "homework’, 9
1 |]

word-level ['A', 'hippopotamus', ‘'ate', 'my', 'homework', '.'] 6

Pro: No unseen tokens anymore

Con: Sequence is unnecessarily long, expensive to work with
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Vocab Type

character-level

Sub-word Tokenization

31

subword-level

, O, P
’ lml’ lyl’
‘##mus ',

word-|level

Example

[IAI, ! |' 'h" Iil’ lpl, lp
'S', ! |' |a|, |t', [ ’

'W', |O| lrl’ lkl, l.l]

['A', "hip', '##tpop', '##tota',
|.|]

['A', 'hippopotamus', 'ate’

my', "homework',

38




Sub-word Tokenization

Words get split into multiple tokens

Vocab Type Example
character-level ['A", h 1 D P 0 'p', 'O t a m u 3
'S, ,oal, 't el m 'y, h 0 m 0
|W| , |O| ’ I rl ' |k| , I . ] ]
subword-level ['A', '"hip', '##tpop', '##fota', '##mus', 'ate', 'my', "homework’, 9
word-level ['A', 'hippopotamus', 'ate', 'my', 'homework', '.'] 6
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Sub-word Tokenization

Words get split into multiple tokens

Vocabulary is build dynamically

- Frequent words get assigned their own tokens
-~ Rare words are split into subwords

Vocab Type Example
character-level ['A", ‘h', '1i P, 'p o', 'p', 'o 'm’ u 37
ISI’ lal' ltl I l' I lml’ lyl’ lml’ e
|W| ' O lrl |k| I . ;]
subword-level ['A', '"hip', '##tpop', '##fota', '##mus', 'ate', 'my', "homework’, 9
word-level ['A', 'hippopotamus', 'ate', 'my', 'homework',6 ‘.’ 6
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Byte Pair Encoding (BPE)

Main Idea
e (onstruct subword vocabulary by learning to merge characters

e |nspiration comes from compression algorithms
Training Steps

1. Initialize the vocabulary with characters as tokens (e.g., in English: alphabet, numbers,
ounctuation)

2. Merge the most frequent token pair in the corpus (vocabulary size +1)
3. Re-tokenize the corpus with the merged subword pair

4. Repeat steps 2 and 3 until the target vocabulary size is reached
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Advantages of Subword Tokenization

40



Advantages of Subword Tokenization

= Controlled vocabulary size
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Advantages of Subword Tokenization

Controlled vocabulary size

Strike a good balance between word-level and character-level
- Frequent words kept whole
- Tail words split to sub-words

~ More observations on sub-words

- Utilization of morphology information
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The Steelers enjoy a large,
widespread fanbase
nicknamed Steeler Nation.
They currently play their
home games at Acrisure
Stadium.

Batching Data

Tokenization

\

Raw Clean Text

' The',' Steel’, 'ers’,' enjoy’,' a’,
' large’, ',
'‘base’, ' nick’, 'na’, 'med’, ' Steel’, 'er
' Nation','."," They',"' currently’,

_play’,
at,

_wide', 'spre’, 'ad’, ' _fan/,

__their'," home',' games/,

A’ 'cris’, 'ure', ' Stadium’, .

Tokenized

41

Batching

E—

“»

(580, 109027, 1313, 25224, 9,
21333, 3, 38133, 21328, 711, 1206,
3381, 128910, 75, 4805, 109027,
55, 82580, 4, 0)

(10659, 82423, 11300, 2362,
5367, 27527, 98, 61, 58531, 3407,
88259, 4,9,0,0,0,0,0,0,0)

Tensor




Thank You!
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