

COMP 5212 Machine Learning

Math Basics

(Largely adapted from Stanford CS229 Slides)

Junxian He

Sep 5, 2024

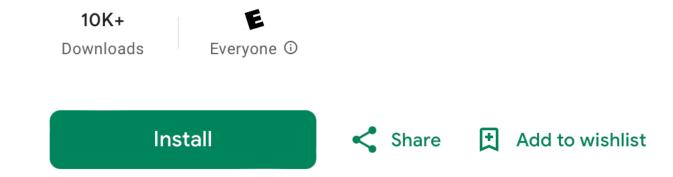
Course Quota

Quota has been increased to 82, currently 90+ on waiting list

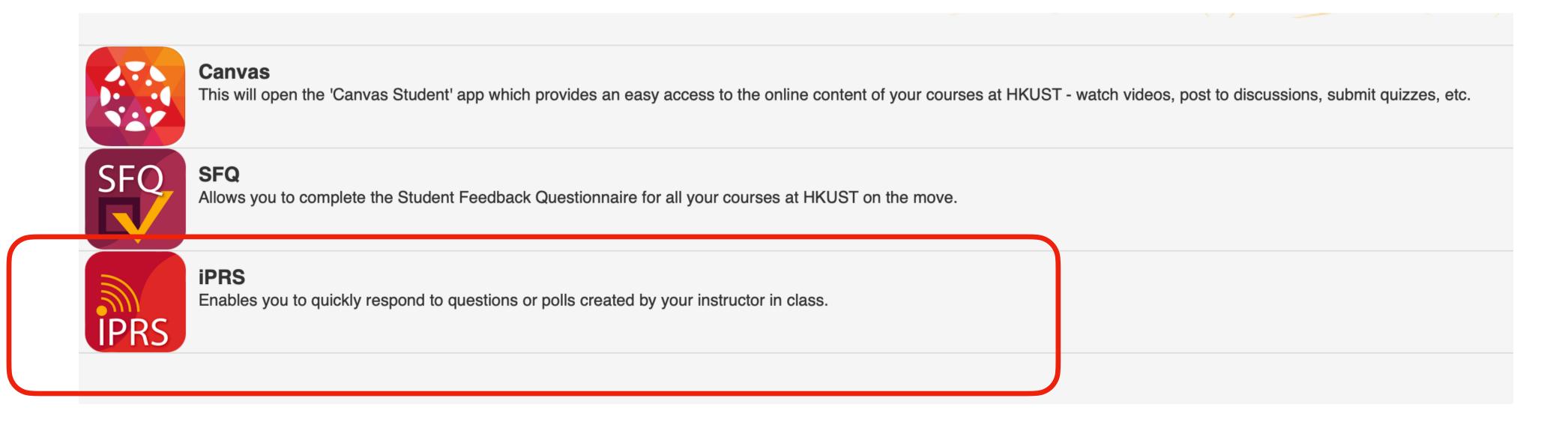
Attendance Quiz APP Download

HKUST iLearn

The Hong Kong University of Science and Technology







Linear Independence

A set of vectors $\{x_1, x_2, \dots x_n\} \subset \mathbb{R}^m$ is said to be *(linearly) dependent* if one vector belonging to the set *can* be represented as a linear combination of the remaining vectors; that is, if

$$x_n = \sum_{i=1}^{n-1} \alpha_i x_i$$

for some scalar values $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{R}$; otherwise, the vectors are (linearly) independent.

Linear Independence

Example:

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 $x_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$ $x_3 = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$

are linearly dependent because $x_3 = -2x_1 + x_2$.

Rank of a Matrix

• The *column rank* of a matrix $A \in \mathbb{R}^{m \times n}$ is the largest number of columns of A that constitute a linearly independent set.

• The row rank is the largest number of rows of A that constitute a linearly independent set.

• For any matrix $A \in \mathbb{R}^{m \times n}$, it turns out that the column rank of A is equal to the row rank of A (prove it yourself!), and so both quantities are referred to collectively as the rank of A, denoted as rank(A).

Properties of Rank

• For $A \in \mathbb{R}^{m \times n}$, rank $(A) \leq \min(m, n)$. If rank $(A) = \min(m, n)$, then A is said to be *full rank*.

- For $A \in \mathbb{R}^{m \times n}$, $rank(A) = rank(A^T)$.
- For $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times n}$, $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$.
- For $A, B \in \mathbb{R}^{m \times n}$, $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$.

The Inverse of a Square Matrix

• The *inverse* of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1} , and is the unique matrix such that

$$A^{-1}A = I = AA^{-1}$$
.

- We say that A is *invertible* or *non-singular* if A^{-1} exists and *non-invertible* or *singular* otherwise.
- In order for a square matrix A to have an inverse A^{-1} , then A must be full rank.
- Properties (Assuming $A, B \in \mathbb{R}^{n \times n}$ are non-singular):
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $(A^{-1})^T = (A^T)^{-1}$. For this reason this matrix is often denoted A^{-T} .

Orthogonal Matrices

- Two vectors $x, y \in \mathbb{R}^n$ are *orthogonal* if $x^T y = 0$.
- A vector $x \in \mathbb{R}^n$ is *normalized* if $||x||_2 = 1$.
- A square matrix $U \in \mathbb{R}^{n \times n}$ is *orthogonal* if all its columns are orthogonal to each other and are normalized (the columns are then referred to as being *orthonormal*).

• Properties:

► The inverse of an orthogonal matrix is its transpose.

$$U^T U = I = UU^T$$
.

Operating on a vector with an orthogonal matrix will not change its Euclidean norm, i.e.,

$$||Ux||_2 = ||x||_2$$

for any $x \in \mathbb{R}^n$, $U \in \mathbb{R}^{n \times n}$ orthogonal.

Span and Projection

• The *span* of a set of vectors $\{x_1, x_2, \dots x_n\}$ is the set of all vectors that can be expressed as a linear combination of $\{x_1, \dots, x_n\}$. That is,

$$\mathrm{span}(\{x_1,\ldots x_n\}) = \left\{v : v = \sum_{i=1}^n \alpha_i x_i, \ \alpha_i \in \mathbb{R}\right\}.$$

• The *projection* of a vector $y \in \mathbb{R}^m$ onto the span of $\{x_1, \ldots, x_n\}$ is the vector $v \in \text{span}(\{x_1, \ldots, x_n\})$, such that v is as close as possible to y, as measured by the Euclidean norm $\|v - y\|_2$.

$$Proj(y; \{x_1, ..., x_n\}) = argmin_{v \in span(\{x_1, ..., x_n\})} ||y - v||_2.$$

Range

• The *range* or the column space of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{R}(A)$, is the the span of the columns of A. In other words,

$$\mathcal{R}(A) = \{ v \in \mathbb{R}^m : v = Ax, x \in \mathbb{R}^n \}.$$

• Assuming A is full rank and n < m, the projection of a vector $y \in \mathbb{R}^m$ onto the range of A is given by,

$$\operatorname{Proj}(y; A) = \operatorname{argmin}_{v \in \mathcal{R}(A)} ||v - y||_{2}.$$

Null Space

The *nullspace* of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{N}(A)$ is the set of all vectors that equal 0 when multiplied by A, i.e.,

$$\mathcal{N}(A) = \{x \in \mathbb{R}^n : Ax = 0\}.$$

Determinant

Let $A \in \mathbb{R}^{n \times n}$, $A_{\setminus i, \setminus j} \in \mathbb{R}^{(n-1) \times (n-1)}$ be the *matrix* that results from deleting the *i*th row and *j*th column from A.

The general (recursive) formula for the determinant is

$$|A| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} |A_{\setminus i, \setminus j}|$$
 (for any $j \in 1, \dots, n$)
 $= \sum_{j=1}^{n} (-1)^{i+j} a_{ij} |A_{\setminus i, \setminus j}|$ (for any $i \in 1, \dots, n$)

Determinant: Example

However, the equations for determinants of matrices up to size 3×3 are fairly common, and it is good to know them:

$$\begin{vmatrix} |a_{11}|| = a_{11} \\ |a_{11}|| = a_{11} \end{vmatrix} = a_{11}$$

$$\begin{vmatrix} |a_{11}|| = a_{12} \\ |a_{21}|| = a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{vmatrix} |a_{11}|| = a_{12} \\ |a_{21}|| = a_{22} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31} \end{vmatrix}$$

The Determinant

The *determinant* of a square matrix $A \in \mathbb{R}^{n \times n}$, is a function $\det : \mathbb{R}^{n \times n} \to \mathbb{R}$, and is denoted |A| or $\det A$.

Given a matrix

$$\begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & \vdots & - \\ - & a_n^T & - \end{bmatrix},$$

consider the set of points $S \subset \mathbb{R}^n$ as follows:

$$S = \{v \in \mathbb{R}^n : v = \sum_{i=1}^n \alpha_i a_i \text{ where } 0 \le \alpha_i \le 1, i = 1, \dots, n\}.$$

The absolute value of the determinant of A is a measure of the "volume" of the set S.

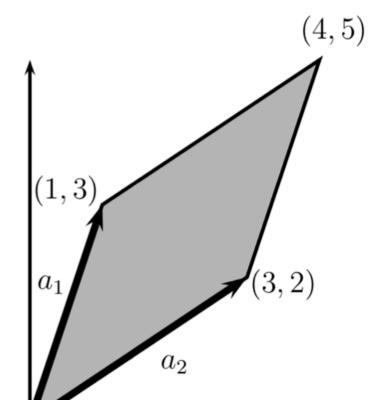
The Determinant

For example, consider the 2×2 matrix,

$$A = \left[egin{array}{ccc} 1 & 3 \ 3 & 2 \end{array}
ight]$$

Here, the rows of the matrix are

$$a_1 = \left[\begin{array}{c} 1 \\ 3 \end{array} \right] \quad a_2 = \left[\begin{array}{c} 3 \\ 2 \end{array} \right]$$



(3)

The Determinant: Properties

Algebraically, the determinant satisfies the following three properties:

- 1. The determinant of the identity is 1, |I| = 1. (Geometrically, the volume of a unit hypercube is 1).
- 2. Given a matrix $A \in \mathbb{R}^{n \times n}$, if we multiply a single row in A by a scalar $t \in \mathbb{R}$, then the determinant of the new matrix is t|A|, (Geometrically, multiplying one of the sides of the set S by a factor t causes the volume to increase by a factor t.)
- 3. If we exchange any two rows a_i^T and a_j^T of A, then the determinant of the new matrix is -|A|, for example

The Determinant: Properties

- For $A \in \mathbb{R}^{n \times n}$, $|A| = |A^T|$.
- For $A, B \in \mathbb{R}^{n \times n}$, |AB| = |A||B|.
- For $A \in \mathbb{R}^{n \times n}$, |A| = 0 if and only if A is singular (i.e., non-invertible). (If A is singular then it does not have full rank, and hence its columns are linearly dependent. In this case, the set S corresponds to a "flat sheet" within the n-dimensional space and hence has zero volume.)
- For $A \in \mathbb{R}^{n \times n}$ and A non-singular, $|A^{-1}| = 1/|A|$.

Eigenvalues and Eigenvectors

Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an *eigenvalue* of A and $x \in \mathbb{C}^n$ is the corresponding *eigenvector* if

$$Ax = \lambda x, \quad x \neq 0.$$

Intuitively, this definition means that multiplying A by the vector x results in a new vector that points in the same direction as x, but scaled by a factor λ .

Gradient over Matrix

Suppose that $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ is a function that takes as input a matrix A of size $m \times n$ and returns a real value. Then the **gradient** of f (with respect to $A \in \mathbb{R}^{m \times n}$) is the matrix of partial derivatives, defined as:

$$\nabla_{A}f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \cdots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

i.e., an $m \times n$ matrix with

$$(\nabla_A f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}.$$

Gradient over Vector

Note that the size of $\nabla_A f(A)$ is always the same as the size of A. So if, in particular, A is just a vector $x \in \mathbb{R}^n$,

$$\nabla_{x} f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_{1}} \\ \frac{\partial f(x)}{\partial x_{2}} \\ \vdots \\ \frac{\partial f(x)}{\partial x_{n}} \end{bmatrix}.$$

It follows directly from the equivalent properties of partial derivatives that:

- $\nabla_{\mathsf{x}}(f(\mathsf{x}) + g(\mathsf{x})) = \nabla_{\mathsf{x}}f(\mathsf{x}) + \nabla_{\mathsf{x}}g(\mathsf{x}).$
- For $t \in \mathbb{R}$, $\nabla_X(t f(x)) = t\nabla_X f(x)$.

The Hessian

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is a function that takes a vector in \mathbb{R}^n and returns a real number. Then the *Hessian* matrix with respect to x, written $\nabla_x^2 f(x)$ or simply as H is the $n \times n$ matrix of partial derivatives,

$$\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}} \end{bmatrix}.$$

Note that the Hessian is always symmetric, since

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_i} = \frac{\partial^2 f(x)}{\partial x_i \partial x_i}.$$

Gradients of Linear Functions

For $x \in \mathbb{R}^n$, let $f(x) = b^T x$ for some known vector $b \in \mathbb{R}^n$. Then

$$f(x) = \sum_{i=1}^n b_i x_i$$

SO

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n b_i x_i = b_k.$$

From this we can easily see that $\nabla_x b^T x = b$. This should be compared to the analogous situation in single variable calculus, where $\partial/(\partial x)$ ax = a.

Common Gradient Formula

$$\nabla_x b^T x = b$$

$$\nabla_x^2 b^T x = 0$$

- $\nabla_x x^T A x = 2Ax$ (if A symmetric)
- $\nabla_x^2 x^T A x = 2A$ (if A symmetric)

Least Squares

• Given a full rank matrix $A \in \mathbb{R}^{m \times n}$, and a vector $b \in \mathbb{R}^m$ such that $b \notin \mathcal{R}(A)$, we want to find a vector x such that Ax is as close as possible to b, as measured by the square of the Euclidean norm $||Ax - b||_2^2$.

Outline

Linear Algebra Review

Probability Review

Basic Concepts

- Performing an experiment → outcome
- Sample Space (S): set of all possible outcomes of an experiment
- Event (E): a subset of S ($E \subseteq S$)
- Probability (Bayesian definition)

A number between 0 and 1 to which we ascribe meaning i.e. our belief that an event E occurs

Frequentist definition of probability

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

Axiom 1: $0 \le P(E) \le 1$

Axiom 2: P(S) = 1

$$E \subseteq F$$
, then $P(E) \le P(F)$
 $P(E \cup F) = P(E) + P(F) - P(EF)$ (Inclusion-Exclusion Principle)

General Inclusion-Exclusion Principle:

$$P\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{r=1}^{n} (-1)^{r+1} \sum_{i_{1} < \dots < i_{r}} P(E_{i_{1}} E_{i_{2}} \dots E_{i_{r}})$$

Equally Likely Outcomes: Define S as a sample space with equally likely outcomes. Then

$$P(E) = \frac{|E|}{|S|}$$

Conditional Probability and Bayes' Rule

For any events A, B such that $P(B) \neq 0$, we define:

$$P(A \mid B) := \frac{P(A \cap B)}{P(B)}$$

Let's apply conditional probability to obtain Bayes' Rule!

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \cap B)}{P(A)}$$
$$= \frac{P(B)P(A \mid B)}{P(A)}$$

Conditioned Bayes' Rule: given events A, B, C,

$$P(A \mid B, C) = \frac{P(B \mid A, C)P(A \mid C)}{P(B \mid C)}$$

Law of Total Probability

Let $B_1, ..., B_n$ be n disjoint events whose union is the entire sample space. Then, for any event A,

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i)$$

$$= \sum_{i=1}^{n} P(A \mid B_i)P(B_i)$$

We can then write Bayes' Rule as:

$$P(B_k \mid A) = \frac{P(B_k)P(A \mid B_k)}{P(A)}$$

$$= \frac{P(B_k)P(A \mid B_k)}{\sum_{i=1}^{n} P(A \mid B_i)P(B_i)}$$

Chain Rule

For any n events $A_1, ..., A_n$, the joint probability can be expressed as a product of conditionals:

$$P(A_1 \cap A_2 \cap ... \cap A_n)$$

= $P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_2 \cap A_1)...P(A_n \mid A_{n-1} \cap A_{n-2} \cap ... \cap A_1)$

Independence

Events A, B are independent if

$$P(AB) = P(A)P(B)$$

We denote this as $A \perp B$. From this, we know that if $A \perp B$,

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

Implication: If two events are independent, observing one event does not change the probability that the other event occurs.

In general: events $A_1, ..., A_n$ are mutually independent if

$$P(\bigcap_{i\in S}A_i)=\prod_{i\in S}P(A_i)$$

Random Variable

A random variable X is a variable that probabilistically takes on different values. It maps outcomes to real values

Probability Mass Function (PMF)

Given a discrete RV X, a PMF maps values of X to probabilities.

$$p_X(x) := p(x) := P(X = x)$$

For a valid PMF, $\sum_{x \in Val(x)} p_X(x) = 1$.

Cumulative Distribution Function (CDF)

A CDF maps a continuous RV to a probability (i.e. $\mathbb{R} o [0,1]$)

$$F_X(a) := F(a) := P(X \le a)$$

A CDF must fulfill the following:

- $\lim_{x\to -\infty} F_X(x) = 0$
- $\lim_{x\to\infty} F_X(x) = 1$
- If $a \le b$, then $F_X(a) \le F_X(b)$ (i.e. CDF must be nondecreasing)

Also note: $P(a \le X \le b) = F_X(b) - F_X(a)$.

Probability Density Function (PDF)

PDF of a continuous RV is simply the derivative of the CDF.

$$f_X(x) := f(x) := \frac{dF_X(x)}{dx}$$

Expectation

Let g be an arbitrary real-valued function.

• If X is a discrete RV with PMF p_X :

$$\mathbb{E}[g(X)] := \sum_{x \in Val(X)} g(x) p_X(x)$$

• If X is a continuous RV with PDF f_X :

$$\mathbb{E}[g(X)] := \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Intuitively, expectation is a weighted average of the values of g(x), weighted by the probability of x.

Conditional Expectation

$$\mathbb{E}[X \mid Y] = \sum_{x \in Val(x)} x p_{X|Y}(x|y) \text{ is a function of } Y.$$

Properties of Expectation

For any constant $a \in \mathbb{R}$ and arbitrary real function f:

- $\mathbb{E}[a] = a$
- $\mathbb{E}[af(X)] = a\mathbb{E}[f(X)]$

Linearity of Expectation

Given *n* real-valued functions $f_1(X), ..., f_n(X)$,

$$\mathbb{E}\left[\sum_{i=1}^n f_i(X)\right] = \sum_{i=1}^n \mathbb{E}[f_i(X)]$$

Example

El Goog sources two batteries, A and B, for its phone. A phone with battery A runs on average 12 hours on a single charge, but only 8 hours on average with battery B. El Goog puts battery A in 80% of its phones and battery B in the rest. If you buy a phone from El Goog, how many hours do you expect it to run on a single charge?

Variance

The variance of a RV X measures how concentrated the distribution of X is around its mean.

$$Var(X) := \mathbb{E}[(X - \mathbb{E}[X])^2]$$

= $\mathbb{E}[X^2] - \mathbb{E}[X]^2$

Interpretation: Var(X) is the expected deviation of X from $\mathbb{E}[X]$.

Properties: For any constant $a \in \mathbb{R}$, real-valued function f(X)

- Var[a] = 0
- $Var[af(X)] = a^2 Var[f(X)]$

Example Distributions

Distribution	PDF or PMF	Mean	Variance
Bernoulli(p)	$\begin{cases} p, & \text{if } x = 1 \\ 1 - p, & \text{if } x = 0. \end{cases}$	p	p(1 - p)
Binomial(n, p)	$\binom{n}{k} p^k (1-p)^{n-k}$ for $k=0,1,,n$	np	np(1-p)
Geometric(p)	$p(1-p)^{k-1}$ for $k=1,2,$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$Poisson(\lambda)$	$\frac{e^{-\lambda}\lambda^k}{k!}$ for $k=0,1,$	λ	λ
Uniform(a, b)	$\frac{1}{b-a}$ for all $x \in (a,b)$	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$
$Gaussian(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \text{ for all } x \in (-\infty, \infty)$	μ	σ^2
Exponential(λ)	$\lambda e^{-\lambda x}$ for all $x \ge 0, \lambda \ge 0$	$rac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Joint and Marginal Distributions

• **Joint PMF** for discrete RV's X, Y:

$$p_{XY}(x,y) = P(X = x, Y = y)$$

Note that
$$\sum_{x \in Val(X)} \sum_{y \in Val(Y)} p_{XY}(x, y) = 1$$

• Marginal PMF of X, given joint PMF of X, Y:

$$p_X(x) = \sum_{y} p_{XY}(x, y)$$

Joint and Marginal Distributions

• Joint PDF for continuous RV's $X_1, ..., X_n$:

$$f(x_1,...,x_n) = \frac{\delta^n F(x_1,...x_n)}{\delta x_1 \delta x_2 ... \delta x_n}$$

Note that
$$\int_{x_1} \int_{x_2} ... \int_{x_n} f(x_1, ..., x_n) dx_1 ... dx_n = 1$$

• Marginal PDF of X_1 , given joint PDF of $X_1, ..., X_n$:

$$f_{X_1}(x_1) = \int_{x_2} ... \int_{x_n} f(x_1, ..., x_n) dx_2 ... dx_n$$

Expectation for multiple random variables

Given two RV's X, Y and a function $g: \mathbb{R}^2 \to \mathbb{R}$ of X, Y,

• for discrete *X*, *Y*:

$$\mathbb{E}[g(X,Y)] := \sum_{x \in Val(x)} \sum_{y \in Val(y)} g(x,y) p_{XY}(x,y)$$

• for continuous X, Y:

$$\mathbb{E}[g(X,Y)] := \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) dxdy$$

Covariance

Intuitively: measures how much one RV's value tends to move with another RV's value. For RV's X, Y:

$$Cov[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

= $\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

- If Cov[X, Y] < 0, then X and Y are negatively correlated
- If Cov[X, Y] > 0, then X and Y are positively correlated
- If Cov[X, Y] = 0, then X and Y are uncorrelated

Variance of two variables

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]$$

Conditional distributions for RVs

Works the same way with RV's as with events:

• For discrete *X*, *Y*:

$$p_{Y|X}(y|x) = \frac{p_{XY}(x,y)}{p_X(x)}$$

• For continuous X, Y:

$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_{X}(x)}$$

• In general, for continuous $X_1, ..., X_n$:

$$f_{X_1|X_2,...,X_n}(x_1|x_2,...,x_n) = \frac{f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n)}{f_{X_2,...,X_n}(x_2,...,x_n)}$$

Bayes' Rule for RVs

Also works the same way for RV's as with events:

• For discrete *X*, *Y*:

$$p_{Y|X}(y|x) = \frac{p_{X|Y}(x|y)p_{Y}(y)}{\sum_{y' \in Val(Y)} p_{X|Y}(x|y')p_{Y}(y')}$$

• For continuous X, Y:

$$f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)f_{Y}(y)}{\int_{-\infty}^{\infty} f_{X|Y}(x|y')f_{Y}(y')dy'}$$

Random Vectors

Given n RV's $X_1, ..., X_n$, we can define a random vector X s.t.

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$

Note: all the notions of joint PDF/CDF will apply to X.

Given $g: \mathbb{R}^n \to \mathbb{R}^m$, we have:

$$g(x) = \begin{bmatrix} g_1(x) \\ g_2(x) \\ \vdots \\ g_m(x) \end{bmatrix}, \mathbb{E}[g(X)] = \begin{bmatrix} \mathbb{E}[g_1(X)] \\ \mathbb{E}[g_2(X)] \\ \vdots \\ \mathbb{E}[g_m(X)] \end{bmatrix}$$

Covariance Matrices

For a random vector $X \in \mathbb{R}^n$, we define its **covariance matrix** Σ as the $n \times n$ matrix whose ij-th entry contains the covariance between X_i and X_j .

$$\Sigma = \begin{bmatrix} Cov[X_1, X_1] & \dots & Cov[X_1, X_n] \\ \vdots & \ddots & \vdots \\ Cov[X_n, X_1] & \dots & Cov[X_n, X_n] \end{bmatrix}$$

applying linearity of expectation and the fact that $Cov[X_i, X_j] = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])]$, we obtain

$$\Sigma = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T]$$

Properties:

- \bullet Σ is symmetric and PSD
- If $X_i \perp X_j$ for all i, j, then $\Sigma = diag(Var[X_1], ..., Var[X_n])$

Multivariate Gaussian

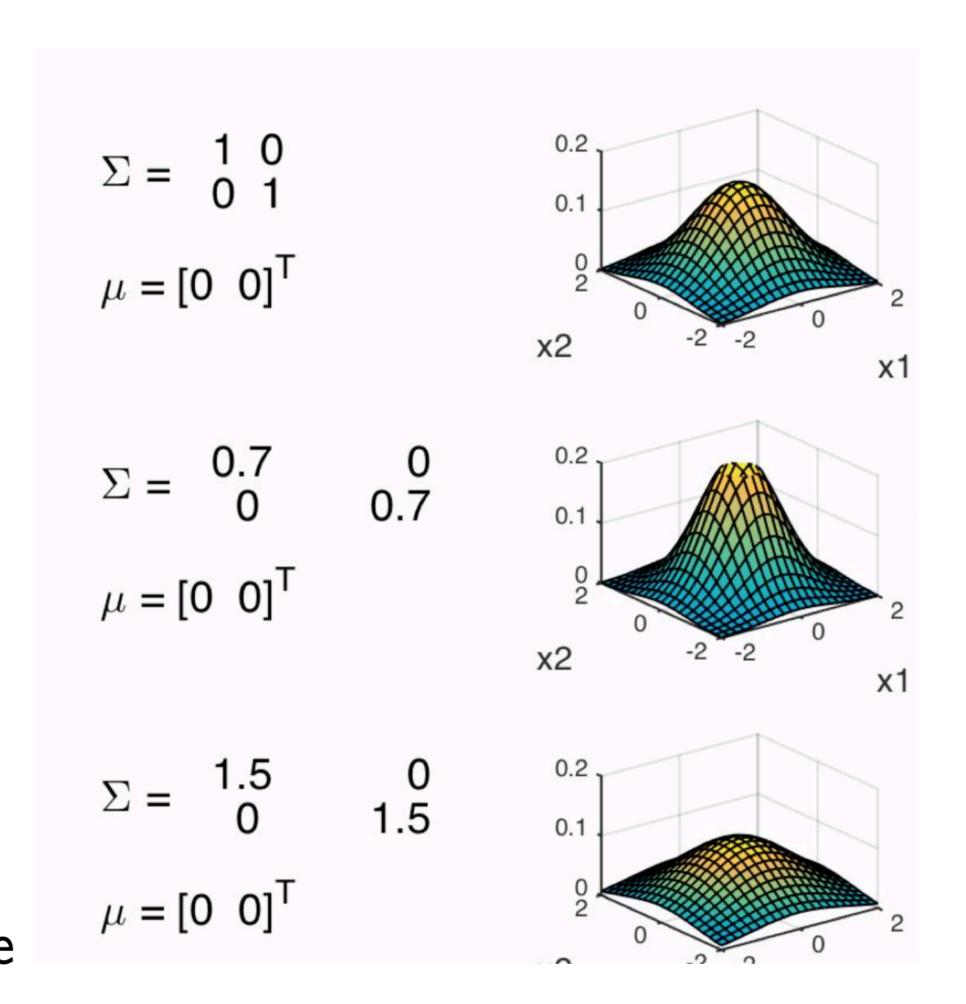
The multivariate Gaussian $X \sim \mathcal{N}(\mu, \Sigma)$, $X \in \mathbb{R}^n$:

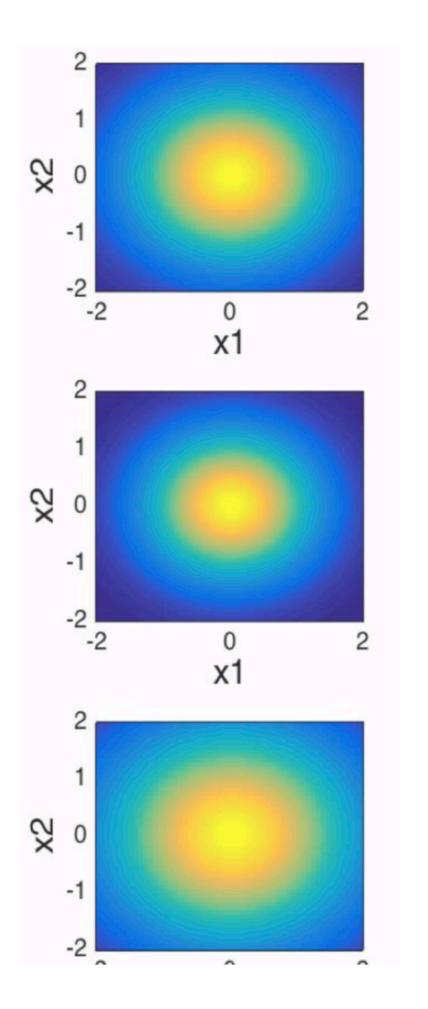
$$p(x; \mu, \Sigma) = \frac{1}{\det(\Sigma)^{\frac{1}{2}} (2\pi)^{\frac{n}{2}}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

Gaussian when n = 1.

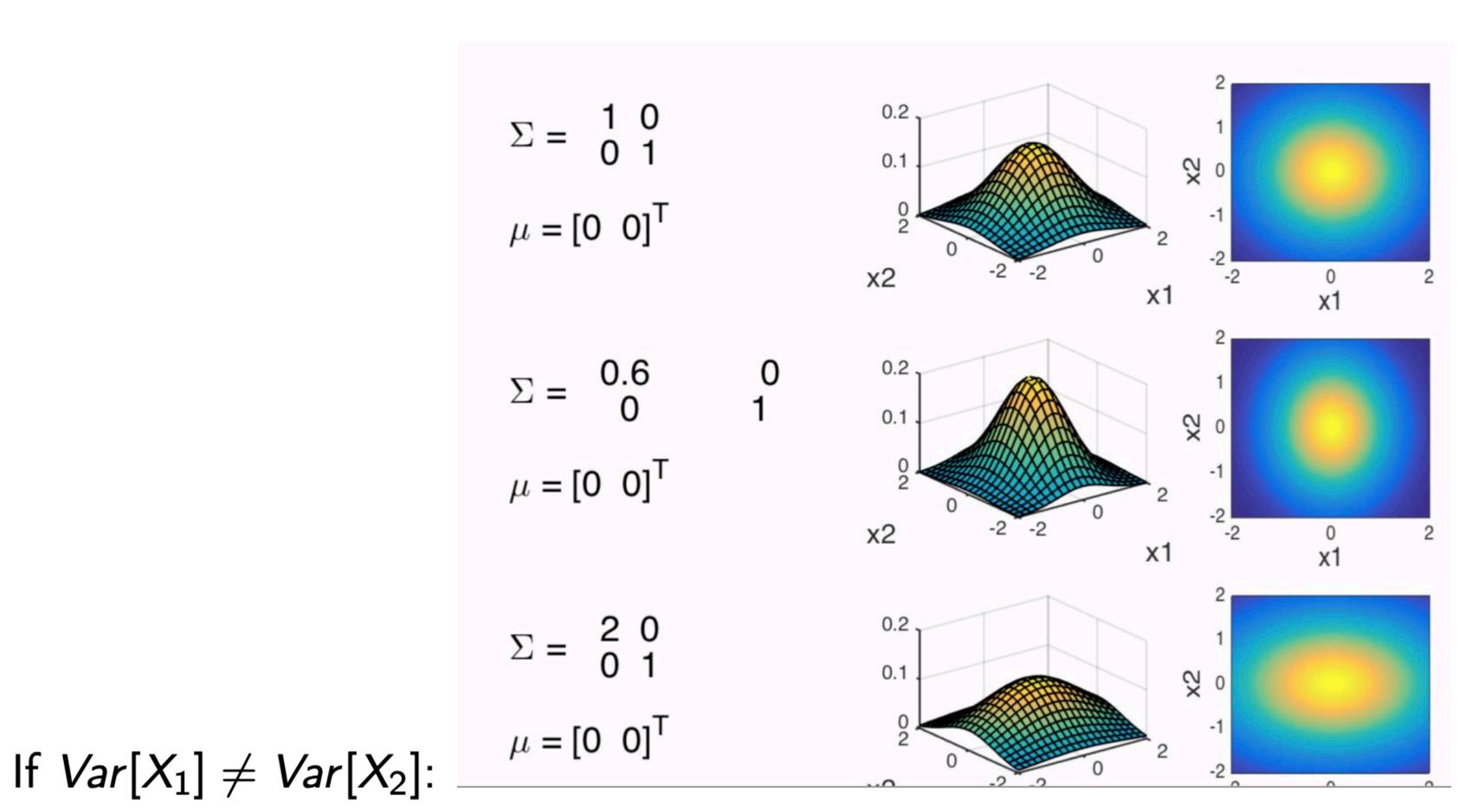
$$p(x; \mu, \sigma^2) = \frac{1}{\sigma(2\pi)^{\frac{1}{2}}} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right)$$

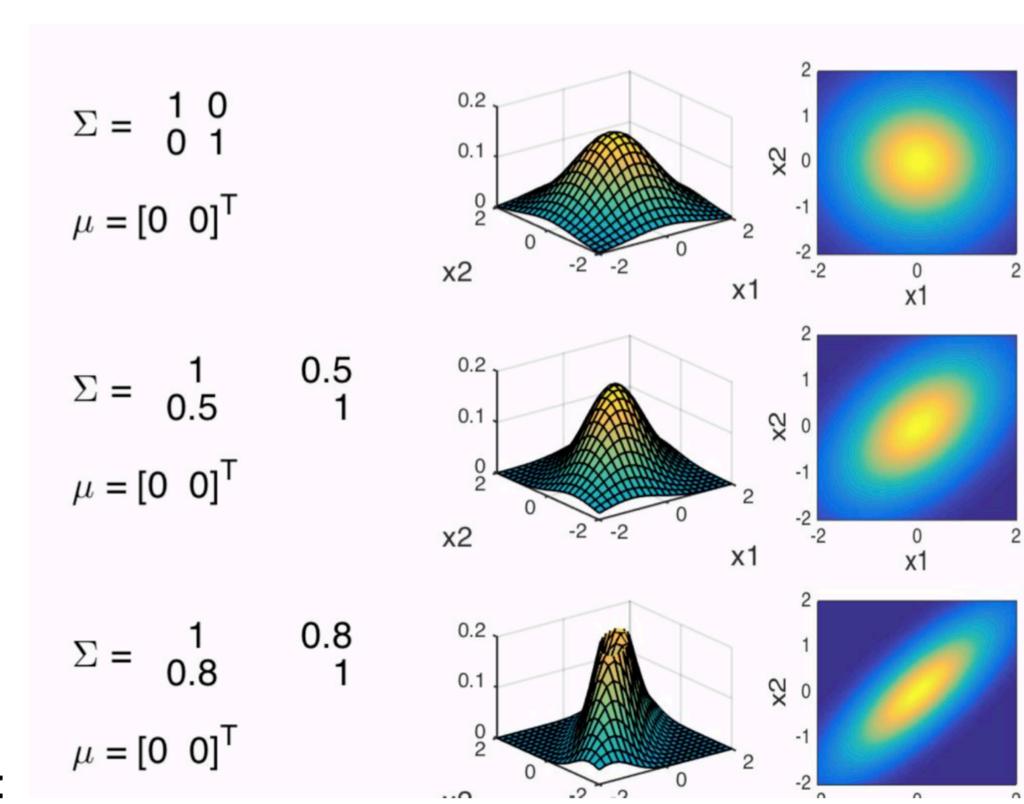
Notice that if $\Sigma \in \mathbb{R}^{1 \times 1}$, then $\Sigma = Var[X_1] = \sigma^2$, and so $\Sigma^{-1} = \frac{1}{\sigma^2}$ and $det(\Sigma)^{\frac{1}{2}} = \sigma$



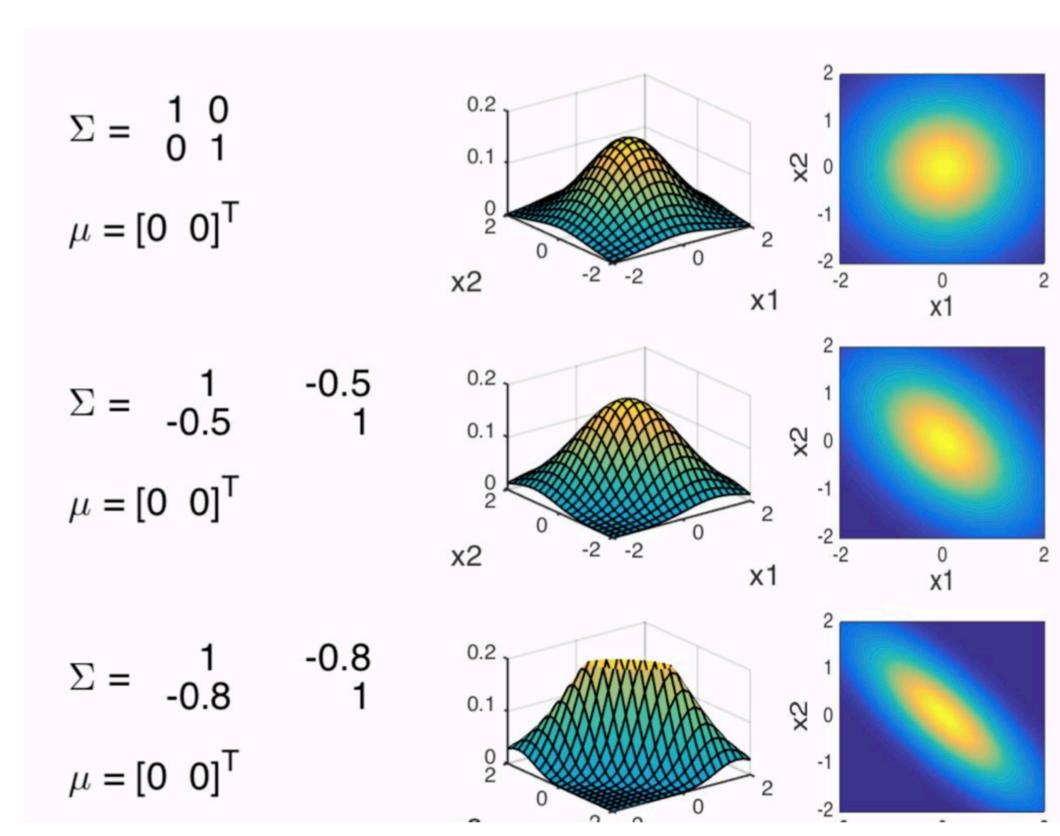


Effect of changing variance





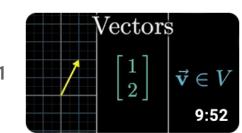
If X_1 and X_2 are positively correlated:



If X_1 and X_2 are negatively correlated:

The purpose of computation is insight, not numbers.

- Richard Hamming



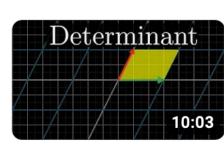
Vectors | Chapter 1, Essence of linear algebra

Linear combinations, span, and basis vectors | Chapter 2, Essence of linear algebra

Linear transformations and matrices | Chapter 3, Essence of linear algebra

Matrix multiplication as composition | Chapter 4, Essence of linear algebra

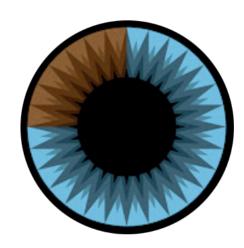
Three-dimensional linear transformations | Chapter 5, Essence of linear algebra



│The determinant │ Chapter 6, Essence of linear algebra

Inverse matrices, column space and null space | Chapter 7, Essence of linear algebra

https://www.youtube.com/@3blue1brown/courses



3Blue1Brown •

@3blue1brown · 5.88M subscribers · 172 videos

My name is Grant Sanderson. Videos here cover a variety of topics in math, or adjacent fiel...

3blue1brown.com and 7 more links

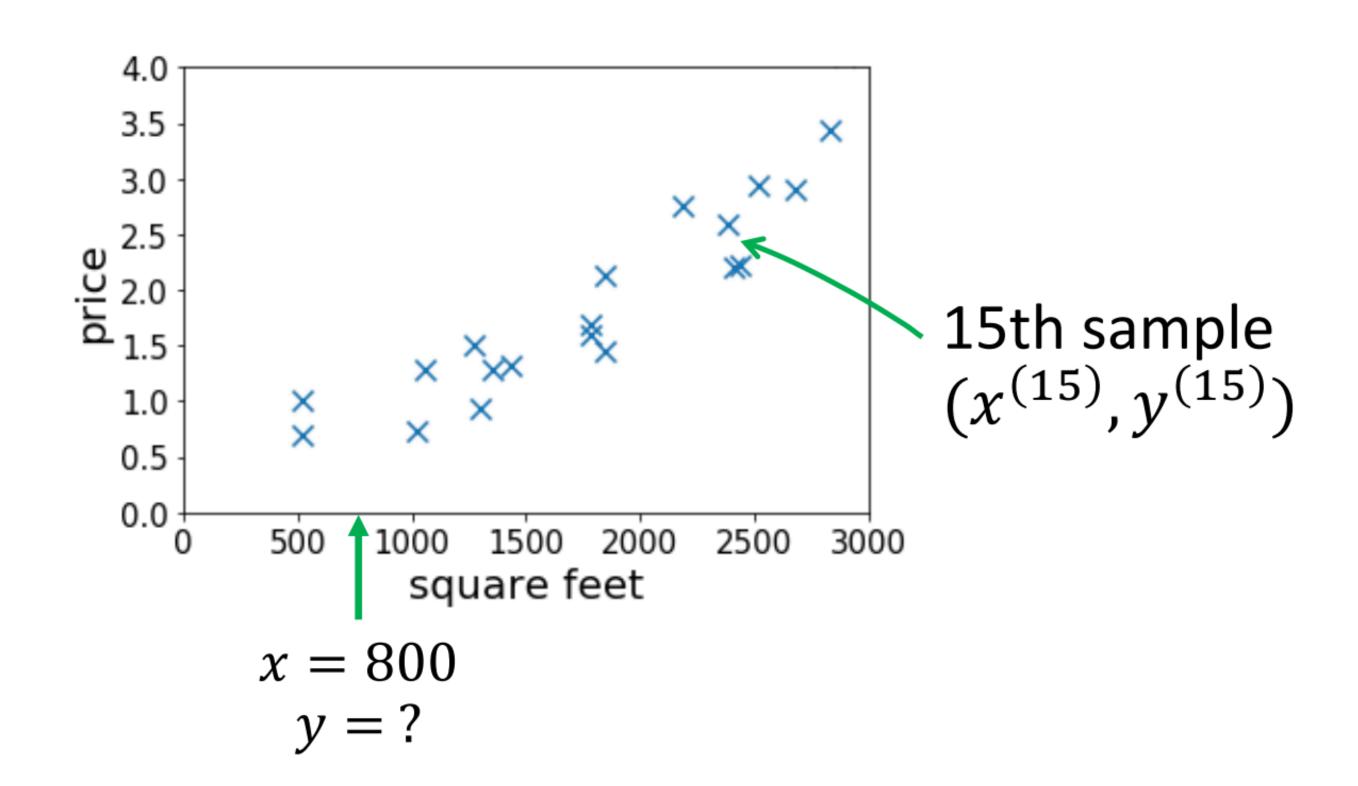
COMP 5212

Machine Learning

Lecture 2

Supervised Learning: Regression

lacktriangle A hypothesis or a prediction function is function $h:\mathcal{X} o\mathcal{Y}$

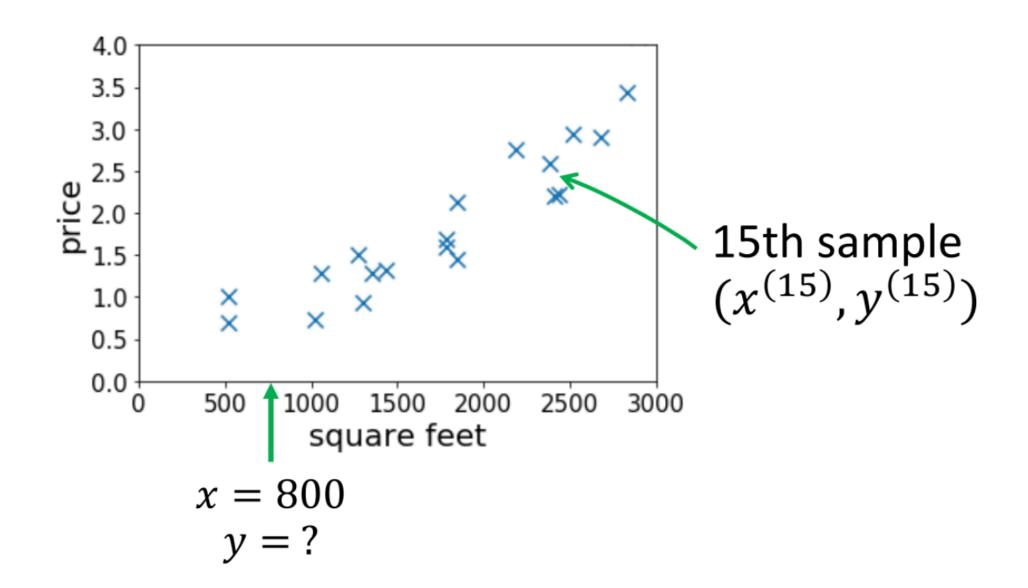


- lacksquare A hypothesis or a prediction function is function $\,h:\mathcal{X} o\mathcal{Y}$
- A training set is set of pairs $\{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ s.t. $x^{(i)} \in \mathcal{X}$ and $y^{(i)} \in \mathcal{Y}$ for $i = 1, \dots, n$.

lacktriangle Given a training set our goal is to produce a good prediction function h

- lacktriangledown If ${\mathcal Y}$ is continuous, then called a regression problem
- lacktriangle If ${\mathcal Y}$ is discrete, then called a classification problem

- How to define "good" for a prediction function?
 - Metrics / performance



$$|\hat{y} - y^*|$$

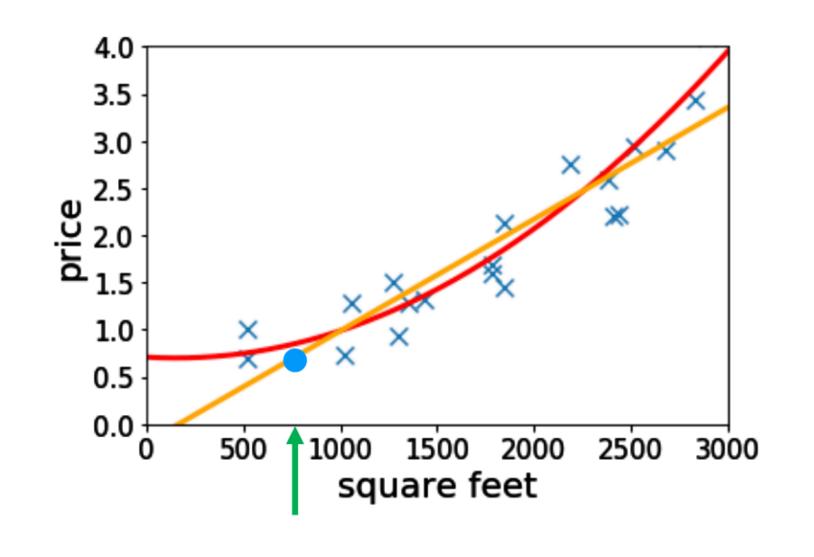
 \hat{y} is the prediction, y^* is the truth

$$\mathbb{I}(\hat{y} = y*) = \begin{cases} 1, & \hat{y} = y* \\ 0 & otherwise \end{cases}$$

- How to define "good" for a prediction function?
 - Metrics / performance
 - Good on unseen data

Validation dataset is another set of pairs $\{(\hat{x}^{(1)}, \hat{y}^{(1)}), \cdots, (\hat{x}^{(m)}, \hat{y}^{(m)})\}$

Does not overlap with training dataset



Which curve to choose?

- How to define "good" for a prediction function?
 - Metrics / performance
 - Good on unseen data

Validation dataset is another set of pairs $\{(\hat{x}^{(1)}, \hat{y}^{(1)}), \cdots, (\hat{x}^{(m)}, \hat{y}^{(m)})\}$

Does not overlap with training dataset

Test dataset is another set of pairs $\{(\tilde{x}^{(1)}, \tilde{y}^{(1)}), \cdots, (\tilde{x}^{(L)}, \tilde{y}^{(L)})\}$

Does not overlap with training and validation dataset

Completely unseen before deployment

Realistic setting

Hyperparameter tuning is a form of training

Supervised Training

Train

Validation

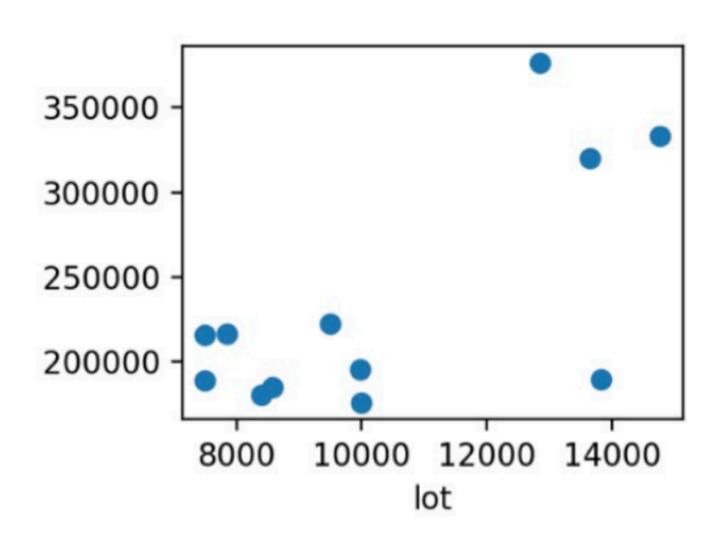
Test

Not only for supervised learning

Example: Regression using Housing Data

Example Housing Data

	SalePrice	Lot.Area
4	189900	13830
5	195500	9978
9	189000	7500
10	175900	10000
12	180400	8402
22	216000	7500
36	376162	12858
47	320000	13650
55	216500	7851
56	185088	8577

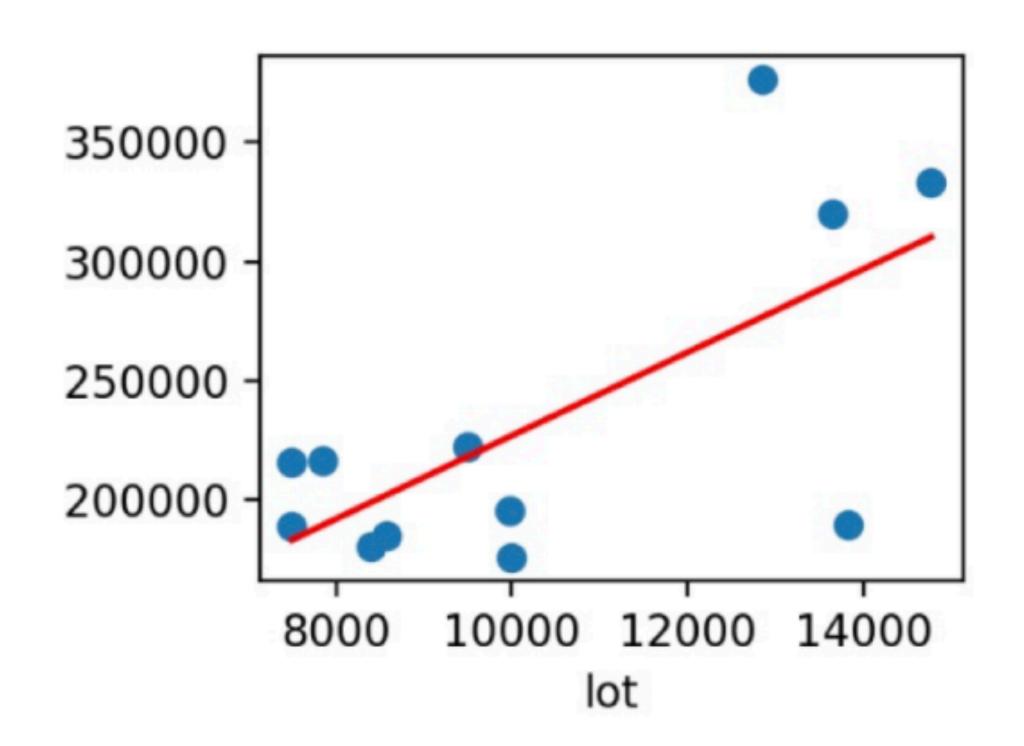


Represent h as a Linear Function

$$h(x) = \theta_0 + \theta_1 x_1$$
 is an affine function
Popular choice

The function is defined by **parameters** θ_0 and θ_1 , the function space is greatly reduced

Simple Line Fit



More Features

	size	bedrooms	lot size		Price
$\chi^{(1)}$	2104	4	45k	$y^{(1)}$	400
$X^{(2)}$	2500	3	30k	y ⁽²⁾	900

What's a prediction here?

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3.$$

With the convention that $x_0 = 1$ we can write:

$$h(x) = \sum_{j=0}^{3} \theta_j x_j$$

Vector Notations

	size	bedrooms	lot size		Price
$x^{(1)}$	2104	4	45k	$y^{(1)}$	400
$x^{(2)}$	2500	3	30k	$y^{(2)}$	900

We write the vectors as (important notation)

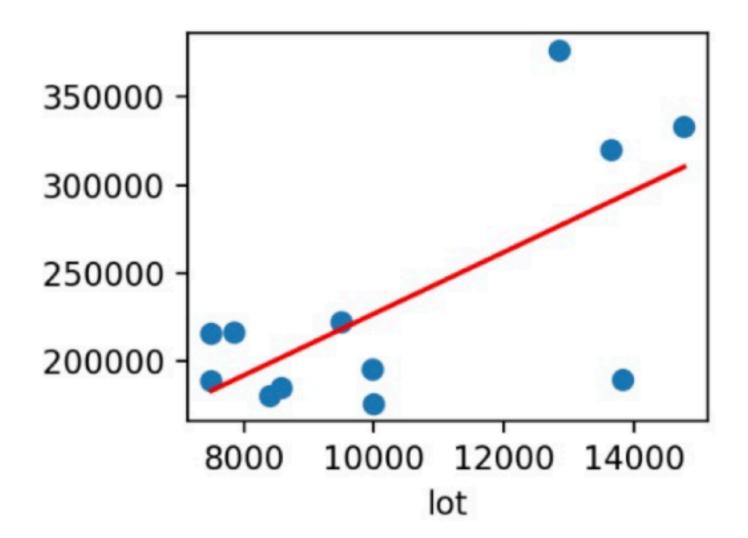
$$\theta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix} \text{ and } x^{(1)} = \begin{pmatrix} x_0^{(1)} \\ x_1^{(1)} \\ x_2^{(1)} \\ x_3^{(1)} \end{pmatrix} = \begin{pmatrix} 1 \\ 2104 \\ 4 \\ 45 \end{pmatrix} \text{ and } y^{(1)} = 400$$

We call θ parameters, $x^{(i)}$ is the input or the **features**, and the output or **target** is $y^{(i)}$. To be clear,

(x, y) is a training example and $(x^{(i)}, y^{(i)})$ is the i^{th} example.

We have n examples. There are d features. $x^{(i)}$ and θ are d+1 dimensional (since $x_0=1$)

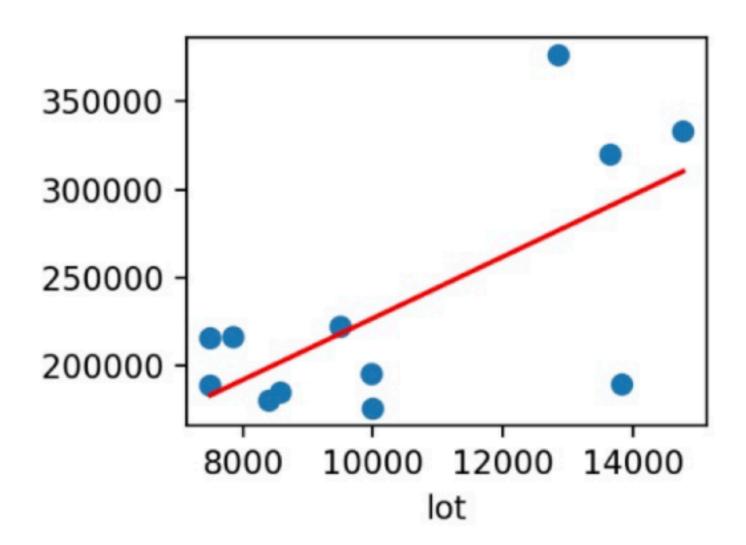
Vector Notation of Prediction



$$h_{\theta}(x) = \sum_{j=0}^{d} \theta_j x_j = x^T \theta$$

We want to choose θ so that $h_{\theta}(x) \approx y$

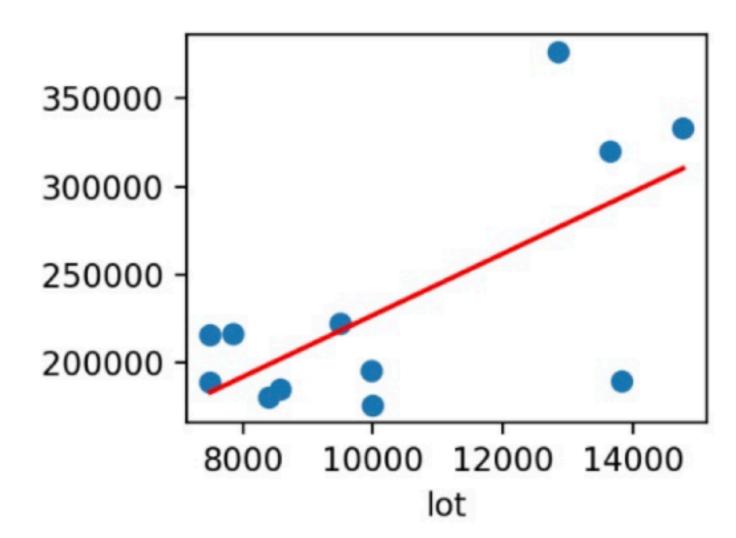
Loss Function



$$h_{\theta}(x) = \sum_{j=0}^{d} \theta_j x_j = x^T \theta$$

We want to choose θ so that $h_{\theta}(x) \approx y$

Least Squares



$$h_{\theta}(x) = \sum_{j=0}^{d} \theta_{j} x_{j} = x^{T} \theta$$
 $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$

Choose

$$\theta = \underset{\theta}{\operatorname{argmin}} J(\theta).$$

Solving Least Square Problem

Direct Minimization

$$h_{\theta}(x) = \sum_{i=0}^{d} \theta_{i} x_{j} = x^{T} \theta$$
 $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$

Choose

$$\theta = \underset{\theta}{\operatorname{argmin}} J(\theta).$$

Solving Least Square Problem

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - \vec{y})^T (X\theta - \vec{y})$$

$$= \frac{1}{2} \nabla_{\theta} \left((X\theta)^T X \theta - (X\theta)^T \vec{y} - \vec{y}^T (X\theta) + \vec{y}^T \vec{y} \right)$$

$$= \frac{1}{2} \nabla_{\theta} \left(\theta^T (X^T X) \theta - \vec{y}^T (X\theta) - \vec{y}^T (X\theta) \right)$$

$$= \frac{1}{2} \nabla_{\theta} \left(\theta^T (X^T X) \theta - 2(X^T \vec{y})^T \theta \right)$$

$$= \frac{1}{2} \left(2X^T X \theta - 2X^T \vec{y} \right)$$

$$= X^T X \theta - X^T \vec{y}$$

Normal equations
$$X^TX\theta=X^T\vec{y}$$

$$\theta=(X^TX)^{-1}X^T\vec{y}.$$

When is X^TX invertible? What if it is not invertible?

Thank You! Q&A