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Course Quota

Quota has been increased to 82, currently 90+ on waiting list



Attendance Quiz APP Download

HKUST iLearn

The Hong Kong University of Science and Technology

10K+ |

Downloads Everyone ®

Install « Share [ Add to wishlist

Canvas
This will open the 'Canvas Student' app which provides an easy access to the online content of your courses at HKUST - watch videos, post to discussions, submit quizzes, etc.

SFQ

Allows you to complete the Student Feedback Questionnaire for all your courses at HKUST on the move.

iPRS

Enables you to quickly respond to questions or polls created by your instructor in class.




Linear Independence

A set of vectors {x1,x2,...x,} CR™ is said to be (linearly) dependent if one vector belonging
to the set can be represented as a linear combination of the remaining vectors; that is, if

n—1
Xn = E :aiXi
=1

for some scalar values ay,...,a,-1 € R; otherwise, the vectors are (linearly) independent.



Linear Independence

Example:
B o
X1 = 2 Xy = 1
_3_ _5_

are linearly dependent because x3 = —2x1 + x».




Rank of a Matrix

@ The column rank of a matrix A € R™*" is the largest number of columns of A that
constitute a linearly independent set.

@ The row rank is the largest number of rows of A that constitute a linearly independent set.

@ For any matrix A € R™*" it turns out that the column rank of A is equal to the row rank

of A (prove it yourself!), and so both quantities are referred to collectively as the rank of A,
denoted as rank(A).



Properties of Rank

@ For A€ R™" rank(A) < min(m, n). If rank(A) = min(m, n), then A is said to be full
rank.

o For A€ R™" rank(A) =rank(A').

@ For Ae R™P, B € RP*" rank(AB) < min(rank(A), rank(B)).

@ For A,B € R™*" rank(A + B) < rank(A) + rank(B).



The Inverse of a Square Matrix

o The inverse of a square matrix A € R™" is denoted A~!, and is the unique matrix such
that
ATTA=1=AA"L

o We say that A is invertible or non-singular if A=—! exists and non-invertible or singular
otherwise.

@ In order for a square matrix A to have an inverse A=1, then A must be full rank.

@ Properties (Assuming A, B € R"™" are non-singular):
> (A_]‘)_]‘ — A
» (AB)"1 = B~1A"!
» (A™1)T = (AT)~L. For this reason this matrix is often denoted A~ .
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Orthogonal Matrices

e Two vectors x, y € R" are orthogonal if x"y = 0.
@ A vector x € R" is normalized if ||x|[2 = 1.

@ A square matrix U € R"*" is orthogonal if all its columns are orthogonal to each other
and are normalized (the columns are then referred to as being orthonormal).

@ Properties:
» The inverse of an orthogonal matrix is its transpose.

Uru=1=uUU".

» Operating on a vector with an orthogonal matrix will not change its Euclidean norm, i.e.,
|Ux|l2 = [[x]2

for any x € R"”, U € R"™" orthogonal.



Span and Projection

@ The span of a set of vectors {x1,x2,...x,} is the set of all vectors that can be expressed as
a linear combination of {xq,...,x,}. That is,

span({x1,...Xp}) = {v V= Za;x;, aj € R} .

=1

@ The projection of a vector y € R™ onto the span of {xi,...,x,} is the vector
v € span({xy,...Xn}), such that v is as close as possible to y, as measured by the
Euclidean norm ||v — y/||».

Proj(y; {X17 o XN}) — a’rgnliHVESpan({xl,...,xn}) Hy o VH2'
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Range

@ The range or the column space of a matrix A € R™*", denoted R(A), is the the span of
the columns of A. In other words,

R(A)={veR":v=Ax,x e R"}.

@ Assuming A is full rank and n < m, the projection of a vector y € R™ onto the range of A
s given by,

Proj(y; A) = argmin,cra)llv — yl2.
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Null Space

The nullspace of a matrix A € R™*", denoted N (A) is the set of all vectors that equal 0 when
multiplied by A, i.e.,
N(A) ={x e R": Ax = 0}.
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Determinant

Let A€ R™", A\ € R(n—1)x(n=1) he the matrix that results from deleting the ith row and
Jjth column from A.
The general (recursive) formula for the determinant is

Al

> (=1)Haj|A\j|  (foranyjel,... n)
=1

> (—1)Hay|A\j|  (foranyi€l,..., n)
j=1
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Determinant: Example

However, the equations for determinants of matrices up to size 3 x 3 are fairly common, and it is
good to know them:

la11]] = a1
- ai1 a;
= a11d2 — aipani
a1 axn

dil1 di12 4di3
d21 d22 d23
d31 d32 d33

d11d224a33 + a12a234a31 + 813421432
—d11a23432 — a124a21433 — a13422431

14



The Determinant

The determinant of a square matrix A € R"*", is a function det : R"*" — R, and is denoted
|A| or det A.

Given a matrix

N a N

consider the set of points S C R” as follows:

n
5:{vER”:v:Za,-a,-whereOSa,-g1,i:1,...,n}.
i=1

The absolute value of the determinant of A is a measure of the “volume” of the set S.
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The Determinant

For example, consider the 2 x 2 matrix,

A=

N W

W =

Here, the rows of the matrix are

16
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The Determinant: Properties

Algebraically, the determinant satisfies the following three properties:

1. The determinant of the identity is 1, |/| = 1. (Geometrically, the volume of a unit
hypercube is 1).

2. Given a matrix A € R if we multiply a single row in A by a scalar t € R, then the
determinant of the new matrix is t|A|, (Geometrically, multiplying one of the sides of the set
S by a factor t causes the volume to increase by a factor t.)

3. If we exchange any two rows a/ and aJ-T of A, then the determinant of the new matrix is
—|A|, for example
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The Determinant: Properties

For A€ R™" |Al = |AT].
For A, B € R™", |AB| = |A||B|.

For A€ R™" |A| =0 if and only if A is singular (i.e., non-invertible). (If A is singular then
it does not have full rank, and hence its columns are linearly dependent. In this case, the set
S corresponds to a “flat sheet” within the n-dimensional space and hence has zero volume.)

For A € R™" and A non-singular, |[A7| = 1/|A].

18



Eigenvalues and Eigenvectors

Given a square matrix A € R"*", we say that A\ € C is an eigenvalue of A and x € C" is the
corresponding eigenvector if

Ax = Ax, x # 0.

Intuitively, this definition means that multiplying A by the vector x results in a new vector that
points in the same direction as x, but scaled by a factor \.
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Gradient over Matrix

Suppose that f : R™*" — R is a function that takes as input a matrix A of size m x n and
returns a real value. Then the gradient of f (with respect to A € R™*") is the matrix of partial
derivatives, defined as:

OfA) OfA) | of(A) -
af( A) af( A) gﬁi\“)
VAf(A) c RM*Xn — 0A21 0A  0Az,
o ora | orn
. O0A 1 OA OAmn -
l.e., an m X n matrix with A
Of(A
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Gradient over Vector

Note that the size of V4f(A) is always the same as the size of A. So if, in particular, A is just a

vector x € R"

- Of(x) T
Ox1
Of (x)

Vxf(x) = 8&

8f-(x)

L OXxp -

It follows directly from the equivalent properties of partial derivatives that:
o Vi(f(x)+ &(x)) = Vxf(x) + Vig(x).
@ For t € R, Vi(t f(x)) = tVxf(x).
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The Hessian

Suppose that f : R” — R is a function that takes a vector in R"” and returns a real number.
Then the Hessian matrix with respect to x, written V2f(x) or simply as H is the n x n matrix

of partial derivatives,

- 0%f(x)  0%f(x) 0%f(x) -
3x12 O0x10X> Ox10Xn
0%f(x)  9%f(x) 0% f (x)
2
v)2< f( X) c RMXN — Ox20x1 Ox3 Ox20xn
0%f(x)  0%f(x) o 0°f(x)
L OxpOx1  OxnOxo Oxz  _

Note that the Hessian is always symmetric, since

0°f(x) B 0°f(x)
8x,-8><j N ij(‘)x,- .
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Gradients of Linear Functions

For x € R”, let f(x) = b" x for some known vector b € R". Then

SO

Of (x) 0 k B

From this we can easily see that Vi b' x = b. This should be compared to the analogous
situation in single variable calculus, where 8/(0x) ax = a.
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Common Gradient Formula

V.b'x=05b
Vb 'x =0
VixT Ax = 2Ax (if A symmetric)

V2xT Ax = 2A (if A symmetric)
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Least Squares

e Given a full rank matrix A € R™*", and a vector b € R™ such that b € R(A), we want to
find a vector x such that Ax is as close as possible to b, as measured by the square of the
Euclidean norm ||Ax — b|5.

25



Outline

Probability Review
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Basic Concepts

@ Performing an experiment — outcome

e Sample Space (S): set of all possible outcomes of an experiment
o Event (E): a subset of S (E C S)

e Probability (Bayesian definition)

A number between 0 and 1 to which we ascribe meaning
i.e. our belief that an event E occurs

@ Frequentist definition of probability

P(E) = lim ™E)

n— o0 n

27



Axiom 1: 0<P(E)L1
Axiom 2: P(S)=1

E C F, then P(E) < P(F)
P(EUF) = P(E)+ P(F) — P(EF) (Inclusion-Exclusion Principle)

General Inclusion-Exclusion Principle:

P (U Ef) - En:(—l)r+1 2. P(EyEp.E;)
i=1 r=1

i]_<"°<ir

Equally Likely Outcomes: Define S as a sample space with equally likely outcomes. Then

P(E) = %
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Conditional Probability and Bayes’ Rule

For any events A, B such that P(B) # 0, we define:
P(AN B)
P(B)

P(A| B) :=

Let's apply conditional probability to obtain Bayes' Rule!
P(BNA) P(ANB)
P(A)  P(A)
P(B)P(A | B)
P(A)

P(B|A)=

Conditioned Bayes’ Rule: given events A, B, C,
P(B|A C)P(A| C)

P(A|B,C) = (B | C)

29



Law of Total Probability

Let By, ..., B, be n disjoint events whose union is the entire sample space. Then, for any event A,

P(A) = Z P(AN B))
=1

=) _P(A| B)P(B)

We can then write Bayes' Rule as:
P(Bk)P(A | B)
P(A)

P(Bx)P(A | Bx)
>.i=1 P(A| Bi)P(Bi)

21=1

P(Bx | A) =

30



Chain Rule

For any n events Ay, ..., A,, the joint probability can be expressed as a product of conditionals:

P(Al NAN...N An)
= P(A1)P(Ax | A1)P(A3 | Ao N A1)...P(A, | Ap_i NA_2N .. N A7)
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Independence

Events A, B are independent if
P(AB) = P(A)P(B)

We denote this as A 1 B. From this, we know that if A L B,
P(ANnB) P(A)P(B)

PATE) ="y T TR

- P(4)

Implication: If two events are independent, observing one event does not change the probability
that the other event occurs.
In general: events Aj, ..., A, are mutually independent if

P(()A) =]] P(A)

€S €S
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Random Variable

A random variable X is a variable that probabilistically takes on different values. It maps
outcomes to real values
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Probability Mass Function (PMF)

Given a discrete RV X, a PMF maps values of X to probabilities.
px(x) := p(x) := P(X = x)

For a valid PMF, » /) Px(X) = 1.
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Cumulative Distribution Function (CDF)

A CDF maps a continuous RV to a probability (i.e. R — [0, 1])

Fx(a) := F(a) := P(X < a)

A CDF must fulfill the following:

@ limy__o Fx(x) =0

@ limy_ o Fx(x) =1

o If a < b, then Fx(a) < Fx(b) (i.e. CDF must be nondecreasing)
Also note: P(a < X < b) = Fx(b) — Fx(a).
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Probability Density Function (PDF)

PDF of a continuous RV is simply the derivative of the CDF.

de(X)

fx(x) = f(x) := ™
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Expectation

Let g be an arbitrary real-valued function.
e If X is a discrete RV with PMF px:

g(X)] = ) &(x)px(x)

x€ Val(X)
@ If X is a continuous RV with PDF fx:
(0= [ gl)fx(x)x

Intuitively, expectation is a weighted average of the values of g(x), weighted by the probability
of x.
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Conditional Expectation

X [ Y] =2 cevaix) XPx|y(x]y) is a function of Y.
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Properties of Expectation

For any constant a € R and arbitrary real function f:
o Ela] = a
o Elaf(X)] = aE[f(X)]

Linearity of Expectation
Given n real-valued functions f(X), ..., fa(X),

n

D H(X)] =) E[fi(X)]
=1

=1
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Example

El Goog sources two batteries, A and B, for its phone. A phone with battery A runs on average
12 hours on a single charge, but only 8 hours on average with battery B. El Goog puts battery A
in 80% of its phones and battery B in the rest. If you buy a phone from El Goog, how many
hours do you expect it to run on a single charge?
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Variance

The variance of a RV X measures how concentrated the distribution of X is around its mean.

Var(X) := E[(X — E[X])?]
= E[X?] - E[X

Interpretation: Var(X) is the expected deviation of X from E[X].
Properties: For any constant a € R, real-valued function f(X)

o Varla] =0
o Varl[af(X)] = a*Var[f(X)]
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Example Distributions

Distribution PDF or PMF Mean | Variance
. D, if x=1 B
Bernoulli( p) 1—p ifx=0. p p(l— p)
Binomial(n, p) (Z)pk(l —p)" K for k=0,1,....n np | np(l— p)
- — \k—1 _ 1 1—p
Geometric(p) pg k p)<— for k=1,2,... p =
Poisson(\) e A for k=0,1,... A A
] 2
Uniform(a,b) | = for all x € (a, b) a+b b_2)
X— [ 2
Gaussian(u, o2) - 127Te 277 for all x ¢ (—o0,0) | W 02
Exponential(\) | Ae= for all x > 0,\ >0 % %
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Joint and Marginal Distributions

e Joint PMF for discrete RV's X, Y:
pXY(ny) — P(X:X7 Y:y)

Note that ZxEVaI(X) ZyEVaI(Y) PXY(X,y) =1

@ Marginal PMF of X, given joint PMF of X, Y

px(x) = > _ pxv(x,y)
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Joint and Marginal Distributions

e Joint PDF for continuous RV's Xi, ..., X;:

0"F(x1,...Xp)
0Xx10X2...0Xp,

F(X1y ey Xp) =

Note that le sz an f(x1,y ..., Xp)dx1...dx, = 1
e Marginal PDF of Xj, given joint PDF of Xi, ..., X;:

fX1(X1):/ / f(Xl,...,Xn)dXQ...an
X2 Xn
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Expectation for multiple random variables

Given two RV's X, Y and a function g : R> = R of X, Y,
@ for discrete X, Y:

(X, = > D glxy)pxy(xy)

x€eVal(x) yeVal(y)

@ for continuous X, Y:

Elg(X, Y)] = /_OO /_OO g(x,y)fxy(x,y)dxdy
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Covariance

Intuitively: measures how much one RV's value tends to move with another RV's value. For
RV's X, Y:

Cov[X, Y] :=E[(X — E[X])(Y — E[Y])]
1[XY] — E[X]E[Y]

o If Cov|[X, Y] <0, then X and Y are negatively correlated
o If Cov|X,Y] >0, then X and Y are positively correlated
o If Cov[X, Y] =0, then X and Y are uncorrelated

46



Variance of two variables

Var[X + Y| = Var|X] + Var|Y] + 2Cov|X, Y]
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Conditional distributions for RVs

Works the same way with RV's as with events:
@ For discrete X, Y:

pXY(X7 y)
X)) =
pY|X(y| ) PX(X)
@ For continuous X, Y:
fXY(Xay)
£
Y\X(y| ) fX(X)

@ In general, for continuous Xi, ..., X;:

Xy Xo.... X, (X1, X2, ..., Xn)

D, X (X1 X2s o Xn) = =20 AL
2,...,Xn AR
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Bayes’ Rule for RVs

Also works the same way for RV's as with events:
@ For discrete X, Y:

px|y (x|y)py(y)

py|x(y]x) =
rxly) >_yreval(y) Pxy (XY )py (y')

@ For continuous X, Y:

iy Ix) = fxy (x|y)fy (y)
YT 2 By (v A () dy

— OO
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Random Vectors

Given n RV's Xi, ..., X,, we can define a random vector X s.t.

Note: all the notions of joint PDF/CDF will apply to X.

Given g : R" — R™, we have:

g(x) =

g1(x)
g2(x)

_gm-(X)_

Ulg(X)] =

50

<
44

~

4

4

V]

[g1(X)]
[g2(X)]

‘[gn;(X )|



Covariance Matrices

For a random vector X € R", we define its covariance matrix X as the n X n matrix whose
ij-th entry contains the covariance between X; and X;.

-COV[Xl,Xl] c . COV[Xl,Xn]-

Cov[Xn, X1] ... Cov[Xp, Xa]

applying linearity of expectation and the fact that Cov|[X;, X;| = E[(X; — E[Xi])(X; — E[Xj])], we
obtain

¥ =E[(X - E[X])(X —E[X])']

Properties:

@ 2 is symmetric and PSD
o If Xj L X;forall i,j, then X = diag(Var|Xi], ..., Var[X,])
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Multivariate Gaussian

The multivariate Gaussian X ~ N (u,X), X € R™

1 1 Tv—1
pLxi p, ) = ,,exp(——x—u 2 X—u)
i) det(¥)(27)? A
Gaussian when n=1.
1 1
. .
p(x; p,0°) = exp X — b
( ) 0'(27'(')% ( 2‘72( ) )

Notice that if ¥ € R, then ¥ = Var[Xi] = 02, and so
¥ 1= 1 and det(¥)z = o
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MV Gaussian Visualization

10
2= 0 1
p=[0 0]
0.7 0
2= "9 07
pw=[0 0]
1.8 0
2= 0 1.5
p=[0 0]

Effect of changing variance
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MV Gaussian Visualization

p=[0 0]

I1f Var[Xl] 75 Var[Xz]:
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MV Gaussian Visualization

N
o
N

1 0.5
2= 05 i
pw=[0 0]

x
N
o
N
no
o
no

If X1 and X5 are positively correlated:
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MV Gaussian Visualization

N
o
N

_ 1 -0.5
2= 05 i
p=[0 0]

x
N
o
N
ro
o
n

X1 - X1

If X1 and X, are negatively correlated:
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The purpose of computation is
insight, not numbers.
- Richard Hamming

Vectors Vectors | Chapter 1, Essence of linear algebra

https://www.youtube.com/@3bluelbrown/courses

Linear combinations, span, and basis vectors | Chapter 2, Essence of linear algebra

Linear Linear transformations and matrices | Chapter 3, Essence of linear algebra
transformations

—_—

3Blue1Brown-®°

@3blue1brown - 5.88M subscribers - 172 videos

10:59

Matrix Matrix multiplication as composition | Chapter 4, Essence of linear algebra
multiplication
X —»

—_—

My name is Grant Sanderson. Videos here cover a variety of topics in math, or adjacent fiel... >

10:04 3blue1brown.com and 7 more links

3D Three-dimensional linear transformations | Chapter 5, Essence of linear algebra
transformations

L

Q Subscribed v

4:46

Dl tsinesins:heinmem | he determinant | Chapter 6, Essence of linear algebra

Inverse matrices, column space and null space | Chapter 7, Essence of linear algebra

Inverse matrices

 d
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Supervised Learning: Regression
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Supervised Learning

@ A hypothesis or a prediction function is function h: X — )

3.5 1 X

3.0 ' X X

2.5 - X
.g 2.0 - * X\
8« « % 15th sample

X xX
(x(15)’y(15))

1.0 - X
)4 X

0 500 $1000 1500 2000 2500 3000
square feet

x = 800
y =7
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Supervised Learning
A hypothesis or a prediction function is function h : X — Y

A training set is set of pairs {(xV),y()), ..., (x(" y")}
s.t. xU) € X and y(i) c ) for i - 1,....n.

Given a training set our goal is to produce a good prediction function A

If ) is continuous, then called a regression problem

If ) is discrete, then called a classification problem
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Supervised Learning

¢ How to define “good” for a prediction function?
- Metrics / performance

4.0

3.5 - X
3.0 - " X %
025 ;
920! X I
515 « X "~ 15th sample
x (15) 4,(15)
| X x (Y
000 500 Ilo'oo 1500 2000 2500 3000
square feet
x = 800
N . L, y=uyx
|y —y*| I(g = yx) = |
0 otherwise

A\

y is the prediction, y * is the truth
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Supervised Learning

How to define “good” for a prediction function?
- Metrics / performance
-~ Good on unseen data

Validation dataset is another set of pairs {(x(l) A(l)), e, ()Ac(m), A(m))}

Does not overlap with training dataset
4.0
3.5 1
3.0 1 X 4 %

2.5 -

¥ p 4
= 2.0- %
S .c. y .
o / Which curve to choose?

0.5

0.0
0 500 £1000 1500 2000 2500 3000
square feet
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Supervised Learning

How to define “good” for a prediction function?
~ Metrics / performance
~ Good on unseen data

Validation dataset is another set of pairs {(A(l), A(l)), v, (JAC(m), A(m))}

Does not overlap with training dataset

Test dataset is another set of pairs { (", 31, ..., G, D))
Does not overlap with training and validation dataset
Completely unseen before deployment

. , o Realistic setting
Hyperparameter tuning is a form of training
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Supervised Training

Train Validation Test

Not only for supervised learning
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Example: Regression using Housing Data

- Example from Stanford CS229



SalePrice Lot.Area

4 189900
S 195500
9 189000
10 175900
12 180400
22 216000
36 376162
47 320000
55 216500
56 185088

13830
9978
7500

10000
8402
7500

12858

13650
7851

8577

66

Example Housing Data

350000 -

300000 -

250000 -

200000 -

0o @
@
.‘ o @

8000 10000 12000 14000
lot




Represent /1 as a Linear Function

h(x) = 0y + 01x1 is an affine function

Popular choice

The function is defined by parameters ¢, and 0,, the function space is
greatly reduced
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Simple Line Fit

350000
300000
250000

200000

T T T
8000 10000 12000 14000

lot
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More Features

size bedrooms lot size Price
x(1) | 2104 4 45k  y(1) | 400
x(2) | 2500 3 30k y(@ | 900

What's a prediction here?

h(X) = 0y + O1x1 + Orx0 + O3x3.

With the convention that xg = 1 we can write:

3
h(x) = Z 0 x;
J=0
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Vector Notations

size bedrooms lot size Price
x) 12104 4 45k y) 1400
x(2) | 2500 3 30k y® | 900

We write the vectors as (important notation)

(1)
0o X(()l) 1
0 = 01 and x!) = X11 = | and y!) = 400
02 s\ 4
0 X§1) 45

We call 6 parameters, x{/) is the input or the features, and the
output or target is y{). To be clear,

(x,y) is a training example and (x\"), y{1)) is the i example.

We have n examples. There are d features. x% and @ are d+1 dimensional (since x5 = 1)
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Vector Notation of Prediction

@
350000 A
i
&
300000 -
250000 -
200000 -
i &
® o ®

8000 10000 12000 14000
lot

d
hy(x) = 2 (9jxj =x'6
j=0

We want to choose @ so that hy(x) =~ y
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Loss Function

350000 -

300000 -

250000 -

200000 -

8000 10000 12000 14000
lot

0 We want to choose 0 so that hy(x) = y

|

How to quantify the deviation of /i,(x) fromy
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d
hy(x) = Z Q,-xj =x'6
j=0

Choose

Least Squares

350000 -
300000 -
250000 +
oo
200000 - -
@ o

8000 10000 12000 14000

lot

§ = argmin J(6).
0

/3

1

J(0) = 3

n

> (he(X(i)) = y(i)>2

=1



Solving Least Square Problem

Direct Minimization
d 1 < | A\ 2
hy(x) = Hjxj = x'6 J(6) = = Z (he(x(')) _ y(1)>

. 2 “
j=0 i=1

§ = argmin J(0).
0
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Solving Least Square Problem

1 _, -
Vei(Xe — )" (X0 —79)

Vo ((X0)"X60 — (X0)"5 — i (X6) + §"5)

VoJ (6)

Vo (0"(XTX)0 — ¢ (X0) — §"(X0))

N DN N =N -

Vo (07 (XTX)0 —2(X"9)"6)
= —(2X'X6-2X"7)
— XTx0— X7y
Normal equations X~ X6 = X1 o= (XTX)'XTy.
When is X! X invertible? What if it is not invertible?
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Thank You!
Q& A
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