

Unsupervised Learning: Clustering, Expectation Maximization

COMP 5212 Machine Learning Lecture 11

Junxian He Oct 15, 2024

Oct 24, in-class (130pm-250pm, locations TBA)

Review: How to Choose Prior

Inject prior human knowledge to regularize the estimate \bigcirc Could learn better if data is limited

Posterior easy to compute Conjugate prior

Conjugate Prior

same form as prior Posterior = Likelihood x Prior $P(\theta | D) = P(D | \theta) \times P(\theta)$

P(theta)	P(D theta)	P(theta D)
Gaussian	Gaussian	Gaussian
Beta	Bernoulli	Beta
Dirichlet	Multinomial	Dirichlet

- If P(θ) is conjugate prior for P(D| θ), then Posterior has

- Maximum Likelihood estimation (MLE) Choose value that maximizes the probability of observed data $\hat{\theta}_{MLE} = \arg \max_{\theta} P(D|\theta)$
- Maximum *a posteriori* (MAP) estimation Choose value that is most probable given observed data and prior belief

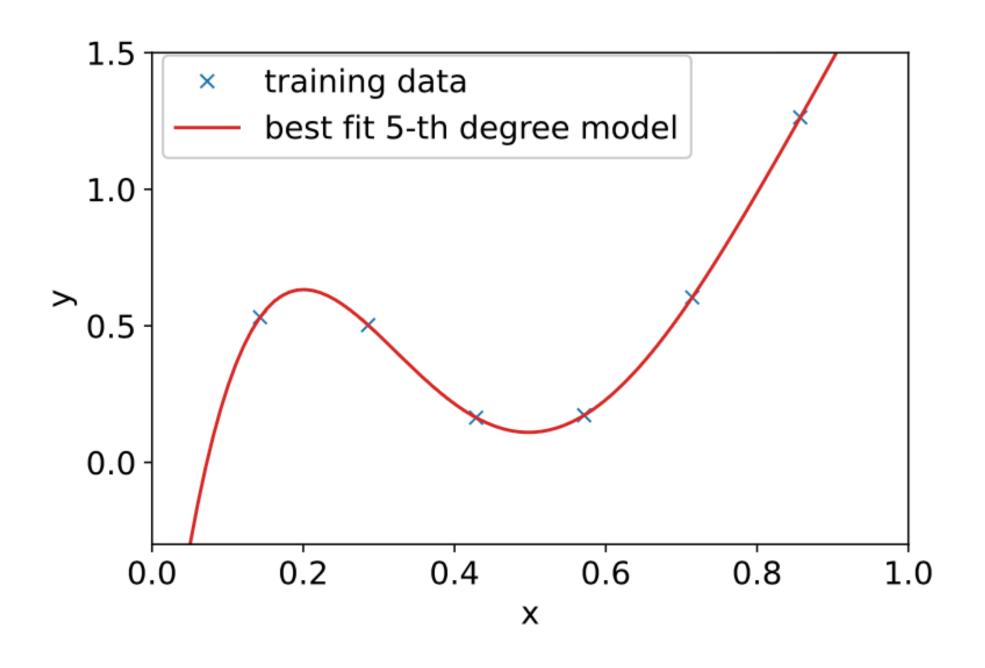
$$\widehat{\theta}_{MAP} = \arg \max_{\substack{\theta \\ \theta}} = \arg \max_{\substack{\theta \\ \theta}}$$

When are they the same?

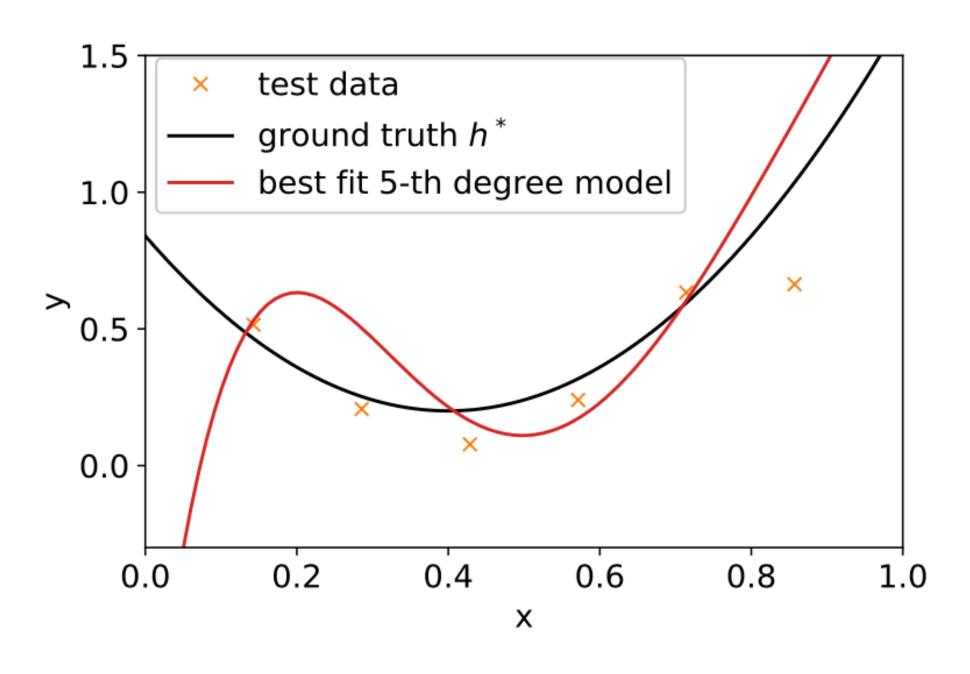
Review: MLE vs. MAP

 $P(\theta|D)$ $\langle P(D|\theta)P(\theta) \rangle$

Recap: Generalization



Zero training error



Large test error

How Do We Know Generalization in Practice



Hold-out or Cross-validation

Hold-out method

Hold - out procedure:

n data points available $D \equiv \{X_i, Y_i\}_{i=1}^n$

1) Split into two sets (randomly and preserving label proportion): Validation/Hold-out dataset Training dataset

 $D_T = \{X_i, Y_i\}_{i=1}^m \qquad D_V = \{X_i, Y_i\}_{i=m+1}^n$

2) Train classifier on D_T . Report error on validation dataset D_V . Validation Error Overfitting if validation error is much larger than training error

In case of gradient descent, we can observe whether the validation error increases

Use the validation dataset to mimic the test case

Drawback of Hold-Out Method

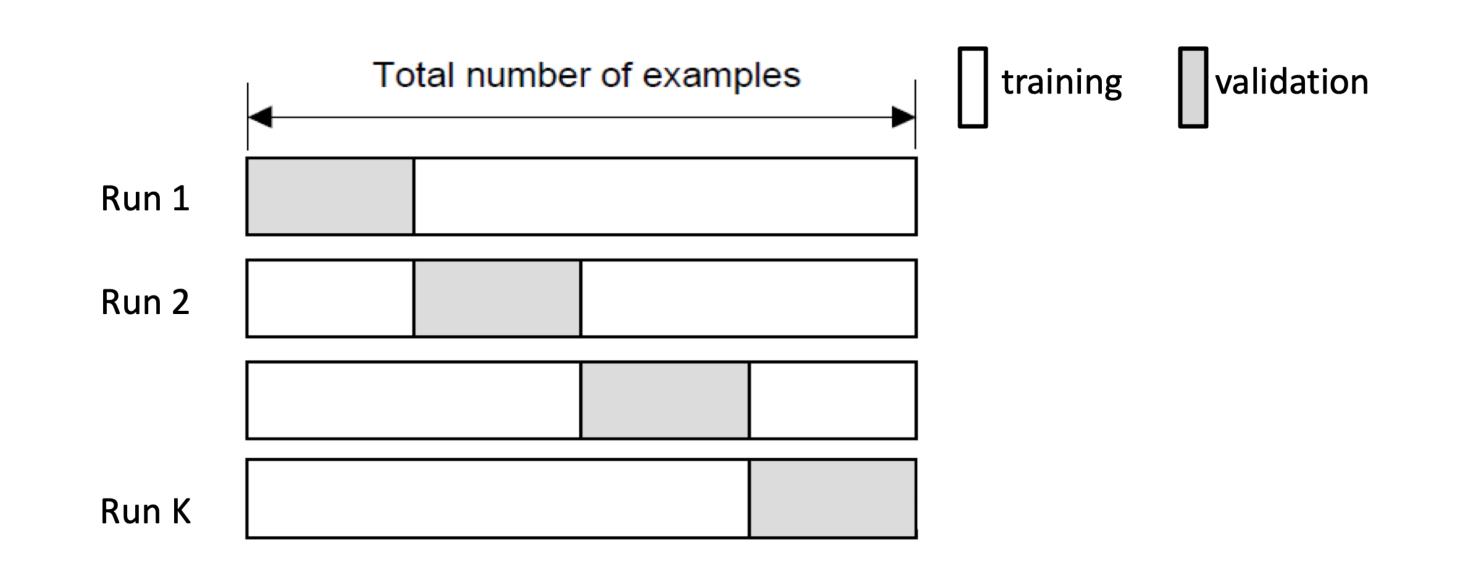
Validation is essentially mimicking the test

Validation error may be misleading if we get an "unfortunate" split

Cross-Validation

K-fold cross-validation

Create K-fold partition of the dataset. Do K runs: train using K-1 partitions and calculate validation error on remaining partition (rotating validation partition on each run). Report average validation error



Drawback of Cross-Validation

Cannot be used to select a specific model, more often used to select method design, hyperparameters, etc.

Hold-out is more commonly used nowadays, and the validation dataset is provided in advance

Hold-Out Method

Validation is essentially mimicking the test, always try to pick validation data that may align with test data, unnecessarily to hold out training data for validation

Validation dataset is another set of pa

Test dataset is another set of pairs {(.

Train, Validation, Test

airs {
$$(\hat{x}^{(1)}, \hat{y}^{(1)}), \dots, (\hat{x}^{(m)}, \hat{y}^{(m)})$$
 }

Does not overlap with training dataset

$$\{\tilde{x}^{(1)}, \tilde{y}^{(1)}), \cdots, (\tilde{x}^{(L)}, \tilde{y}^{(L)})\}$$

Does not overlap with training and validation dataset Completely unseen before deployment Realistic setting

Validation is Very Important

Decide when to stop training

Select hyperparameters Hyperparameter tuning

When you tune hyperparameters harder, it is more likely the validation error would mismatch the test error, because you are overfitting on the validation

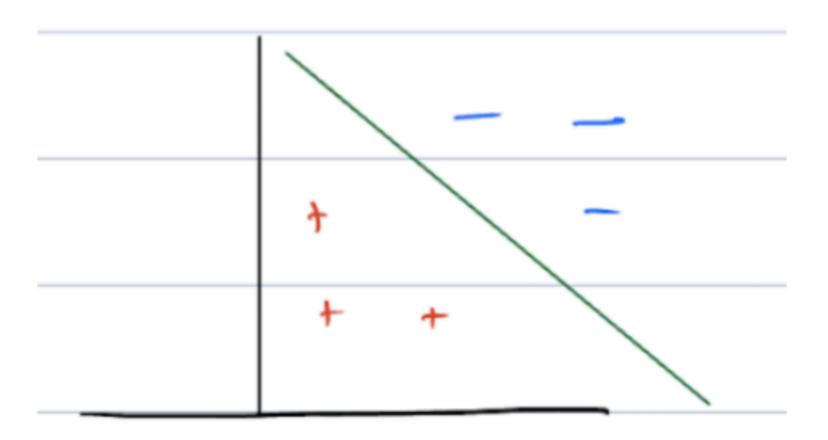
Hyperparameter tuning is a form of training

Do not look at or evaluate on the test dataset Many people are implicitly using test dataset as validation

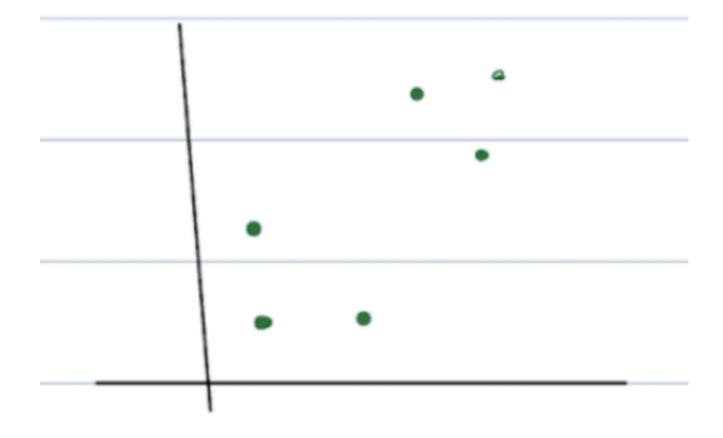
Always track the training and validation metrics/errors/losses

Unsupervised Learning

No labels, only x is given



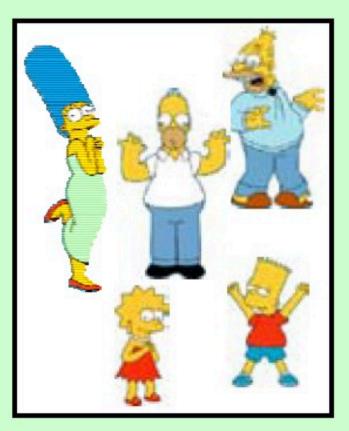
Unsupervised learning is typically "harder" than supervised learning



Clustering: the process of grouping a set of objects into classes of similar objects

- high intra-class similarity
- low inter-class similarity
- It is the most common form of unsupervised learning

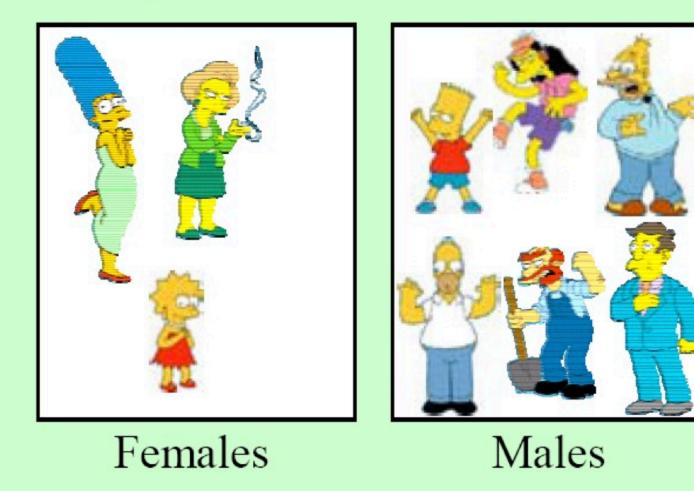
Clustering is subjective



Simpson's Family

School Employees

Similarity is subjective



Distance Metrics

$$x = (x_1, x_2, ..., x_p)$$

 $y = (y_1, y_2, ..., y_p)$

Euclidean distance

d(x,

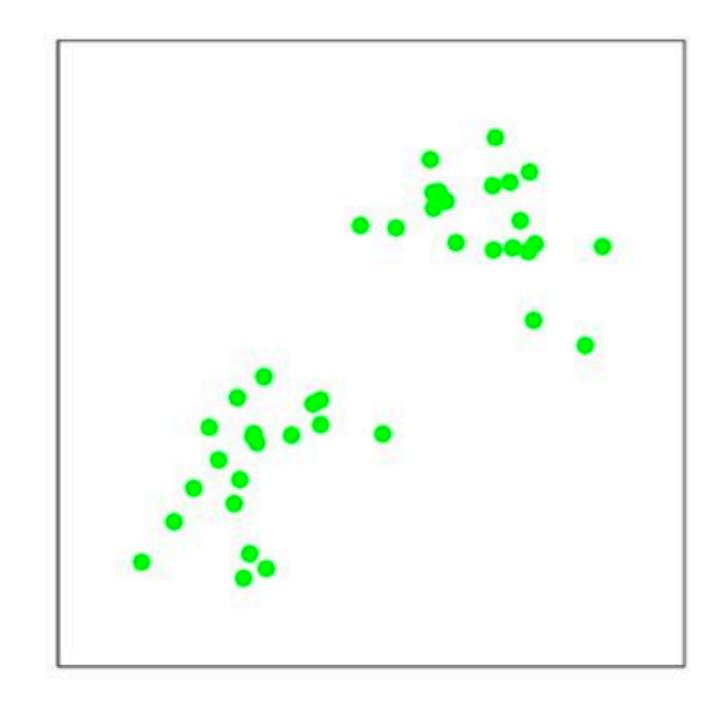
Manhattan distance

d(x,

Sup-distance

d(x,

$$y) = \sqrt[2]{\sum_{i=1}^{p} |x_i - y_i|^2}$$
$$y) = \sum_{i=1}^{p} |x_i - y_i|$$
$$y) = \max_{1 \le i \le p} |x_i - y_i|$$



K-Means Clustering

Algorithm

Input – Desired number of clusters, k Initialize – the k cluster centers (randomly if necessary) Iterate –

- Assign points to the nearest cluster centers 1.
- 2. Re-estimate the k cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

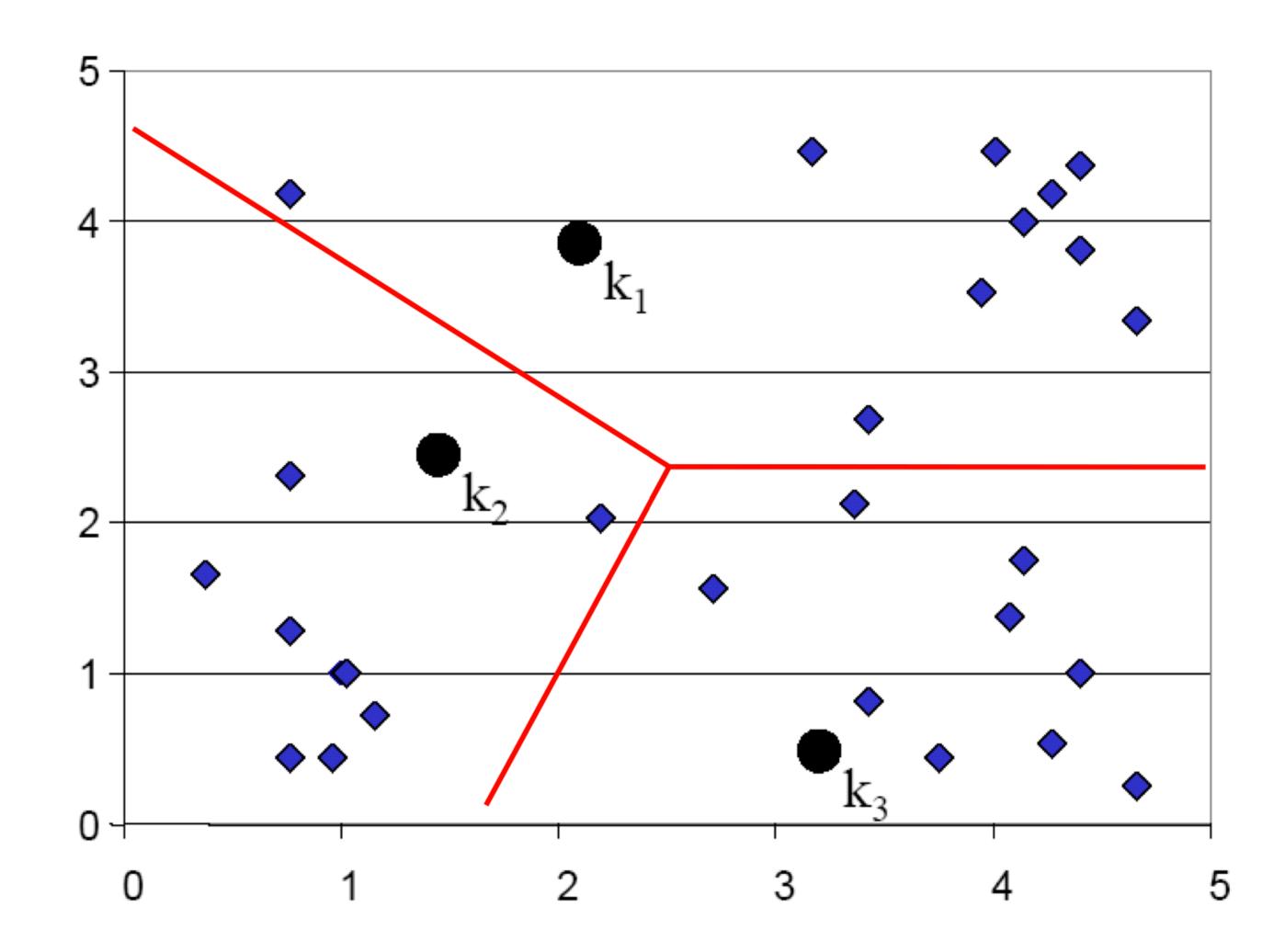
$$\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{\mu}_{i \in \mathcal{C}_k}$$

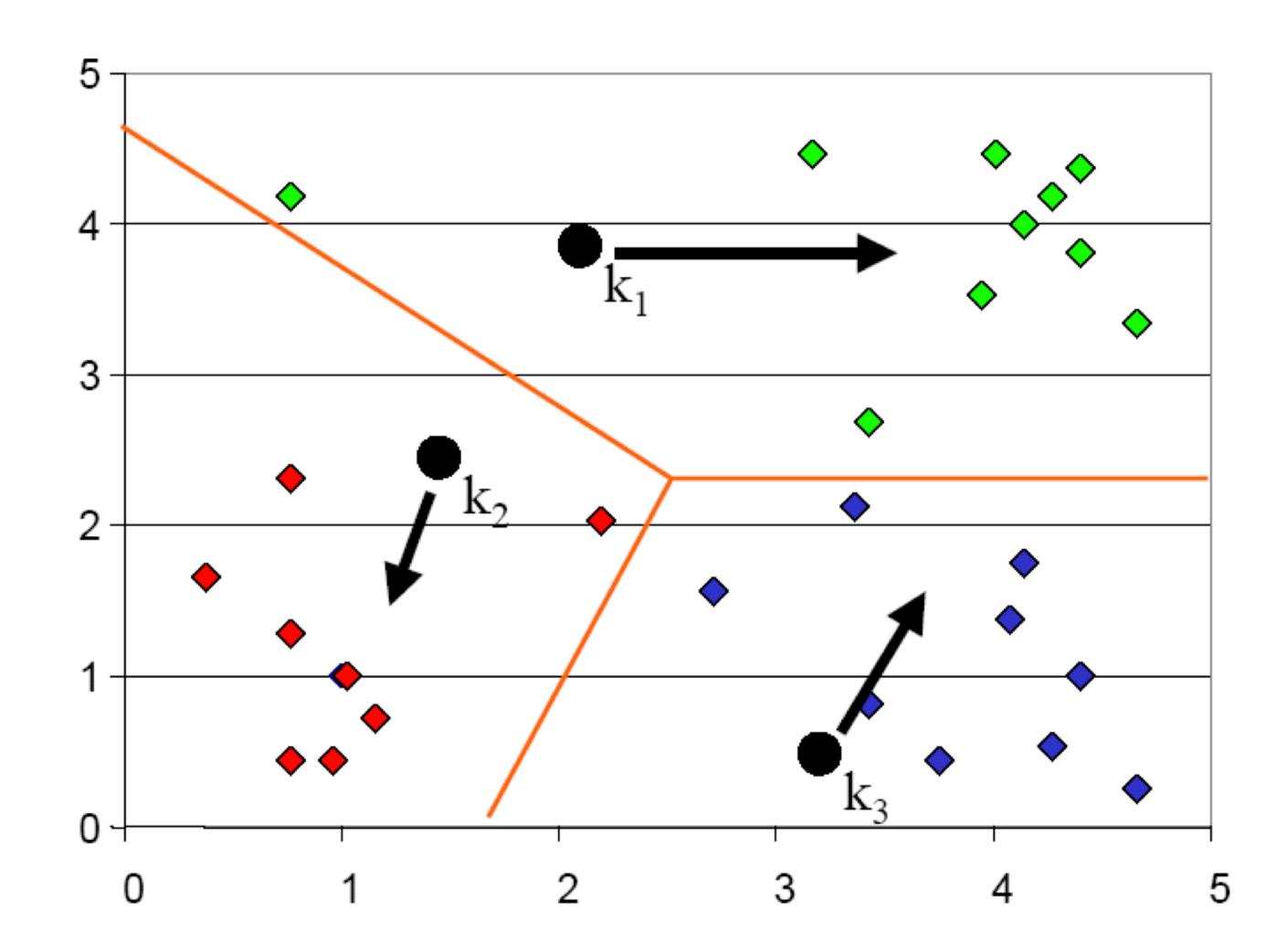
Termination –

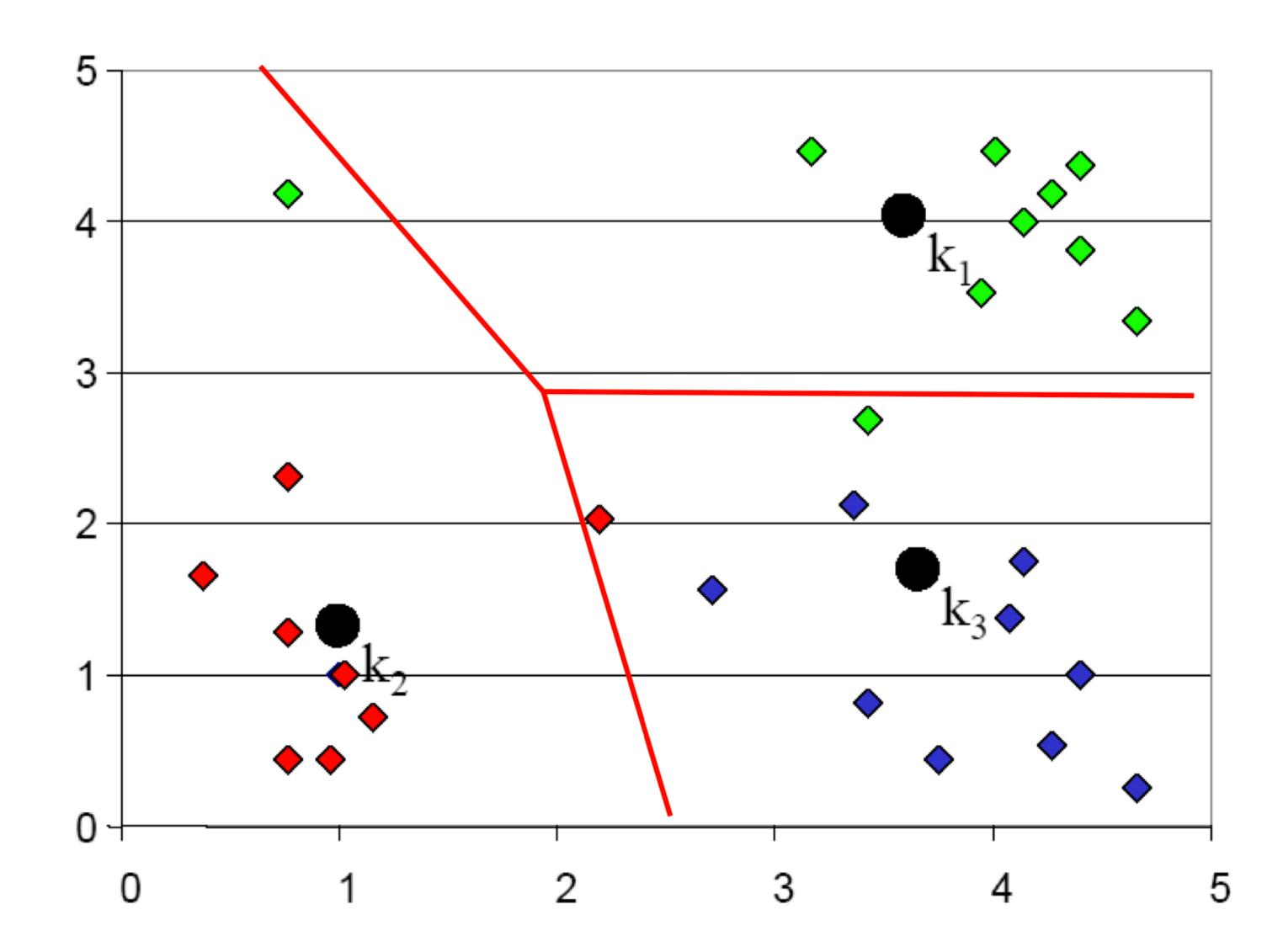
If none of the objects changed membership in the last iteration, exit. Otherwise go to 1.

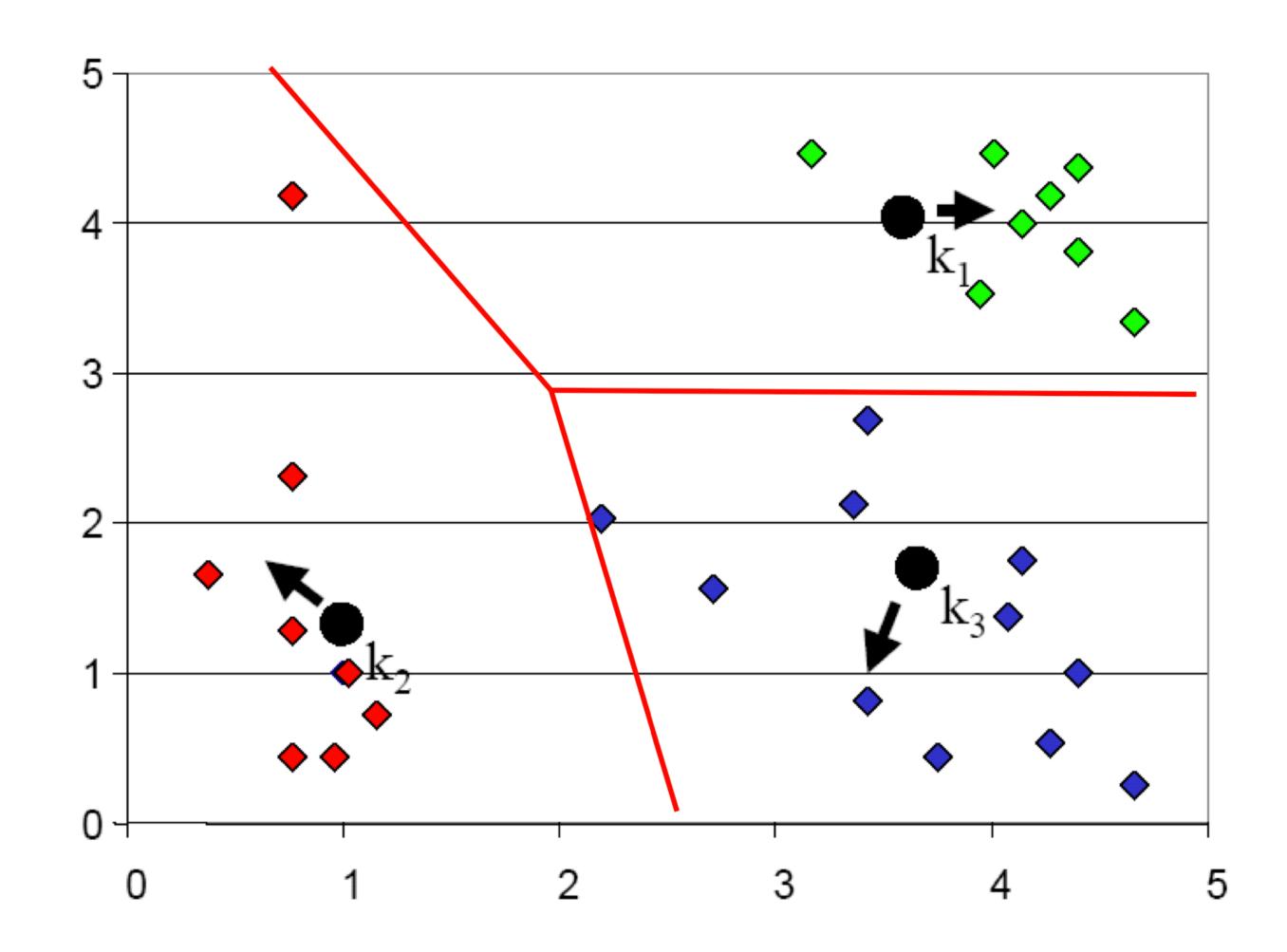
$$\int_{\mathcal{C}_k} \vec{x_i}$$

20

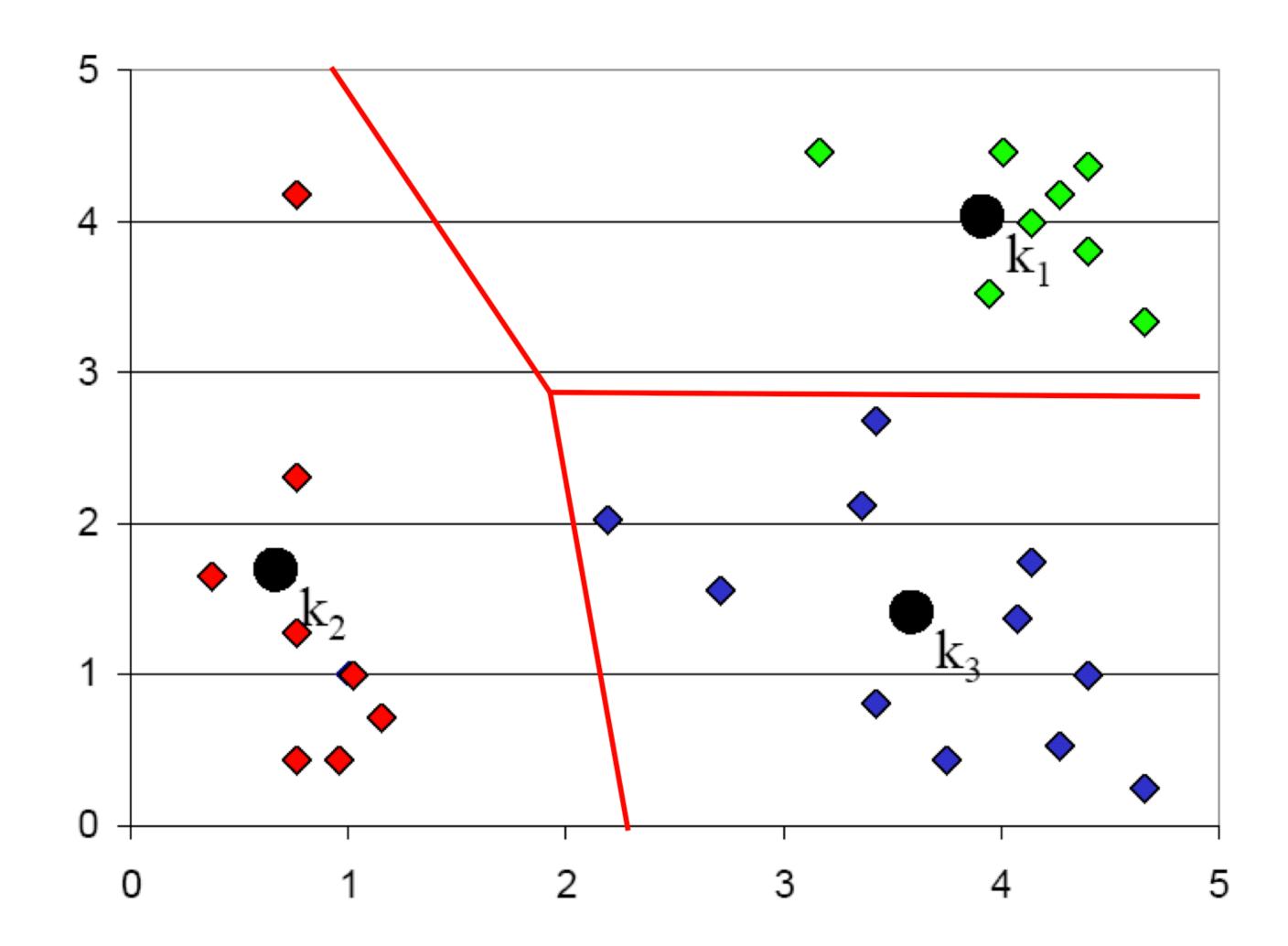








24



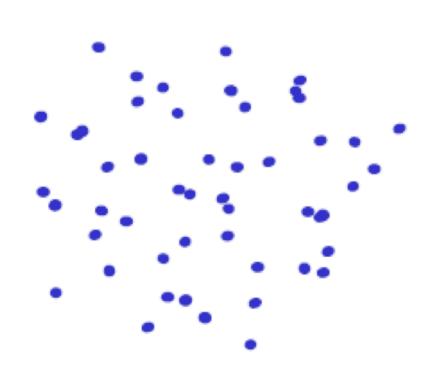
Objective of K-Means

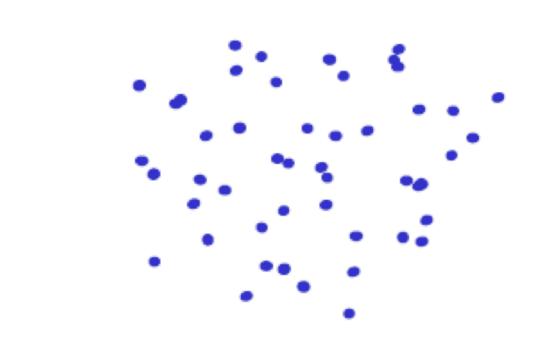
$J(C, \mu) = \sum_{i=1}^{n} \|x^{(i)} - \mu^{C^{(i)}}\|^2 \text{ decreases momonotonically.}$ Proof?

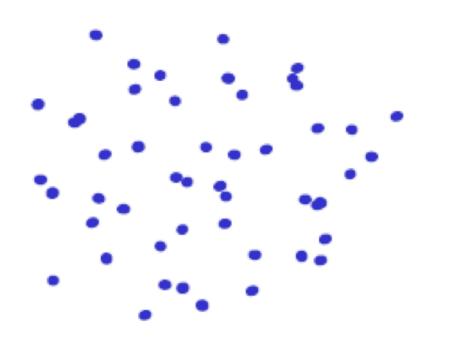
K-means does not find a global minimus in this objective (it is NP-Hard)

Initialization of Centers

Results are sensitive to the initialization

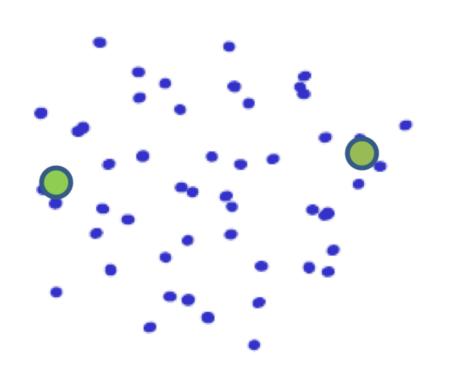


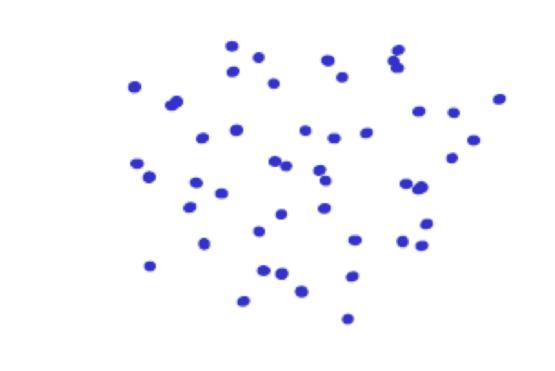


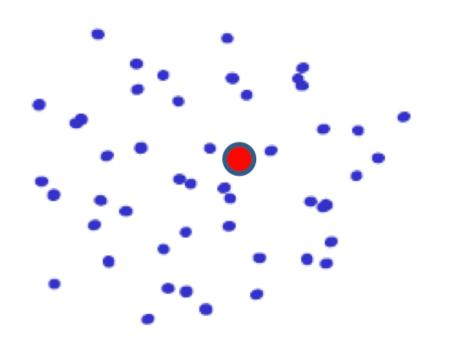


Initialization of Centers

Results are sensitive to the initialization



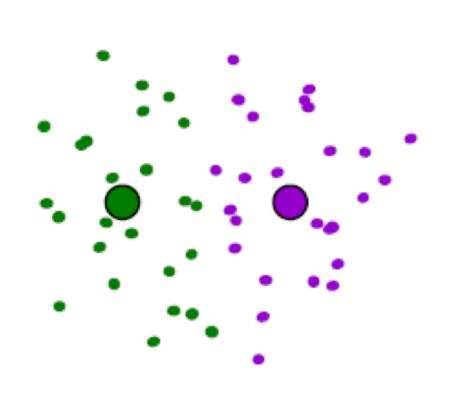




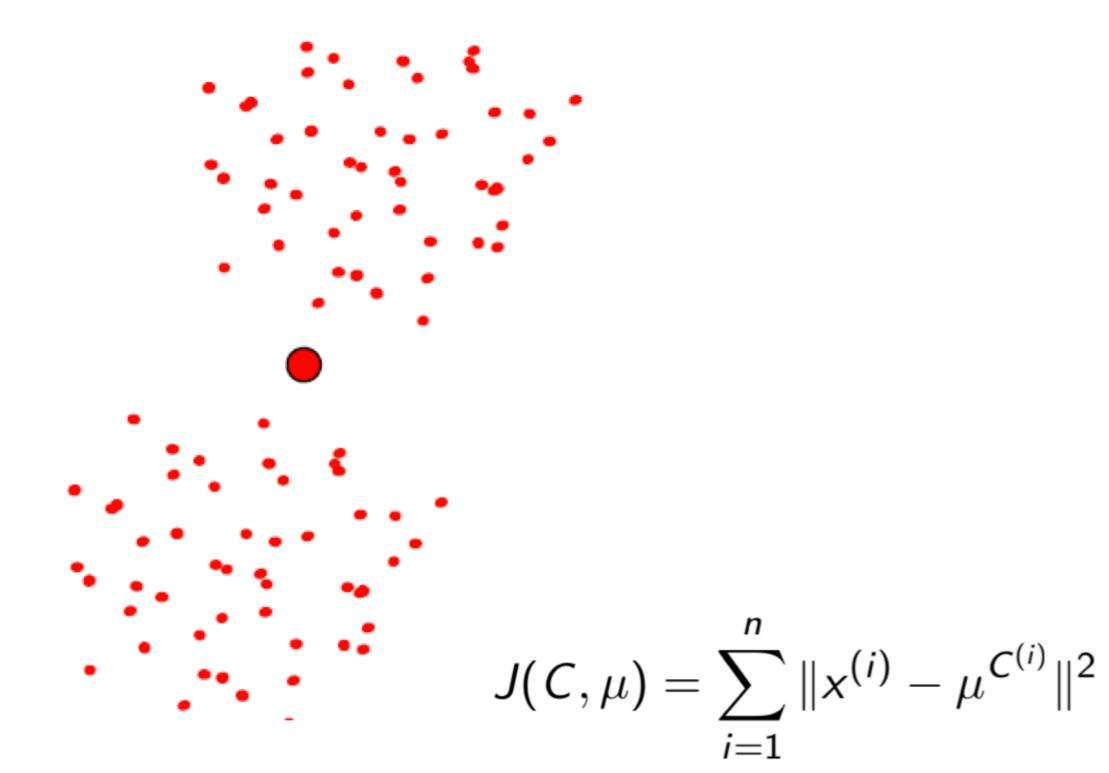
28

Initialization of Centers

Results are sensitive to the initialization



1. Try out multiple starting points and compare the objective 2. K-means++ algorithm improves the initialization



Model Selection of K-Means (or Unsupervised Learning in General)

Try out multiple starting points and compare the objective

 $J(C,\mu) = \sum_{n=1}^{n}$

This is unsupervised metric

- Compute the metric on training set or test set?
- For unsupervised learning, what is the difference of train and test? 2.
- Is it reasonable to assume the test input (x) is given? 3.
- 4. If now I give you some data examples, ask you to cluster them. Are these data training or test?

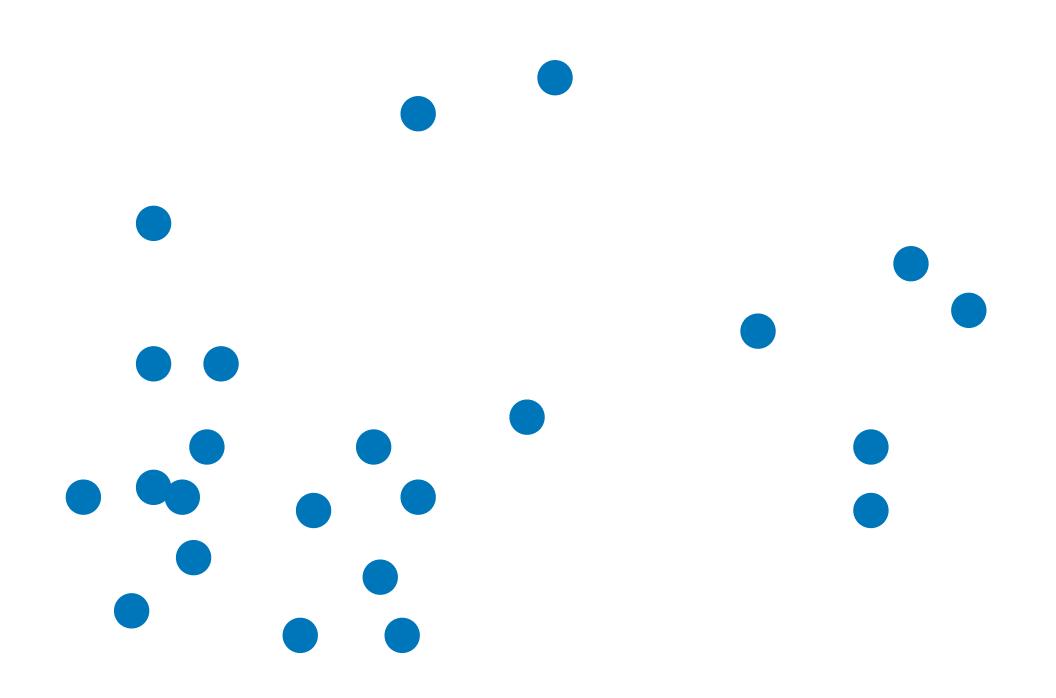
$$\sum_{i=1}^{n} \|x^{(i)} - \mu^{C^{(i)}}\|^2$$

Sometimes people use supervised metrics for validation, which is not strictly unsupervised learning

Expectation Maximization (EM)

EM for Gaussian Mixture Model

Given a training set $\{x^{(1)}, \dots, x^{(n)}\}$ No Labels



Modeling data distribution is a fundamental goal in ML, not necessarily for classification

We have discussed the supervised case in Gaussian Discriminative Model

The Generative Model

p(z): multinomial, k classes(e.g. uniform)

Label

 $(\mu_1, \Sigma_1), (\mu_2, \Sigma_2), \dots (\mu_k, \Sigma_k)$ Data

observed in GDA

- K is a hyperparameter based on our assumption
 - We assume the generative process as:
 - 1. For each data point, sample its label z_i from p(z)
- **2.** Sample $x_i \sim N(\mu_{z_i}, \Sigma_{z_i})$ **Gaussian Mixture Model (GMM)**
- Same as Gaussian Discriminative Analysis, but Z is

Recap: How did we do in GDA?

Binary classification: $y \in \{0,1\}, x \in \mathbb{R}^d$

Assumption

$$p(y) = \phi^{y}(1-\phi)^{1-y}$$

$$p(x|y=0) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_{0})^{T}\Sigma^{-1}(x-\mu_{0})\right)$$

$$p(x|y=1) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_{1})^{T}\Sigma^{-1}(x-\mu_{1})\right)$$

 $y \sim \text{Bernoulli}(\phi)$ $x|y=0 \sim \mathcal{N}(\mu_0, \Sigma)$ $x|y=1 \sim \mathcal{N}(\mu_1, \Sigma)$

Recap: How did we do in GDA?

 $\ell(\phi, \mu_0, \mu_1, \Sigma) = \log \prod p(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma)$ i=1ni=1

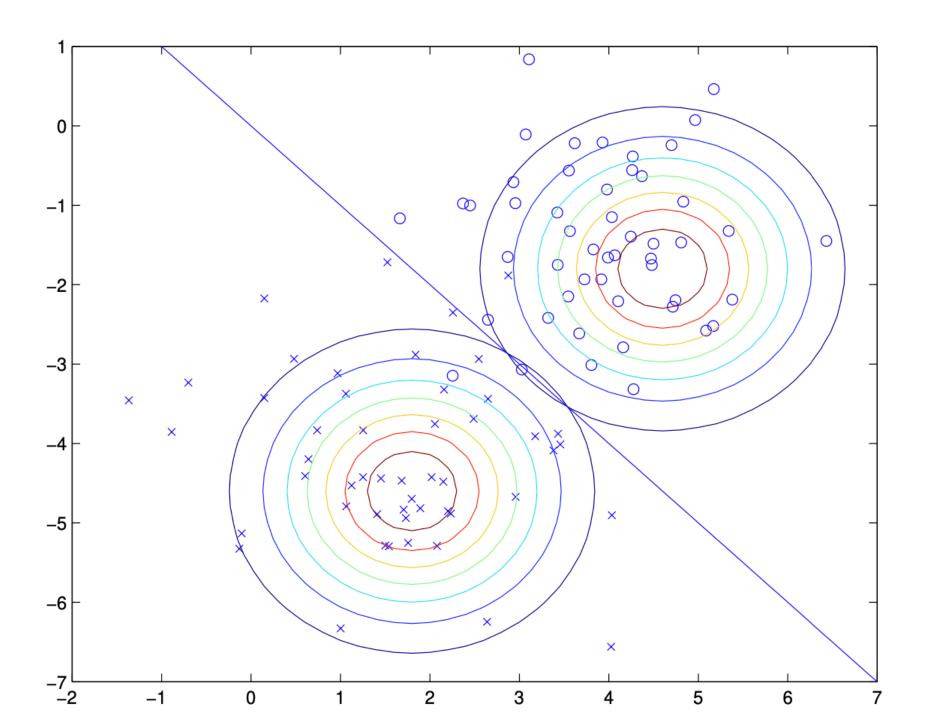
$$\phi = \frac{1}{n} \sum_{i=1}^{n} 1\{y^{(i)} = 1\}$$

$$\mu_{0} = \frac{\sum_{i=1}^{n} 1\{y^{(i)} = 0\}x^{(i)}}{\sum_{i=1}^{n} 1\{y^{(i)} = 0\}}$$

$$\mu_{1} = \frac{\sum_{i=1}^{n} 1\{y^{(i)} = 1\}x^{(i)}}{\sum_{i=1}^{n} 1\{y^{(i)} = 1\}}$$

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu_{y^{(i)}})(x^{(i)} - \mu_{y^{(i)}})^{T}$$

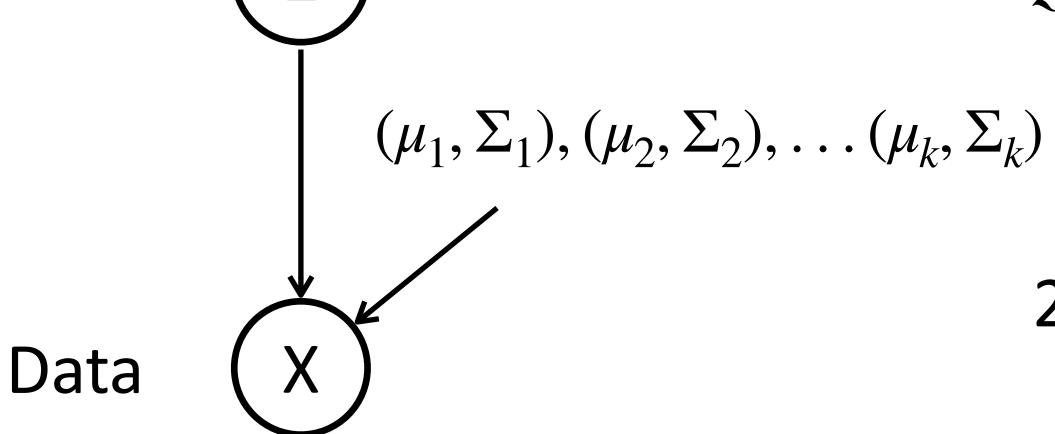
 $= \log \prod p(x^{(i)}|y^{(i)};\mu_0,\mu_1,\Sigma)p(y^{(i)};\phi).$



The Generative Model

p(z): multinomial, k classes(e.g. uniform)

Label



observed in GDA

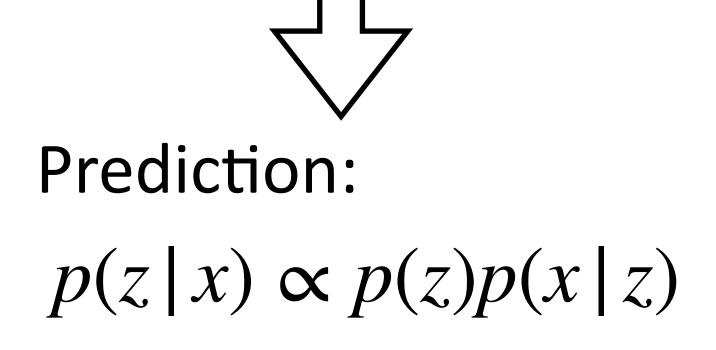
- K is a hyperparameter based on our assumption
 - We assume the generative process as:
 - 1. For each data point, sample its label z_i from p(z)

 - 2. Sample $x_i \sim N(\mu_{z_i}, \Sigma_{z_i})$
- Same as Gaussian Discriminative Analysis, but Z is

Maximum Likelihood Estimation for GMM

Modeling data distribution is a fundamental goal in ML

Supervised: $\operatorname{argmax}_{\phi,\mu,\Sigma} \log p(x,z)$

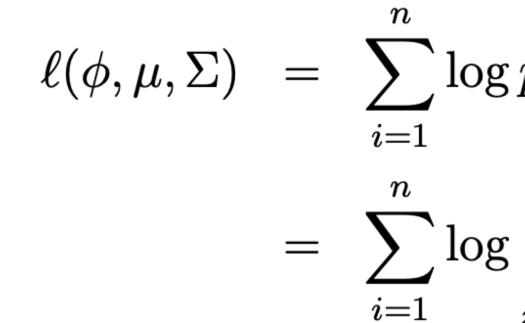


Unsupervised:

 $\operatorname{argmax}_{\phi,\mu,\Sigma} \log p(x)$

How to compute this?

Maximum Likelihood Estimation for GMM



- 1. Intractable (no closed-form for the solution)

$$p(x^{(i)};\phi,\mu,\Sigma)$$

$$\sum_{z^{(i)}=1}^{k} p(x^{(i)}|z^{(i)};\mu,\Sigma) p(z^{(i)};\phi).$$

2. Expensive when k is large (if you want to do gradient descent)

Things are easy when we know z..

In case we know z.

$$\ell(\phi, \mu, \Sigma) = \sum_{i=1}^{n} \log p(x^{(i)} | z^{(i)}; \mu, \Sigma) + \log p(z^{(i)}; \phi).$$

$$\begin{split} \phi_j &= \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{z^{(i)} = j\}, \\ \mu_j &= \frac{\sum_{i=1}^n \mathbb{1}\{z^{(i)} = j\} x^{(i)}}{\sum_{i=1}^n \mathbb{1}\{z^{(i)} = j\}}, \\ \Sigma_j &= \frac{\sum_{i=1}^n \mathbb{1}\{z^{(i)} = j\} (x^{(i)} - \mu_j) (x^{(i)} - \mu_j)^T}{\sum_{i=1}^n \mathbb{1}\{z^{(i)} = j\}}. \end{split}$$

maximize the likelihood given the inferred z

Expectation maximization is to infer the latent variables first (z here), and

Expectation Maximization for GMM

Repeat until convergence:

No parameter change in E-step

(E-step) For each i, j, set

$$w_j^{(i)} := p(z^{(i)} = j | x^{(i)})$$

(M-step) Update the parameters:

$$egin{aligned} \phi_j &:= & rac{1}{n} \sum_{i=1}^n w_j^{(i)}, \ \mu_j &:= & rac{\sum_{i=1}^n w_j^{(i)} x^{(i)}}{\sum_{i=1}^n w_j^{(i)}}, \ \Sigma_j &:= & rac{\sum_{i=1}^n w_j^{(i)} (x^{(i)} - \mu_j) (x}{\sum_{i=1}^n w_j^{(i)}} \end{aligned}$$

- Compute the posterior distribution, $\phi^{(0)};\phi,\mu,\Sigma)$ given current parameters

update parameters using current p(z|x)

 $(i)^{(i)} - \mu_j)^T$

Why does it work?

What is its relation to MLE estimation?

How is convergence guaranteed?

When we perform EM, what is the real objective that we are optimizing?

Expectation Maximization

General EM Algorithm

$$p(x;\theta) = \sum_{z} p(x,z;\theta)$$

$$egin{aligned} \ell(heta) &=& \sum_{i=1}^n \log p(x^{(i)}; heta) \ &=& \sum_{i=1}^n \log \sum_{z^{(i)}} p(x^{(i)},z^{(i)}; heta). \end{aligned}$$

Let Q to be a distribution over z.

Jensen inequality

This lower bound holds for any Q(z) $\log p(x;\theta) = \log \sum_{z} p(x,z;\theta)$ $= \log \sum_{z} Q(z) \frac{p(x,z;\theta)}{Q(z)}$ $\geq \sum_{z} Q(z) \log \frac{p(x,z;\theta)}{Q(z)}$ Suality

For a convex function f, and $t \in [0,1]$

$$f(tx_1 + (1 - t)x_2)$$

In probability:

$f(\mathbb{E}[X]) \le [f(X)]$

If f is strictly convex, then equality holds only when X is a constant

Jensen Inequality

$\leq tf(x_1) + (1 - t)f(x_2)$

Evidence Lower Bound (ELBO)

 $\log p(x; \theta) = \log \theta$

 $= \log \left(\frac{1}{2} \right)$

 \geq

optimize its lower bound instead

Why optimizing lower bound works? How to choose Q(z), why we computed posterior in the E step, what is the benefit?

$$g \sum_{z} p(x, z; \theta)$$

$$g \sum_{z} Q(z) \frac{p(x, z; \theta)}{Q(z)} \qquad \text{ELBO}$$

$$Q(z) \log \frac{p(x, z; \theta)}{Q(z)}$$

Because the log likelihood is intractable, people often

Thank You! Q&A