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Review: How to Choose Prior

Inject prior human knowledge to regularize the estimate
~ Could learn better if data is limited

Posterior easy to compute
~ Conjugate prior



Conjugate Prior

If P(O) is conjugate prior for P(D|0), then Posterior has
same form as prior

Posterior = Likelihood x Prior

P(O|D) = P(D|O) x P(O)

P(theta) P(D|theta) P(theta|D)
Gaussian Gaussian Gaussian
Beta Bernoulli Beta

Dirichlet Multinomial Dirichlet



Review: MLE vs. MAP

Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

Ori7 = arg m@ax P(D|0)

Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and
prior belief

Oryap = arg meax P(0|D)

— arg m@ax P(DI|0)P(60)

When are they the same?



Recap: Generalization
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How Do We Know Generalization in Practice

' We don’t have test data, cannot compute test error

Hold-out or Cross-validation



Hold-out method

Hold - out procedure:

. . o Use the validation dataset to
ndatapointsavailable D = {X;,Yilil, . oib o tact cace

1) Split into two sets (randomly and preserving label proportion):
Training dataset Validation/Hold-out dataset

D T — {4‘(2 }; ;7; 1 D vV — {*\rl YPZ }?: m-+1

2) Train classifier on D+. Report error on validation dataset D,.

e . . . Validation Error
Overfitting if validation error is much larger than training error

In case of gradient descent, we can observe whether the
validation error increases



Drawback of Hold-Out Method

Validation error may be misleading if we get an “unfortunate” split

Validation is essentially mimicking the test



Cross-Validation

K-fold cross-validation

Create K-fold partition of the dataset.
Do K runs: train using K-1 partitions and calculate validation error
on remaining partition (rotating validation partition on each run).
Report average validation error

Run 1l

Run 2

Run K

Total number of examples

10

training l:lvalidation



Drawback of Cross-Validation

Cannot be used to select a specific model, more often
used to select method design, hyperparameters, etc.

Expensive

Hold-out is more commonly used nowadays, and
the validation dataset is provided in advance
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Hold-Out Method

Validation is essentially mimicking the test, always try to pick
validation data that may align with test data, unnecessarily
to hold out training data for validation
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Train, Validation, Test

Validation dataset is another set of pairs {()Ac(l), A(l)), e, (JAC(m), A(m))}

Does not overlap with training dataset

Test dataset is another set of pairs { (", 31, ..., G, 7))
Does not overlap with training and validation dataset
Completely unseen before deployment

Realistic setting
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Validation is Very Important

= Track underfitting/overfitting (in case of iterative training)
» Decide when to stop training

© Select hyperparameters
Hyperparameter tuning

When you tune hyperparameters harder, it is more likely the validation error
would mismatch the test error, because you are overfitting on the validation

Hyperparameter tuning is a form of training
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Good ML Practice

Do not look at or evaluate on the test dataset
Many people are implicitly using test dataset as validation

Always track the training and validation metrics/errors/losses
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Unsupervised Learning

No labels, only x is given

Unsupervised learning is typically “harder” than supervised learning
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What is Clustering

Clustering: the process of grouping a set of objects into classes of similar
objects

— high intra-class similarity
— low inter-class similarity
— It is the most common form of unsupervised learning Similarity is subjective

Clustering 1s subjective

Simpson's Family ~ School Employees Females
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Distance Metrics

X = (Xq, X, +eey Xp)
Y= (Y1 Y2 o) Vp)

Euclidean distance
Manhattan distance

Sup-distance

P
a’(x,y)=2\Z\Ja‘—yfl2
i=1

P
d(x,y)= D |xi—yi]
i=1

d(x,y)=max | xi— yi]

I<i<p
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K-Means Clustering

o $o%°
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K-Means

Algorithm

Input — Desired number of clusters, k

Initialize — the k cluster centers (randomly if necessary)

Iterate —
1. Assigh points to the nearest cluster centers

2. Re-estimate the k cluster centers (aka the centroid or mean), by assuming
the memberships found above are correct.

— 1 —
Pk = 5~ E T
Cr !
1E€Ch
Termination —

If none of the objects changed membership in the last iteration, exit.
Otherwise go to 1.
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K-Means: Step 1
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K-Means: Step 2
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K-Means: Step 3
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K-Means: Step 4
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K-Means: Step 5
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Objective of K-Means

n
J(C, ) = Z [x) — /.LC(I) |° decreases momonotonically.
i=1

Proof?

K-means does not find a global minimus in this objective (it is NP-Hard)
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Initialization of Centers

Results are sensitive to the initialization
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Initialization of Centers

Results are sensitive to the initialization
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Initialization of Centers

Results are sensitive to the initialization

i i (1)
JC,p) =) |Ix = <P
=1

1. Try out multiple starting points and compare the objective

2. K-means++ algorithm improves the initialization
29



Model Selection of K-Means (or
Unsupervised Learning in General)

Try out multiple starting points and compare the objective

- i (1)
JC,op) =D X —u2
i=1

Sometimes people use supervised metrics for

This is unsupervised metric L L . . .
validation, which is not strictly unsupervised learning

1. Compute the metric on training set or test set?
2. For unsupervised learning, what is the difference of train and test?

3. Isit reasonable to assume the test input (x) is given?
4. |If now | give you some data examples, ask you to cluster them. Are these data

training or test?
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Expectation Maximization (EM)



EM for Gaussian Mixture Model

Given a training set {x1, .. x"™}  No Labels

°
°
°
°
° ¢ . .
¢e . We have discussed the supervised
O O O : : : " .
0% o o . case in Gaussian Discriminative Model
¢ °
® o o

Modeling data distribution is a fundamental goal in ML, not necessarily for

classification
32



The Generative Model

0(z): multinomial , k Kis a hyperparameter based on our assumption

Classes(e.g. uniform) We assume the generative process as:

1. For each data point, sample its label
z; from p(z)

Label

(> 21)s (g5 29), -+ - (Mg 2p)

2. Samp|e Xl it N(IMZZ" Zzl.)
Data Gaussian Mixture Model (GMM)

Same as Gaussian Discriminative Analysis, but Z is
observed in GDA
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Recap: How did we do in GDA?

Binary classification: y € {0,1},x € R
Assumption y ~ Bernoulli(¢)
rly=0 ~ N(uo,X)
zly=1 ~ N(u1, %)

$'(1—¢) "

1 1 Txv—1
— (27T)d/2\2|1/2 CXPp (_i(x o IU'O) 2. (ZB o ,LL()))

=
N
<
N
|

=
8
NS
||
=
|

1 1 Ty —1
p(zly=1) = (27r)d/2\§3|1/2 eXp (—5(33—#1) 2 (SB—/Ll))
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Recap: How did we do in GDA?

€(§b7 Mo, K1, Z) lOg Hp(x(2)7y(2)7 ¢7 Moy K1, Z)
1=1

log | | p(9[y™; o, i1, )p(y™; 9).
1=1

- Z 1{y(’&) _ 1
Z’iZl ]_{y(z) — O}ZE(Z)

Z?:l l{y(Z) — O} 2t
> iy Hy' = 1}32®

Z?  H{y® =1} X

—Z £ — ) (@Y — py0)"

X
_7 | | | | | | | |
3 5 -2 -1 0 1 2 3 4 5 6



The Generative Model

0(z): multinomial , k Kis a hyperparameter based on our assumption

Classes(e.g. uniform) We assume the generative process as:

1. For each data point, sample its label
z; from p(z)

Label

(> 21)s (g5 29), -+ - (Mg 2p)

2. Sample x; ~ N(u,, X))
Data o

Same as Gaussian Discriminative Analysis, but Z is
observed in GDA
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Maximum Likelihood Estimation for GMM

Modeling data distribution is a fundamental goal in ML

Supervised: Unsupervised:

argmax, < log p(x, 2) argmax, log p(x)

U How to compute this?

Prediction:
p(z|x) « p(2)p(x|z)
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Maximum Likelihood Estimation for GMM

Up,p,B) = > logp(z®; e, p,%)
1=1

n k
= ) log Y p(a@2%;u,2)p(2"; 9).
1=1

1. Intractable (no closed-form for the solution)
2. Expensive when k is large (if you want to do gradient descent)
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Things are easy when we know z..

In case we know 7

U, 1, %) = Y logp(a®|2%; 1, T) +log p(2%; 9).

1=1

1 « N
¢; = Ezl{z():]}’

Y {29 = 5}

Do 20 =4}

) > {2 =5}z - Hj)(x(i) — Mj)T.
Z?ﬂ l{z(z) =7}

A5
|

Expectation maximization is to infer the latent variables first (z here), and
maximize the likelihood given the inferred 7
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Expectation Maximization for GMM

Repeat until convergence:

{ No parameter change in E-step

(E-step) For each 1, j, set Compute the posterior distribution,

0 . (50 — 140, -
w;  =p(z" =jlz%¢:m%)  given current parameters

J

(M-step) Update the parameters:

1<~ o

¢j — ﬁng-),
1=1 |

L w2 update parameters using current p(z|x)
ljl. - —n 1 )
] Ei=1w§')

| N, S wi? (@@ — ) (@D — )T

J

Z?:l wy('Z)
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Expectation Maximization

Why does it work?

What is its relation to MLE estimation?
How is convergence guaranteed?

When we perform EM, what is the real objective that we are
optimizing?’
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General EM Algorithm

— Zp(xa 2 9)

En: log p(z¥; )
Z log Zp 3;(1) Z("')

N
—~~

D
~—

|

2 This lower bound holds for any Q(z)
C : logp(z;0) = 10gZp(a:,z; 0)
Let Q to be a distribution over 7
_ IOgZQ p(zx, z; 9)
(:1: 2; 0)
> ZQ(Z)log
Jensen inequality : Q(2)
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Jensen Inequality

For a convex function f, and r € |0,1]

ftx, + (1 = )xy) < tf(x)) + (1 = 1)f(x,)

In probability:

AELX] < [AX)]

If fis strictly convex, then equality holds only when X is a constant
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Evidence Lower Bound (ELBO)

logp(z;0) = log » p(,2;0)

|
<)
0%
L
o
=

Q(z) ELBO
> 3°0(2) log p(z, 2;0)

Because the log likelihood is intractable, people often
optimize its lower bound instead

Why optimizing lower bound works? How to choose Q(z), why we
computed posterior in the E step, what is the benefit?
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Thank You!
Q& A
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