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Could	learn	beRer	if	data	is	limited	
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Review:	How	to	Choose	Prior

3

Inject	prior	human	knowledge	to	regularize	the	es8mate	
Could	learn	beRer	if	data	is	limited	

Posterior	easy	to	compute	
Conjugate	prior

When conjugate:

Pas ~F

~ -
Predistrictionfamily
-

P(x1z) ~ distine family D.
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Conjugate	Prior
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P(theta) P(D|theta) P(theta|D)

Gaussian Gaussian Gaussian

Beta Bernoulli Beta

Dirichlet Multinomial Dirichlet

O

- -

Otopic - - -
model o ↳y



Review:	MLE	vs.	MAP
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When	are	they	the	same?	

-

⑦ Pos
-

-pos Unifore-



Recap:	GeneralizaBon
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Zero	training	error Large	test	error
-
-

d
test dat unavailable

O
-x



How	Do	We	Know	GeneralizaBon	in	PracBce
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We	don’t	have	test	data,	cannot	compute	test	error



How	Do	We	Know	GeneralizaBon	in	PracBce
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We	don’t	have	test	data,	cannot	compute	test	error

Hold-out	or	Cross-valida8on
-
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↑ validation
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Hold-out	method
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In	case	of	gradient	descent,	we	can	observe	whether	the	
valida8on	error	increases

Valida8on	Error
-

#e



Hold-out	method

8

In	case	of	gradient	descent,	we	can	observe	whether	the	
valida8on	error	increases

Valida8on	Error

Use	the	valida8on	dataset	to	
mimic	the	test	case

↓
-I



Drawback	of	Hold-Out	Method
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Valida8on	error	may	be	misleading	if	we	get	an	“unfortunate”	split

Valida8on	is	essen8ally	mimicking	the	test

-- -



Cross-ValidaBon
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Drawback	of	Cross-ValidaBon
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Cannot	be	used	to	select	a	specific	model,	more	oaen	
used	to	select	method	design,	hyperparameters,	etc.

Expensive

-
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Drawback	of	Cross-ValidaBon

11

Cannot	be	used	to	select	a	specific	model,	more	oaen	
used	to	select	method	design,	hyperparameters,	etc.

Expensive

Hold-out	is	more	commonly	used	nowadays,	and	
the	valida8on	dataset	is	provided	in	advance



Hold-Out	Method
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Valida8on	is	essen8ally	mimicking	the	test,	always	try	to	pick	
valida8on	data	that	may	align	with	test	data,	unnecessarily	
to	hold	out	training	data	for	valida8on



Train,	ValidaBon,	Test
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Valida8on	dataset	is	another	set	of	pairs	{( ̂x(1), ̂y(1)), ⋯, ( ̂x(m), ̂y(m))}
Does	not	overlap	with	training	dataset	
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Does	not	overlap	with	training	and	valida8on	dataset	



Train,	ValidaBon,	Test

13

Valida8on	dataset	is	another	set	of	pairs	{( ̂x(1), ̂y(1)), ⋯, ( ̂x(m), ̂y(m))}
Does	not	overlap	with	training	dataset	

Test	dataset	is	another	set	of	pairs	{(x̃(1), ỹ(1)), ⋯, (x̃(L), ỹ(L))}
Does	not	overlap	with	training	and	valida8on	dataset	

Completely	unseen	before	deployment

Realis8c	seeng
-
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Track	underfieng/overfieng	(in	case	of	itera8ve	training)

Decide	when	to	stop	training

Select	hyperparameters
Hyperparameter	tuning

When	you	tune	hyperparameters	harder,	it	is	more	likely	the	valida8on	error	
would	mismatch	the	test	error,	because	you	are	overfieng	on	the	valida8on
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ValidaBon	is	Very	Important

14

Track	underfieng/overfieng	(in	case	of	itera8ve	training)

Decide	when	to	stop	training

Select	hyperparameters
Hyperparameter	tuning

When	you	tune	hyperparameters	harder,	it	is	more	likely	the	valida8on	error	
would	mismatch	the	test	error,	because	you	are	overfieng	on	the	valida8on

Hyperparameter	tuning	is	a	form	of	training
-



Good	ML	PracBce
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Good	ML	PracBce
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Do	not	look	at	or	evaluate	on	the	test	dataset



Good	ML	PracBce

15

Do	not	look	at	or	evaluate	on	the	test	dataset

Always	track	the	training	and	valida8on	metrics/errors/losses

#



Good	ML	PracBce

15

Do	not	look	at	or	evaluate	on	the	test	dataset

Always	track	the	training	and	valida8on	metrics/errors/losses

Many	people	are	implicitly	using	test	dataset	as	valida8on
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Unsupervised	Learning

16

⑧



Unsupervised	Learning
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No	labels,	only	x	is	given



Unsupervised	Learning

16

Unsupervised	learning	is	typically	“harder”	than	supervised	learning

No	labels,	only	x	is	given

discover Clustering



What	is	Clustering
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What	is	Clustering
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Similarity	is	subjec8ve

00 :



Distance	Metrics
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Distance	Metrics
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I

-
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K-Means	Clustering
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K-Means
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K-Means
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K-Means

20

-

-
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K-Means
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K-Means:	Step	1
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K-Means:	Step	2
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K-Means:	Step	3
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of o

↓ O
O
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K-Means:	Step	4
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O
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K-Means:	Step	5
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D O - assignment

O O terminate



ObjecBve	of	K-Means
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ObjecBve	of	K-Means

26

assignment
↑

I
-

-

cluster center



ObjecBve	of	K-Means
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Proof?



ObjecBve	of	K-Means
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Proof?

K-means	does	not	find	a	global	minimus	in	this	objec8ve	(it	is	NP-Hard)

O-
m
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Results	are	sensi8ve	to	the	ini8aliza8on
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Results	are	sensi8ve	to	the	ini8aliza8on



IniBalizaBon	of	Centers
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Results	are	sensi8ve	to	the	ini8aliza8on

0 O

O
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Results	are	sensi8ve	to	the	ini8aliza8on

of
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Results	are	sensi8ve	to	the	ini8aliza8on

1.	Try	out	mul8ple	star8ng	points	and	compare	the	objec8ve
②



IniBalizaBon	of	Centers
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Results	are	sensi8ve	to	the	ini8aliza8on

2.	K-means++	algorithm	improves	the	ini8aliza8on	
1.	Try	out	mul8ple	star8ng	points	and	compare	the	objec8ve



Model	SelecBon	of	K-Means	(or	
Unsupervised	Learning	in	General)
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Try	out	mul8ple	star8ng	points	and	compare	the	objec8ve
-



Model	SelecBon	of	K-Means	(or	
Unsupervised	Learning	in	General)
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Try	out	mul8ple	star8ng	points	and	compare	the	objec8ve

This	is	unsupervised	metric

-
-



Model	SelecBon	of	K-Means	(or	
Unsupervised	Learning	in	General)
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Try	out	mul8ple	star8ng	points	and	compare	the	objec8ve

This	is	unsupervised	metric
Some8mes	people	use	supervised	metrics	for	
valida8on,	which	is	not	strictly	unsupervised	learning#

important &supervisedtesti I

-



Model	SelecBon	of	K-Means	(or	
Unsupervised	Learning	in	General)

30

Try	out	mul8ple	star8ng	points	and	compare	the	objec8ve

This	is	unsupervised	metric

1. Compute	the	metric	on	training	set	or	test	set?

Some8mes	people	use	supervised	metrics	for	
valida8on,	which	is	not	strictly	unsupervised	learning②

generalization
-
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Try	out	mul8ple	star8ng	points	and	compare	the	objec8ve

This	is	unsupervised	metric

1. Compute	the	metric	on	training	set	or	test	set?
2. For	unsupervised	learning,	what	is	the	difference	of	train	and	test?

Some8mes	people	use	supervised	metrics	for	
valida8on,	which	is	not	strictly	unsupervised	learning
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Model	SelecBon	of	K-Means	(or	
Unsupervised	Learning	in	General)

30

Try	out	mul8ple	star8ng	points	and	compare	the	objec8ve

This	is	unsupervised	metric

1. Compute	the	metric	on	training	set	or	test	set?
2. For	unsupervised	learning,	what	is	the	difference	of	train	and	test?
3. Is	it	reasonable	to	assume	the	test	input	(x)	is	given?

Some8mes	people	use	supervised	metrics	for	
valida8on,	which	is	not	strictly	unsupervised	learning

->
practical



Model	SelecBon	of	K-Means	(or	
Unsupervised	Learning	in	General)

30

Try	out	mul8ple	star8ng	points	and	compare	the	objec8ve

This	is	unsupervised	metric

1. Compute	the	metric	on	training	set	or	test	set?
2. For	unsupervised	learning,	what	is	the	difference	of	train	and	test?
3. Is	it	reasonable	to	assume	the	test	input	(x)	is	given?
4. If	now	I	give	you	some	data	examples,	ask	you	to	cluster	them.	Are	these	data	

training	or	test?	

Some8mes	people	use	supervised	metrics	for	
valida8on,	which	is	not	strictly	unsupervised	learning-

-

#
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Expecta8on	Maximiza8on	(EM)

sum
- ↓

T
-L

diffusion VAE PGM
-



EM	for	Gaussian	Mixture	Model
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Given	a	training	set	{x(1), . . x(n)}
-

-
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EM	for	Gaussian	Mixture	Model
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Given	a	training	set	{x(1), . . x(n)} No	Labels

We	have	discussed	the	supervised	
case	in	Gaussian	Discrimina8ve	Model
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EM	for	Gaussian	Mixture	Model

32

Given	a	training	set	{x(1), . . x(n)} No	Labels

We	have	discussed	the	supervised	
case	in	Gaussian	Discrimina8ve	Model

Modeling	data	distribu8on	is	a	fundamental	goal	in	ML,	not	necessarily	for	
classifica8on	

apple
compression

is intelligence

↓ full
down

-

lawer
Newton

enerate
th- understandth



The	GeneraBve	Model
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Z

X

Label

Data

p(z):	mul8nomial	,	k	
classes(e.g.	uniform)

(μ1, Σ1), (μ2, Σ2), . . . (μk, Σk)

-

-

Plz)

1, 2-- K

-

mem
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We	assume	the	genera8ve	process	as:

1.	For	each	data	point,	sample	its	label	
	from	p(z)zi

2.	Sample	xi ∼ N(μzi
, Σzi

)

Same	as	Gaussian	Discrimina8ve	Analysis,	but	Z	is	
observed	in	GDA

K	is	a	hyperparameter	based	on	our	assump8on

=



The	GeneraBve	Model
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Z

X

Label

Data

p(z):	mul8nomial	,	k	
classes(e.g.	uniform)

(μ1, Σ1), (μ2, Σ2), . . . (μk, Σk)

We	assume	the	genera8ve	process	as:

1.	For	each	data	point,	sample	its	label	
	from	p(z)zi

2.	Sample	xi ∼ N(μzi
, Σzi

)

Same	as	Gaussian	Discrimina8ve	Analysis,	but	Z	is	
observed	in	GDA

K	is	a	hyperparameter	based	on	our	assump8on

Gaussian	Mixture	Model	(GMM)
-



Recap:	How	did	we	do	in	GDA?
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Binary	classifica8on:	y ∈ {0,1}, x ∈ Rd
-
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Binary	classifica8on:	y ∈ {0,1}, x ∈ Rd

Assump8on
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The	GeneraBve	Model
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Z

X

Label

Data

p(z):	mul8nomial	,	k	
classes(e.g.	uniform)

(μ1, Σ1), (μ2, Σ2), . . . (μk, Σk)

We	assume	the	genera8ve	process	as:

1.	For	each	data	point,	sample	its	label	
	from	p(z)zi

2.	Sample	xi ∼ N(μzi
, Σzi

)

Same	as	Gaussian	Discrimina8ve	Analysis,	but	Z	is	
observed	in	GDA

K	is	a	hyperparameter	based	on	our	assump8on

z

EBO
#
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Supervised:	

	argmaxϕ,μ,Σ log p(x, z)

Modeling	data	distribu8on	is	a	fundamental	goal	in	ML
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	argmaxϕ,μ,Σ log p(x)-

-
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Supervised:	

	argmaxϕ,μ,Σ log p(x, z)

Modeling	data	distribu8on	is	a	fundamental	goal	in	ML

Unsupervised:	

	argmaxϕ,μ,Σ log p(x)

Predic8on:	

	p(z |x) ∝ p(z)p(x |z)

-
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Maximum	Likelihood	EsBmaBon	for	GMM

37

Supervised:	

	argmaxϕ,μ,Σ log p(x, z)

Modeling	data	distribu8on	is	a	fundamental	goal	in	ML

Unsupervised:	

	argmaxϕ,μ,Σ log p(x)

Predic8on:	

	p(z |x) ∝ p(z)p(x |z)

How	to	compute	this?
-



Maximum	Likelihood	EsBmaBon	for	GMM
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↓

①O
P(E)

-

prx

P(x) =&Pixity



Maximum	Likelihood	EsBmaBon	for	GMM
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1. Intractable	(no	closed-form	for	the	solu8on)

&
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Maximum	Likelihood	EsBmaBon	for	GMM

38

1. Intractable	(no	closed-form	for	the	solu8on)
2. Expensive	when	k	is	large	(if	you	want	to	do	gradient	descent)

T

S Pax1t , M.Peuy
Z

- t continuous

-
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Things	are	easy	when	we	know	z..	
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In	case	we	know	z

Expecta8on	maximiza8on	is	to	infer	the	latent	variables	first	( 	here),	and	
maximize	the	likelihood	given	the	inferred	

z
z

⑧
-



ExpectaBon	MaximizaBon	for	GMM
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}
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Repeat	un8l	convergence:	
{

}

-&
-
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ExpectaBon	MaximizaBon	for	GMM
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Repeat	un8l	convergence:	
{

Compute	the	posterior	distribu8on,	
given	current	parameters

}

p
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Repeat	un8l	convergence:	
{
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No	parameter	change	in	E-step

}
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Repeat	un8l	convergence:	
{
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given	current	parameters
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}

mem
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ExpectaBon	MaximizaBon	for	GMM
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Repeat	un8l	convergence:	
{

Compute	the	posterior	distribu8on,	
given	current	parameters

No	parameter	change	in	E-step

}

update	parameters	using	current	p(z|x)



ExpectaBon	MaximizaBon

41

Why	does	it	work?

What	is	its	rela8on	to	MLE	es8ma8on?

How	is	convergence	guaranteed?	

When	we	perform	EM,	what	is	the		real	objec8ve	that	we	are	
op8mizing?
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Let	Q	to	be	a	distribu8on	over	z

Jensen	inequality

This	lower	bound	holds	for	any	Q(z)
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43

For	a	convex	func8on	 ,	and	f t ∈ [0,1]

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)

In	probability:

f(𝔼[X]) ≤ [ f(X)]
If	 	is	strictly	convex,	then	equality	holds	only	when	X	is	a	constantf
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Evidence	Lower	Bound	(ELBO)

44

Because	the	log	likelihood	is	intractable,	people	oaen	
op8mize	its	lower	bound	instead

Why	op8mizing	lower	bound	works?	How	to	choose	Q(z),	why	we	
computed	posterior	in	the	E	step,	what	is	the	benefit?

ELBO



Thank	You!	
Q	&	A
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