

Unsupervised Learning: Clustering, Expectation Maximization

Junxian He Oct 15, 2024 COMP 5212 Machine Learning Lecture 11

Oct 24, in-class (130pm-250pm, locations TBA)

Midterm Exam

till lecture ¹² EM

(including Lecture 12)

Review: How to Choose Prior

Inject prior human knowledge to regularize the estimate Could learn better if data is limited \bigcirc

 $\frac{f(y)}{f(y)}$

Review: How to Choose Prior

Inject prior human knowledge to regularize the estimate Could learn better if data is limited

When conjugate:

 $f(z|X)\sim f$

Conjugate Prior

same form as prior

- Posterior = Likelihood x Prior $P(\theta | D) = P(D | \theta) \times P(\theta)$
- If $P(\theta)$ is conjugate prior for $P(D|\theta)$, then Posterior has

Conjugate Prior Conjugate Prior
ugate prior for $P(D|\theta)$, then Pc

Posterior = Likelihood x Prior $P(\theta|D) = P(D|\theta) \times P(\theta)$

Review: MLE vs. N
Likelihood estimation (MLE)
lue that maximizes the probability
 $\hat{\theta}_{MLE} = \arg \max_{\theta} P(D|\theta)$
a posteriori (MAP) estimation
lue that is most probable given obser
f
 $\hat{\theta}_{MAP} = \arg \max_{\theta} P(\theta|D)$ **Review: MLE vs. M**

kelihood estimation (MLE)

e that maximizes the probability of
 $\hat{\theta}_{MLE} = \arg \max_{\theta} P(D|\theta)$

posteriori (MAP) estimation

e that is most probable given obser
 $\hat{\theta}_{MAP} = \arg \max_{\theta} P(\theta|D)$
 $= \arg \max_{\theta} P(D|\theta) \overbrace{$ **Review: M**

aximum Likelihood estimation (I

oose value that maximizes the J
 $\hat{\theta}_{MLE} = \arg \max_{\theta}$

aximum *a posteriori* (MAP) estim

noose value that is most probable

ior belief
 $\hat{\theta}_{MAP} = \arg \max_{\theta} P$
 $= \arg \max_{\theta} P$

When

When are they the same?

Review: MLE vs. MAP

5 $\begin{matrix} \widehat{P}(\theta) \end{matrix}$ /(θ) $\frac{\frac{\partial}{\partial x} P(D|\theta) \overbrace{P(\theta)}}{\frac{\partial}{\partial y}} \qquad \int_{(\varphi)} \rho(\theta) \overbrace{P(\theta)} \qquad \int_{(\varphi)} \rho(\theta) \overbrace{P(\theta)} \rho(\theta)$

-
-
-
-
-

Recap: Generalization

How Do We Know Generalization in Practice

How Do We Know Generalization in Practice Expressed September 2014

Hold-out or Cross-validation

Hold-out method

Hold-out method $\begin{aligned} \textbf{old-out m} \\\\ D &\equiv \{X_i, Y_i\}_{i=1}^n \end{aligned}$

<u> Hold - out procedure:</u>

Hold-out method

HOIG-OUT METHOG

 IT procedure:

points available $D = \{X_i, Y_i\}_{i=1}^n$

to two sets (randomly and preserving label proportion):

Training dataset Validation/Hold-out dataset
 $D_T = \{X_i, Y_i\}_{i=1}^m$ $D_V = \{X_i, Y_i\}_{i=m+1}^n$

-
-
- Valuation/Hold-Out dataset
 $D_V = \{X_i, Y_i\}_{i=m+1}^n$
 $Sma\| \qquad \qquad \int_0^2$ \int_0^2

Hold-out method Hold-out method

The $D \equiv \{X_i, Y_i\}_{i=1}^n$

mdomly and preserving label propolaset

Validation/Hold-out da

V_i } m

Report error on validation dataset C

Report error on validation dataset C

Din error is much larger

-
-
-
-

Hold-out method

Hold - out procedure:

n data points available $D \equiv \{X_i, Y_i\}_{i=1}^n$

1) Split into two sets (randomly and preserving label proportion): Training dataset Validation/Hold-out dataset

 $D_T = \{X_i, Y_i\}_{i=1}^m$ D_V

2) Train classifier on D_T . Report error on validation dataset D_V . Overfitting if validation error is much larger than training error

-
-

$$
= \{X_i, Y_i\}_{i=m+1}^n
$$

Hold-out method

$$
D_T = \{X_i, Y_i\}_{i=1}^m \qquad D_V = \{X_i, Y_i\}_{i=m+1}^n
$$

Hold-out method
 rocedure:

is available $D = \{X_i, Y_i\}_{i=1}^n$

o sets (randomly and preserving label proportion):

ining dataset validation/Hold-out dataset
 $P = \{X_i, Y_i\}_{i=1}^m$ $D_V = \{X_i, Y_i\}_{i=m+1}^n$

per on <u>D_r, Rep</u> **Validation Error** $\frac{1}{2}$

dataset D_V.

n training error

ve whether the

In case of gradient descent, we can observe whether the validation error increases

-
-

Hold - out procedure:

n data points available

Training dataset

 $D_T = \{X_i, Y_i\}_{i=1}^m$ D_V

Validation Error

In case of gradient descent, we can observe whether the validation error increases

$$
= \{X_i, Y_i\}_{i=m+1}^n
$$

Drawback of Hold-Out Method

Validation error may be misleading if we get ar'' unfortunate" split **Drawback of Hold-Out Method**

Validation error may be misleading if we get an *unfortunate" split*

Validation is essentially mimicking the test

Validation is essentially mimicking the test

Cross-Validation

-
-

Cannot be used to select a specific model, more often **Drawback of Cross-Validation**

(Cannot be used to select a specific model, more often)

used to select method design, hyperparameters, etc.

Expensive Cannot be
used to sel
Expensive

Drawback of Cross-Validation

Drawback of Cross-Validation

Cannot be used to select a specific model, more often used to select method design, hyperparameters, etc.

> Hold-out is more commonly used nowadays, and the validation dataset is provided in advance

Hold-Out Method

Validation is essentially mimicking the test, always try to pick validation data that may align with test data, unnecessarily to hold out training data for validation

Train, ValidaBon, Test

Validation dataset is another set of pairs $\{(\hat{x}^{(1)}, \hat{y}^{(1)}\)}$ ̂ **The Contract of Contract o**), ⋯ , (*x* ̂ (*m*) , *y* (*m*))}

Does not overlap with training dataset

Validation dataset is another set of pa

Train, ValidaBon, Test

airs {
$$
(\hat{x}^{(1)}, \hat{y}^{(1)})
$$
, ..., $(\hat{x}^{(m)}, \hat{y}^{(m)})$ }

Does not overlap with training dataset

Test dataset is another set of pairs {(*x*

$$
\tilde{x}^{(1)}, \tilde{y}^{(1)}), \cdots, (\tilde{x}^{(L)}, \tilde{y}^{(L)})\}
$$

Does not overlap with training and validation dataset

Validation dataset is another set of pa

airs {
$$
(\hat{x}^{(1)}, \hat{y}^{(1)})
$$
, ..., $(\hat{x}^{(m)}, \hat{y}^{(m)})$ }

Does not overlap with training dataset

Test dataset is another set of pairs {(*x*

Train, Validation, Test

$$
\tilde{x}^{(1)}, \tilde{y}^{(1)}), \cdots, (\tilde{x}^{(L)}, \tilde{y}^{(L)})\}
$$

Does not overlap with training and validation dataset Completely unseen before deployment **alidation, Test**

pairs $\{(\hat{x}^{(1)}, \hat{y}^{(1)}), \dots, (\hat{x}^{(m)}, \hat{y}^{(n)})\}$

Does not overlap with training
 $\{(\tilde{x}^{(1)}, \tilde{y}^{(1)}), \dots, (\tilde{x}^{(L)}, \tilde{y}^{(L)})\}$

Does not overlap with training and valid

Completely unseen before d

Realistic setting

Track underfitting/overfitting (in case of iterative training)

Track underfitting/overfitting (in case of iterative training)

Track underfitting/overfitting (in case of iterative training)

\bullet Track underfitting/overfitting (in case of iterative training)

Decide when to stop training

Decide when to stop training

Select hyperparameters

Track underfitting/overfitting (in case of iterative training)

Decide when to stop training

Select hyperparameters

Hyperparameter tuning

Hyperparameter tuning \bigwedge $t\nu^{\mu\nu}$

Decide when to stop training

Select hyperparameters

When you tune hyperparameters harder, it is more likely the validation error would mismatch the test error, because you are overfitting on the validation **mportant**

terative training)

uning

ore likely the validation error

experience the validation

experience the validation error
ation

Decide when to stop training

Select hyperparameters

When you tune hyperparameters harder, it is more likely the validation error would mismatch the test error, because you are overfitting on the validation Consider the Select has Select has November 2014

Hyperparameter tuning

Hyperparameter tuning is a form of training

C Do not look at or evaluate on the test dataset

Do not look at or evaluate on the test dataset

Always track the training and validation metrics/errors/losses

Do not look at or evaluate on the test dataset Many people are implicitly using test dataset as validation

Always track the training and validation metrics/errors/losses

-
-

No labels, only x is given

Unsupervised learning is typically "harder" than supervised learning

No labels, only x is given

discover Clustering

What is Clustering

What is Clustering

What is Cluster
ering: the process of grouping a set of objects in
ts
igh intra-class similarity
w inter-class similarity
is the most common form of unsupervised learning
is the most common form of unsupervised learning

- -
-
-

Clustering: the process of grouping a set of objects into classes of similar objects

- high intra-class similarity
- low inter-class similarity
- It is the most common form of unsupervised learning

Similarity is subjective

Clustering: the process of grouping a set of objects into classes of similar objects

- high intra-class similarity
- low inter-class similarity
-

Distance Metrics

Dist:
 $x = (x_1, x_2, ..., x_p)$
 $y = (y_1, y_2, ..., y_p)$

Distance Metrics

$$
x = (x_1, x_2, ..., x_p)
$$

y = (y₁, y₂, ..., y_p)

Euclidean distance

 $d(x, z)$

Manhattan distance

 $d(x,$

Sup-distance

 $d(x,$

$$
(x, y) = \sqrt[2]{\sum_{i=1}^{p} |x_i - y_i|^2}
$$

$$
(x, y) = \sum_{i=1}^{p} |x_i - y_i|
$$

$$
(x, y) = \max_{1 \le i \le p} |x_i - y_i|
$$

K-Means Clustering

Algorithm

Input – Desired number of clusters, k

Initialize – the k cluster centers (randomly if necessary) $\big)$

Iterate-

ingent

Algorithm

Input – Desired number of clusters, k

Initialize $-$ the k cluster centers (randomly if necessary) Iterate-

1. Assign points to the nearest cluster centers

Algorithm

Input – Desired number of clusters, k Initialize $-$ the k cluster centers (randomly if necessary) Iterate $-$

- Assign points to the nearest cluster centers 1.
- 2. Re-estimate the k cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

$$
\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}}
$$

K-Means

assigntment

terminate

assignment Objective of K-Means $J(C, \mu) = \sum_{i=1}^{N} ||x^{(i)} - \mu^{C^{(i)}}||^2$ decreases momonotonically. dieseer center

Objective of K-Means

$J(C, \mu) = \sum_{i=1}^{n} ||x^{(i)} - \mu^{C^{(i)}}||^2$ decreases momonotonically. Proof?

Objective of K-Means

K-means does not find a global minimus in this objective (it is NP-Hard)

Proof?

Results are sensitive to the initialization

1. Try out multiple starting points and compare the objective

Results are sensitive to the initialization

2. K-means++ algorithm improves the initialization 1. Try out multiple starting points and compare the objective

Model Selection of K-Means (or Unsupervised Learning in General)

Try out multiple starting points and compare the objective $J(C, \mu) = \sum_{i=1}^{n} ||x^{(i)} - \mu^{C^{(i)}}||^2$

Model Selection of K-Means (or Unsupervised Learning in General)

Try out multiple starting points and compare the objective

This is unsupervised metric

 $\left(J(C,\mu)=\sum_{i=1}^n||x^{(i)}-\mu^{C^{(i)}}||^2\right)$

Model SelecBon of K-Means (or Unsupervised Learning in General) Try out multiple starting points and compare the objective This is unsupervised metric) Sometimes people use supervised metrics for a validation, which is not sprictly unsupervised learning **Model Selection of K-Means (or

Unsupervised Learning in General)**

volumetries to the objective

very strictly unsupervised metric of the strictly unsupervised learning

validation, which is not strictly unsupervised le **ervised Learning in General)**

Supervised Learning in General)
 $J(C, \mu) = \sum_{i=1}^{n} ||x^{(i)} - \mu^{(i)}||^2$

Sometimes people use supervised metrics for

tric of Supervised *Call*

Supervised *Call*

Supervised *Call*

Supervise I

Model SelecBon of K-Means (or Unsupervised Learning in General)

Try out multiple starting points and compare the objective

Compute the metric on training set or test set? generalization

$$
\sum_{i=1}^n \|x^{(i)} - \mu^{C^{(i)}}\|^2
$$

Sometimes people use supervised metrics for n General)
e objective
est supervised not strictly unsure
of lenevalitation

Model SelecBon of K-Means (or Unsupervised Learning in General) Model Selection of K-Means (or
 Unsupervised Learning in General)

Try out multiple starting points and compare the objective
 $J(C,\mu) = \sum_{i=1}^{n} ||x^{(i)} - \mu^{C^{(i)}}||^2$

this is unsupervised metric

Sometimes people use su

- Try out multiple starting points and compare the objective
- This is unsupervised metric
-
- Compute the metric on training set or test set?
- 2. For unsupervised learning, what is the difference of train and test?

$$
\sum_{i=1}^n \|x^{(i)} - \mu^{C^{(i)}}\|^2
$$

Sometimes people use supervised metrics for validation, which is not strictly unsupervised learning

**Model SelecBon of K-Means (or Unsupervised Learning in General) Model Selection of K-Me

Unsupervised Learning in**

Try out multiple starting points and compare the or
 $J(C, \mu) = \sum_{i=1}^{n} ||x^{(i)} - \mu^{(i)}||^2$

his is unsupervised metric

Sometimes people use

validation, which is no

Com

- Try out multiple starting points and compare the objective
	-

This is unsupervised metric

- Compute the metric on training set or test set?
- 2. For unsupervised learning, what is the difference of train and test?
- 3. Is it reasonable to assume the test input (x) is given? \int^{γ} ℓ ϵ ℓ ℓ \in α

$$
\sum_{i=1}^n \|x^{(i)} - \mu^{C^{(i)}}\|^2
$$

Sometimes people use supervised metrics for validation, which is not strictly unsupervised learning

Model Selection of K-Means (or Unsupervised Learning in General)

Try out multiple starting points and compare the objective

- Compute the metric on training set or test set?
- 2. For unsupervised learning, what is the difference of train and test?
- 3. Is it reasonable to assume the test input (x) is given?
- 4. *If now I give you some data examples, ask you to cluster them. Are these data* training or test? **Model Selection of K-Means (or

Unsupervised Learning in General)**

Try out multiple starting points and compare the objective
 $J(C,\mu) = \sum_{i=1}^{n} ||x^{(i)} - \mu^{C^{(i)}}||^2$

This is unsupervised metric (a) sometimes people use s
	-

$$
\sum_{i=1}^n \|x^{(i)} - \mu^{C^{(i)}}\|^2
$$

Sometimes people use supervised metrics for validation, which is not strictly unsupervised learning

EM for Gaussian Mixture Model

EM for Gaussian Mixture Model

Given a training set $\{x^{(1)}, \ldots x^{(n)}\}$ No Labels

We have discussed the supervised _ocase in Gaussian Discriminative Model $l^{P(Y)}$ We will be written V We have discussed the supervised

gis observed (1) $y \ge 1$, 2, 3, 6, 6, 6, 1)

y is hidden p p (x lg) a Gauss C N_k, G_c)

} No Labels

Given a training set $\{x^{(1)}, \ldots x^{(n)}\}$

EM for Gaussian Mixture Model

Given a training set $\{x^{(1)}, \ldots x^{(n)}\}$

We have discussed the supervised case in Gaussian Discriminative Model

generate sth \longrightarrow understand sth

Modeling data distribution is a fundamental goal in ML, not necessarily for

} No Labels

compression is intelligence **an Mixture Model**

No Labels

Compression is the ligenge

We have discussed the supervised

case in Gaussian Discriminative Model

th

wadevstand seth

ndamental goal in ML, not necessarily for

We assume the generative process as:

- We assume the generative process as:
- 1. For each data point, sample its label **erative N**
We assume
1. For each
 z_i from p(z) z_i from $p(z)$

- We assume the generative process as:
- 1. For each data point, sample its label z_i from $p(z)$
-
- 2. Sample $x_i \sim N(\mu_{z_i}, \Sigma_{z_i})$

- K is a hyperparameter based on our assumption
	- We assume the generative process as:
	- 1. For each data point, sample its label z_i from $p(z)$
	-
	- 2. Sample $x_i \sim N(\mu_{z_i}, \Sigma_{z_i})$

- K is a hyperparameter based on our assumption
	- We assume the generative process as:
	- 1. For each data point, sample its label z_i from $p(z)$
	-
	- 2. Sample $x_i \sim N(\mu_{z_i}, \Sigma_{z_i})$

Same as Gaussian Discriminative Analysis, but Z is

X

Data

The Generative Model

observed in GDA

- K is a hyperparameter based on our assumption
	- We assume the generative process as:
	- 1. For each data point, sample its label z_i from $p(z)$
	-
- 2. Sample $x_i \sim N(\mu_{z_i}, \Sigma_{z_i})$ Gaussian Mixture Model (GMM)
- Same as Gaussian Discriminative Analysis, but Z is

Binary classification: $y \in \{0,1\}$, $x \in R^d$

Binary classification: $y \in \{0,1\}$, $x \in R^d$

Assumption

Binary classification: $y \in \{0,1\}$, $x \in R^d$

Assumption

$$
p(y) = \phi^{y} (1 - \phi)^{1-y}
$$

\n
$$
p(x|y = 0) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_0)^{T} \Sigma^{-1} (x - \mu_0)\right)
$$

\n
$$
p(x|y = 1) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_1)^{T} \Sigma^{-1} (x - \mu_1)\right)
$$

 $y \sim \text{Bernoulli}(\phi)$ $x|y=0 \sim \mathcal{N}(\mu_0, \Sigma)$ $x|y=1 \sim \mathcal{N}(\mu_1, \Sigma)$

 $\ell(\phi, \mu_0, \mu_1, \Sigma) = \log \prod p(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma)$ $= \log \prod p(x^{(i)}|y^{(i)};\mu_0,\mu_1,\Sigma)p(y^{(i)};\phi).$

 $\ell(\phi, \mu_0, \mu_1, \Sigma) = \log \prod_{i=1} p(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma)$
 $= \log \prod_{i=1}^n p(x^{(i)} | y^{(i)}; \mu_0, \mu_1, \Sigma) p(y^{(i)}; \phi).$
 $\phi = \frac{1}{n} \sum_{i=1}^n 1\{y^{(i)} = 1\}}$
 $\mu_0 = \frac{\sum_{i=1}^n 1\{y^{(i)} = 0\} x^{(i)}}{\sum_{i=1}^n 1\{y^{(i)} = 1\} x^{(i)}}$
 $\Sigma = \$

 $\ell(\phi, \mu_0, \mu_1, \Sigma) = \log \prod p(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma)$ $i=1$ \boldsymbol{n} $i = 1$

$$
\begin{array}{rcl}\n\phi & = & \frac{1}{n} \sum_{i=1}^{n} 1\{y^{(i)} = 1\} \\
\mu_0 & = & \frac{\sum_{i=1}^{n} 1\{y^{(i)} = 0\} x^{(i)}}{\sum_{i=1}^{n} 1\{y^{(i)} = 0\}} \\
\mu_1 & = & \frac{\sum_{i=1}^{n} 1\{y^{(i)} = 1\} x^{(i)}}{\sum_{i=1}^{n} 1\{y^{(i)} = 1\}} \\
\Sigma & = & \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu_{y^{(i)}})(x^{(i)} - \mu_{y^{(i)}})^T\n\end{array}
$$

 $= \log \prod p(x^{(i)}|y^{(i)};\mu_0,\mu_1,\Sigma)p(y^{(i)};\phi).$

 $p(z)$: multinomial, k classes(e.g. uniform)

observed in GDA

- K is a hyperparameter based on our assumption
	- We assume the generative process as:
	- 1. For each data point, sample its label z_i from $p(z)$
	- EBO
	- 2. Sample $x_i \sim N(\mu_{z_i}, \Sigma_{z_i})$
- Same as Gaussian Discriminative Analysis, but Z is

Modeling data distribution is a fundamental goal in ML

Modeling data distribution is a fundamental goal in ML

Supervised: argmax $_{\phi,\mu,\Sigma}$ log $p(x,z)$

Modeling data distribution is a fundamental goal in ML

Unsupervised: $\argmax_{\phi,\mu,\Sigma} \log p(x)$

Modeling data distribution is a fundamental goal in ML

Supervised: argmax $_{\phi,\mu,\Sigma}$ log $p(x,z)$

Unsupervised: argmax $_{\phi,\mu,\Sigma}$ log $p(x)$ Stimation for GN

amental goal in ML

Unsupervised:

argmax $\underset{\phi,\mu,\Sigma}{\overbrace{\sum}} \log p(x)$

Maximum Likelihood Estimation for GMM stimation for G
 amental goal in ML
 argmax $_{\phi,\mu,\Sigma}$ $\frac{\log p(x)}{\log p(x)}$
 How to compute thereon

Modeling data distribution is a fundamental goal in ML

Supervised: argmax $_{\phi,\mu,\Sigma}$ log $p(x,z)$

Unsupervised:

argmax $_{\phi,\mu,\Sigma}$ log $p(x)$

How to compute this?

 $p(z|x) \propto p(z)p(x|z)$

Maximum Likelihood Estimation for GMM $7l$ Z) $\begin{array}{lcl} \displaystyle \ell(\phi,\mu,\Sigma) & = & \displaystyle \sum_{i=1}^n \log p(x^{(i)};\phi,\mu,\Sigma) \ \displaystyle & = & \displaystyle \sum_{i=1}^n \log \sum_{z^{(i)}=1}^k p(x^{(i)}|z^{(i)};\mu,\Sigma) p(z^{(i)};\phi). \end{array}$ PCA^2

1. Intractable (no closed-form for the solution)

$$
p(x^{(i)};\phi,\mu,\Sigma)
$$

$$
\sum_{z^{(i)}=1}^{k} p \!\!\left(x^{(i)}|z^{(i)};\mu,\Sigma\right) p(z^{(i)};\phi).
$$

1. Intractable (no closed-form for the solution) 2. Expensive when k is large (if you want to do gradient descent) **Taximum Likelihood Estimation for**
 $\ell(\phi, \mu, \Sigma) = \sum_{i=1}^{n} \log p(x^{(i)}; \phi, \mu, \Sigma)$
 $= \sum_{i=1}^{n} \log \sum_{s^{(i)}=1}^{k} p(x^{(i)} | z^{(i)}; \mu, \Sigma) p(z^{(i)}; \phi).$

Intractable (no closed-form for the solution)

Expensive when k is large (if you ϕ).
 $\int_{Z} \left[?_{C} \times 1 + , M, \Sigma \right)$ $\overline{\mathcal{L}}$ **timation for GM**
 (a, Σ)
 $\overline{a} = \frac{1}{\sqrt{2}}$
 \overline nt to do gradien
L rom tin ous

Things are easy when we know z..

In case we know *z*
Things are easy when we know z..

 $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ 42x,z)

In case we know *z*

hings are easy when we kn

 $\ell(\phi, \mu, \Sigma) = \sum_{i=1}^{n} \log p(x^{(i)} | z^{(i)}; \mu, \Sigma) + \log p(z^{(i)}; \phi)$

Things are easy when we know z..

In case we know *z*

$$
\ell(\phi, \mu, \Sigma) = \sum_{i=1}^{n} \log p(x^{(i)} | z^{(i)}; \mu, \Sigma) + \log p(z^{(i)}; \phi).
$$

$$
\begin{array}{rcl}\n\phi_j & = & \frac{1}{n} \sum_{i=1}^n 1\{z^{(i)} = j\}, \\
\mu_j & = & \frac{\sum_{i=1}^n 1\{z^{(i)} = j\} x^{(i)}}{\sum_{i=1}^n 1\{z^{(i)} = j\}}, \\
\Sigma_j & = & \frac{\sum_{i=1}^n 1\{z^{(i)} = j\} (x^{(i)} - \mu_j)(x^{(i)} - \mu_j)^T}{\sum_{i=1}^n 1\{z^{(i)} = j\}}.\n\end{array}
$$

Expectation maximization is to infer the latent variables first $(z$ here), and maximize the likelihood given the inferred z

Repeat until convergence:

 $\{$

Repeat until convergence:

(E-step) For each i, j , set

 $w_j^{(i)}$ = $\hat{p}(z^{(i)} = j|x^{(i)}; \hat{\phi}, \mu, \Sigma)$

Repeat until convergence:

 $(E\text{-step})$ For each i, j , set

 $w_j^{(i)} := p(z^{(i)} = j | x^{(i)}; \phi, \mu, \Sigma)$

Compute the posterior distribution, given current parameters

Repeat until convergence:

Repeat until convergence:

Compute the posterior distribution, given current parameters

40

Repeat until convergence:

-
- Compute the posterior distribution, $\theta; \phi, \mu, \Sigma) \, .$ given current parameters

{

update parameters using current $p(z|x)$

 $r^{(i)} - \mu_j)^T$

No parameter change in E-step

 $(E\text{-step})$ For each i, j , set

$$
w_j^{(i)} \mathrel{\mathop:}= p(z^{(i)}=j|x^{(i)}
$$

(M-step) Update the parameters:

$$
\begin{array}{rcl} \phi_j & := & \frac{1}{n} \sum_{i=1}^n w_j^{(i)}, \\ \mu_j & := & \frac{\sum_{i=1}^n w_j^{(i)} x^{(i)}}{\sum_{i=1}^n w_j^{(i)}}, \\ \Sigma_j & := & \frac{\sum_{i=1}^n w_j^{(i)} (x^{(i)} - \mu_j) (x)}{\sum_{i=1}^n w_j^{(i)}} \end{array}
$$

}

Why does it work?

What is its relation to MLE estimation?

How is convergence guaranteed?

When we perform EM, what is the real objective that we are optimizing?

Expectation Maximization

 $p(x; \theta) = \sum_{z} p(x, z; \theta)$

$$
p(x; \theta) = \sum_z p(x, z; \theta)
$$

$$
\begin{array}{lcl} \ell(\theta) & = & \displaystyle \sum\limits_{i=1}^n \log p(x^{(i)};\theta) \\ & = & \displaystyle \sum\limits_{i=1}^n \log \sum\limits_{z^{(i)}} p(x^{(i)},z^{(i)};\theta). \end{array}
$$

$$
p(x; \theta) = \sum_z p(x, z; \theta)
$$

$$
\begin{array}{lcl} \ell(\theta) & = & \displaystyle \sum\limits_{i=1}^n \log p(x^{(i)};\theta) \\ & = & \displaystyle \sum\limits_{i=1}^n \log \sum\limits_{z^{(i)}} p(x^{(i)},z^{(i)};\theta). \end{array}
$$

Let Q to be a distribution over Z

$$
p(x; \theta) = \sum_z p(x, z; \theta)
$$

$$
\begin{array}{lcl} \ell(\theta) & = & \displaystyle \sum\limits_{i=1}^n \log p(x^{(i)};\theta) \\ & = & \displaystyle \sum\limits_{i=1}^n \log \sum\limits_{z^{(i)}} p(x^{(i)},z^{(i)};\theta). \end{array}
$$

Let Q to be a distribution over Z

$$
\log p(x; \theta) = \log \sum_{z} p(x, z; \theta)
$$

=
$$
\log \sum_{z} Q(z) \frac{p(x, z; \theta)}{Q(z)}
$$

$$
\geq \sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)}
$$

$$
p(x; \theta) = \sum_z p(x, z; \theta)
$$

$$
\begin{array}{lcl} \ell(\theta) & = & \displaystyle \sum\limits_{i=1}^n \log p(x^{(i)};\theta) \\ & = & \displaystyle \sum\limits_{i=1}^n \log \sum\limits_{z^{(i)}} p(x^{(i)},z^{(i)};\theta). \end{array}
$$

Let Q to be a distribution over z

This lower bound holds for any Q(z) $\log p(x; \theta) = \log \sum p(x, z; \theta)$ = $\log \sum_{z} Q(z) \frac{p(x, z; \theta)}{Q(z)}$
 $\geq \sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)}$

$$
p(x; \theta) = \sum_{z} p(x, z; \theta)
$$

$$
\begin{array}{lcl} \ell(\theta) & = & \displaystyle \sum\limits_{i=1}^n \log p(x^{(i)};\theta) \\ & = & \displaystyle \sum\limits_{i=1}^n \log \sum\limits_{z^{(i)}} p(x^{(i)},z^{(i)};\theta). \end{array}
$$

Let Q to be a distribution over Z

Jensen inequality

This lower bound holds for any Q(z) $\log p(x;\theta) = \log \sum p(x,z;\theta)$ = $\log \sum_{z} Q(z) \frac{p(x, z; \theta)}{Q(z)}$
 $\geq \sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)}$ \boldsymbol{z}

42

For a convex function f, and $t \in [0,1]$

Jensen Inequality

$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$

For a convex function *f*, and $t \in [0,1]$

$$
f(tx_1 + (1-t)x_2)
$$

Jensen Inequality

$f(x_1) + (1-t)f(x_2)$

In probability:

 $f(E[X]) \leq [f(X)]$

For a convex function f , and $t \in [0,1]$

$$
f(tx_1 + (1-t)x_2)
$$

Jensen Inequality

$f(x_1) + (1-t)f(x_2)$

In probability:

$f(E[X]) \leq [f(X)]$

If *f* is strictly convex, then equality holds only when X is a constant

 $\log p(x;\theta) = \log \sum_{z} p(x,z;\theta)$ = $\log \sum_{z} Q(z) \frac{p(x, z; \theta)}{Q(z)}$
 $\geq \sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)}$

 $\begin{array}{rcl} \log p(x;\theta) & = & \log \sum_z p(x,z;\theta) \\ & = & \log \sum_z Q(z) \frac{p(x,z;\theta)}{Q(z)} \\ & \geq & \sum_z Q(z) \log \frac{p(x,z;\theta)}{Q(z)} \end{array}$

ELBO

- $\log p(x;\theta) = \log \theta$
	- $=$ log
	- $\geq \sum$

optimize its lower bound instead

$$
\frac{\sum_{z} p(x, z; \theta)}{\sum_{z} Q(z) \frac{p(x, z; \theta)}{Q(z)}} \quad \text{ELBO}
$$
\n
$$
\sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)}
$$

Because the log likelihood is intractable, people often

 $\log p(x;\theta) = \log \theta$

 $=$ log

 $\geq \sum$

optimize its lower bound instead

Why optimizing lower bound works? How to choose $Q(z)$, why we computed posterior in the E step, what is the benefit?

$$
\sum_{z} p(x, z; \theta)
$$
\n
$$
\sum_{z} Q(z) \frac{p(x, z; \theta)}{Q(z)} \qquad \text{ELBO}
$$
\n
$$
\sum Q(z) \log \frac{p(x, z; \theta)}{Q(z)}
$$

Because the log likelihood is intractable, people often

Thank You! Q & A