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Midterm Exam
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Next Thursday (Oct 24), 120pm-240pm, one A4-size double-sided cheetsheet is 
allowed (either printing or handwriting is fine)

We have two rooms for the exam for sparse seat plans:	
1. For SIS ID ending with an even digit: Room 2303	
2. For SIS ID ending with an odd digit: Room 2504



Recap: Generative Models
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We want to model p(x) In discriminative models, we need to 
“design” model to make assumption 
about the function: linear regression, 
logistic regression, kernel methods ….

In generative models, we “design” the model 
and make assumptions about the data, 
through defining a distribution family



Recap: Generative Models
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As a simplest case, we directly assume x ∼ N(μ, Σ)

By varying the parameters , the model represents different 
distributions that belong to the Gaussian family

(μ, Σ)



Recap: Generative Models
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How to construct more complex 
distribution family?

Introducing more latent variables



Recap: Gaussian Mixture Model
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Z

X

Label

Data

p(z): multinomial , k 
classes(e.g. uniform)

(μ1, Σ1), (μ2, Σ2), . . . (μk, Σk)

We assume the generative process as:

1. For each data point, sample its label 
 from p(z)zi

2. Sample xi ∼ N(μzi
, Σzi

)



Recap: MLE for GMM
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Z

X

Label

Data

p(z): multinomial , k 
classes(e.g. uniform)

(μ1, Σ1), (μ2, Σ2), . . . (μk, Σk)

Unsupervised:	

 argmaxϕ,μ,Σ log p(x)

How to compute this?



Recap: MLE for GMM
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1. Intractable (no closed-form for the solution)	
2. Large variance in gradient descent

Expectation Maximization is to address the MLE optimization problem



Things are easy when we know z.. 
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In case we know z

Expectation maximization is to infer the latent variables first (  here), and 
maximize the likelihood given the inferred 

z
z



Expectation Maximization for GMM
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Repeat until convergence:	
{

Compute the posterior distribution, 
given current parameters

No parameter change in E-step

}



Expectation Maximization
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Why does it work?

What is its relation to MLE estimation?

How is convergence guaranteed? 

When we perform EM, what is the  real objective that we are 
optimizing?



General EM Algorithm
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Let Q to be a distribution over z

Jensen inequality

This lower bound holds for any Q(z)



Jensen Inequality
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For a convex function , and f t ∈ [0,1]

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)

In probability:

f(𝔼[X]) ≤ [ f(X)]

If  is strictly convex, then equality holds only when X is a constantf



Evidence Lower Bound (ELBO)
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Because the log likelihood is intractable, people often 
optimize its lower bound instead

Why optimizing lower bound works? How to choose Q(z), why we 
computed posterior in the E step, what is the benefit?

ELBO
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Evidence Lower Bound (ELBO)

When is the lower bound tight?
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Evidence Lower Bound (ELBO)

Verify when Q(z) = p(z|x) ?

For a dataset of many data samples
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Evidence Lower Bound (ELBO)

What is ?argmaxQ(z)ELBO(x; Q, θ)



The General EM Algorithm
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Based on current , model parameters does not 
change in E-step

θ

 is not relevant to , and does 
not change in the M-step
Q(z) θ Q(z)

E-step is maximizing ELBO over Q(z), M-step is maximizing ELBO overθ
Why is maximizing lower-bound sufficient?



EM is Hill Climbing
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log p(x; θ)

ELBO

Larger
Only related to , no θ z



EM is Hill Climbing
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log p(x; θ)

ELBO

Larger

E-step: , making ELBO tightQ(z) = p(z |x; θ)
“dog” doesn’t change, because  does not changeθ



EM is Hill Climbing
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log p(x; θ)

ELBO

Larger

M-step: max
θ

ELBO

ELBO becomes larger, and it is not tight 
anymore because posterior changes



EM is Hill Climbing
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log p(x; θ)

ELBO

Larger



EM is Hill Climbing
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log p(x; θ)

ELBO

Larger

E-step: , making ELBO tightQ(z) = p(z |x; θ)
“dog” doesn’t change, because  does not changeθ



EM is Hill Climbing
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log p(x; θ)

ELBO

Larger

M-step: max
θ

ELBO

ELBO becomes larger, and it is not tight 
anymore because posterior changes

 is monotonically increasing! log p(x; θ)
We are doing MLE implicitly! Convergence is guaranteed



Revisit the E-Step
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Computable posterior is important. If Q(z) is 
not the posterior, then there is no guarantee 
that  is improved at every iterationlog p(x)

Still remember conjugate prior? Which is for 
easy-to-compute posterior



Revisit the M-Step
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argmaxθ ∑
z

Q(z)log
p(x, z; θ)

Q(z)
= argmaxθ ∑

z

Q(z)log p(x, z; θ)

Sometimes the sum is computable, but sometimes not

argmaxθ ∑
z

Q(z)log p(x, z; θ) = argmaxθ𝔼z∼Q(z) log p(x, z; θ)

We can use Monto-Carlo sampling to approximate the expectation



Comparing Direct Maximization and EM
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Direct maximization: 

argmaxθ log∑
z

p(x |z; θ)p(z) = argmaxθ log 𝔼z∼p(z)p(x |z; θ)

M-Step in EM:

argmaxθ ∑
z

Q(z)log p(x, z; θ) = argmaxθ𝔼z∼Q(z) log p(x, z; θ)

Why don’t we use MC sampling to approximate 
expectation in direct maximization?

It may need a large number of samples to have a good approximation



Other Interpretations of ELBO
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Regularize Q(z) towards the prior p(z)

Maximizing ELBO over Q(z) is essentially solving the posterior distribution p(z|x)



Further Questions
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What if we do not have closed-form model posterior? —> Variational EM

The process of approximating the model posterior is called variational inference

We will learn variational autoencoder later



Thank You!	
Q & A
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