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Expecta)on	Maximiza)on

Junxian	He	
Oct	17,	2024

COMP	5212	
Machine	Learning	
Lecture	12



Midterm	Exam
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Next	Thursday	(Oct	24),	120pm-240pm,	one	A4-size	double-sided	cheetsheet	is	
allowed	(either	prin)ng	or	handwri)ng	is	fine)

We	have	two	rooms	for	the	exam	for	sparse	seat	plans:	
1. For	SIS	ID	ending	with	an	even	digit:	Room	2303	
2. For	SIS	ID	ending	with	an	odd	digit:	Room	2504
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about	the	func)on:	linear	regression,	
logis)c	regression,	kernel	methods	….
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We	want	to	model	p(x) In	discrimina)ve	models,	we	need	to	
“design”	model	to	make	assump)on	
about	the	func)on:	linear	regression,	
logis)c	regression,	kernel	methods	….

In	genera)ve	models,	we	“design”	the	model	
and	make	assump)ons	about	the	data,	
through	defining	a	distribu)on	family
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Recap:	Genera2ve	Models

4

As	a	simplest	case,	we	directly	assume	x ∼ N(μ, Σ)

By	varying	the	parameters	 ,	the	model	represents	different	
distribu)ons	that	belong	to	the	Gaussian	family

(μ, Σ)

remem
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How	to	construct	more	complex	
distribu)on	family?
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How	to	construct	more	complex	
distribu)on	family?

Introducing	more	latent	variables



Recap:	Gaussian	Mixture	Model
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Recap:	Gaussian	Mixture	Model

6

Z

X

Label

Data

p(z):	mul)nomial	,	k	
classes(e.g.	uniform)

(μ1, Σ1), (μ2, Σ2), . . . (μk, Σk)

We	assume	the	genera)ve	process	as:

1.	For	each	data	point,	sample	its	label	
	from	p(z)zi

2.	Sample	xi ∼ N(μzi
, Σzi

)
~



Recap:	MLE	for	GMM
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Z

X

Label

Data

p(z):	mul)nomial	,	k	
classes(e.g.	uniform)

(μ1, Σ1), (μ2, Σ2), . . . (μk, Σk)

Unsupervised:	

	argmaxϕ,μ,Σ log p(x)
How	to	compute	this?

0 -Piz
hard
-

crymay Loy PiX, tl②%,. 3 ---
↓

eas
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1. Intractable	(no	closed-form	for	the	solu)on)
2. Large	variance	in	gradient	descent

Et · Paz = Ezt~
puts

-
- (2)

log [Ex-pas Prx1z)

-



Recap:	MLE	for	GMM
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1. Intractable	(no	closed-form	for	the	solu)on)
2. Large	variance	in	gradient	descent

Expecta)on	Maximiza)on	is	to	address	the	MLE	op)miza)on	problem

GlogPax

d

G ANs VAEs diffusion-

minine
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In	case	we	know	z Loy P(x, z)

-
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In	case	we	know	z

1
-



Things	are	easy	when	we	know	z..	
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In	case	we	know	z

Expecta)on	maximiza)on	is	to	infer	the	latent	variables	first	( 	here),	and	
maximize	the	likelihood	given	the	inferred	

z
z

&
iteratively
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Repeat	un)l	convergence:	
{

}
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Repeat	un)l	convergence:	
{

}

inference

-
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Repeat	un)l	convergence:	
{

Compute	the	posterior	distribu)on,	
given	current	parameters

}
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Repeat	un)l	convergence:	
{

Compute	the	posterior	distribu)on,	
given	current	parameters

No	parameter	change	in	E-step

}



Expecta2on	Maximiza2on	for	GMM
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Repeat	un)l	convergence:	
{

Compute	the	posterior	distribu)on,	
given	current	parameters

No	parameter	change	in	E-step

}

⑧o
-

2



Expecta2on	Maximiza2on
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Why	does	it	work?

What	is	its	rela)on	to	MLE	es)ma)on?

How	is	convergence	guaranteed?	

When	we	perform	EM,	what	is	the		real	objec)ve	that	we	are	
op)mizing?

Em still MLE
?

O is

-

-
-

-
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-
-
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Let	Q	to	be	a	distribu)on	over	z

Jensen	inequality

This	lower	bound	holds	for	any	Q(z)

ELBO

↓

-⑳tight

Coy c . ) concave



Jensen	Inequality
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For	a	convex	func)on	 ,	and	f t ∈ [0,1]

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)

In	probability:

f(𝔼[X]) ≤ [ f(X)]

↑7W Elf(x]-- -
---f(P, X , + PrYet 1nYk) < [Pif(xi)

- -

2 Pi = 1



Jensen	Inequality

13

For	a	convex	func)on	 ,	and	f t ∈ [0,1]

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)

In	probability:

f(𝔼[X]) ≤ [ f(X)]
If	 	is	strictly	convex,	then	equality	holds	only	when	X	is	a	constantf

I

↓

O
-
-
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Because	the	log	likelihood	is	intractable,	people	olen	
op)mize	its	lower	bound	instead

ELBO ↑

ram ELBO

weax Coy Pax
-

may ELBO



Evidence	Lower	Bound	(ELBO)
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Because	the	log	likelihood	is	intractable,	people	olen	
op)mize	its	lower	bound	instead

Why	op)mizing	lower	bound	works?	How	to	choose	Q(z),	why	we	
computed	posterior	in	the	E	step,	what	is	the	benefit?

ELBO#
-



15

Evidence	Lower	Bound	(ELBO)
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Evidence	Lower	Bound	(ELBO)

When	is	the	lower	bound	)ght?

&
I

Jensen inequality X is constant
-

-
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Evidence	Lower	Bound	(ELBO)

When	is	the	lower	bound	)ght?

-

what t is
-

a
matter

P(X ,t)PLX
,
z ; 01 -⑧fu

Qui OCET : EPUXIEC

-
- CP(Xz)

I⑮
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Evidence	Lower	Bound	(ELBO)

When	is	the	lower	bound	)ght?

&

-

-

↑

-

O-
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Evidence	Lower	Bound	(ELBO)

Verify when	Q(z)	=	p(z|x)	?
X
-

ELBOlogxi
=Patex
= logPE I

= HRX
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Evidence	Lower	Bound	(ELBO)

Verify when	Q(z)	=	p(z|x)	?

-



16

Evidence	Lower	Bound	(ELBO)

Verify when	Q(z)	=	p(z|x)	?

For	a	dataset	of	many	data	samples

-
-
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Evidence	Lower	Bound	(ELBO)
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Evidence	Lower	Bound	(ELBO)

What	is	 ?argmaxQ(z)ELBO(x; Q, θ)

Qui =?

MyPax 5, ELBOcx;
@ Of

Acts = PLEAS Log Pcx)
is constant varyingQCEs

- log PLX)



The	General	EM	Algorithm

18

-

remem



The	General	EM	Algorithm

18

Based	on	current	 ,	model	parameters	does	not	
change	in	E-step

θ
-



The	General	EM	Algorithm

18

Based	on	current	 ,	model	parameters	does	not	
change	in	E-step

θ

	is	not	relevant	to	 ,	and	 does	
not	change	in	the	M-step
Q(z) θ Q(z)

%
-

Oce is fixed
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The	General	EM	Algorithm
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Based	on	current	 ,	model	parameters	does	not	
change	in	E-step

θ

	is	not	relevant	to	 ,	and	 does	
not	change	in	the	M-step
Q(z) θ Q(z)

E-step	is	maximizing	ELBO	over	Q(z),	M-step	is	maximizing	ELBO	overθ

gE-step
ELBOLO,⑳

-

--

--Step

- -
eme-



The	General	EM	Algorithm
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Based	on	current	 ,	model	parameters	does	not	
change	in	E-step

θ

	is	not	relevant	to	 ,	and	 does	
not	change	in	the	M-step
Q(z) θ Q(z)

E-step	is	maximizing	ELBO	over	Q(z),	M-step	is	maximizing	ELBO	overθ
Why	is	maximizing	lower-bound	sufficient?

Tehaver bed .

-le
-
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log p(x; θ)

ELBO

Larger
Only	related	to	 ,	no	θ z
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ELBO	becomes	larger,	and	it	is	not	)ght	
anymore	because	posterior	changes
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log p(x; θ)

ELBO

Larger

M-step:	max
θ

ELBO

ELBO	becomes	larger,	and	it	is	not	)ght	
anymore	because	posterior	changes

	is	monotonically	increasing!	log p(x; θ)
We	are	doing	MLE	implicitly! Convergence	is	guaranteed

#
-



LBO loss function

VAE

Ebo
-

QCA
=PLEA,

E-step
maxwiet ELBOuntil convergence

OCES

-

an-step maxnize ELBO
O

EL Bo loss function
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Computable	posterior	is	important.	If	Q(z)	is	
not	the	posterior,	then	there	is	no	guarantee	
that	 	is	improved	at	every	itera)onlog p(x)-

m
ene



Revisit	the	E-Step
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Computable	posterior	is	important.	If	Q(z)	is	
not	the	posterior,	then	there	is	no	guarantee	
that	 	is	improved	at	every	itera)onlog p(x)

S)ll	remember	conjugate	prior?	Which	is	for	
easy-to-compute	posterior

↓
=
LPLs ↓ family

o ⑭EPLE
-

& QUE) = PLEI)

-
Ou east

to

Ez-Qc , Log simple from
-
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argmaxμ ∑
z

Q(z)log p(x, z; μ)
Q(z) = argmaxμ ∑

z
Q(z)log p(x, z; μ)-
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argmaxμ ∑
z

Q(z)log p(x, z; μ)
Q(z) = argmaxμ ∑

z
Q(z)log p(x, z; μ)

Some)mes	the	sum	is	computable,	but	some)mes	not

argmaxμ ∑
z

Q(z)log p(x, z; μ) = argmaxμ∼zΣQ(z) log p(x, z; μ)

We	can	use	Monto-Carlo	sampling	to	approximate	the	expecta)on
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Direct	maximiza)on:	

argmaxμ log∑
z

p(x |z; μ)p(z) = argmaxμ log ∼zΣp(z)p(x |z; μ)&
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Direct	maximiza)on:	

argmaxμ log∑
z

p(x |z; μ)p(z) = argmaxμ log ∼zΣp(z)p(x |z; μ)

M-Step	in	EM:

argmaxμ ∑
z

Q(z)log p(x, z; μ) = argmaxμ∼zΣQ(z) log p(x, z; μ)

-

↓-
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Direct	maximiza)on:	

argmaxμ log∑
z

p(x |z; μ)p(z) = argmaxμ log ∼zΣp(z)p(x |z; μ)

M-Step	in	EM:

argmaxμ ∑
z

Q(z)log p(x, z; μ) = argmaxμ∼zΣQ(z) log p(x, z; μ)

Why	don’t	we	use	MC	sampling	to	approximate	
expecta)on	in	direct	maximiza)on?

It	may	need	a	large	number	of	samples	to	have	a	good	approxima)on

d X is given

-IQ2z = PCElX)

=



#

Earice
, tazzfit
- -

acti
Monte Carlo :

↑ Enis
lay
on

[fc z"-
-*

zoil where fiziland

Ac , Uniform 100 sample actis are large
fuzil



Other	Interpreta2ons	of	ELBO
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Regularize	Q(z)	towards	the	prior	p(z)

Maximizing	ELBO	over	Q(z)	is	essen)ally	solving	the	posterior	distribu)on	p(z|x)

-

E T
-reconstra ↓ Piz,

AE
↓
constant

PAIX)
fMM
-
-

- kn] 0~
&d

a= PCEIX)
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What	if	we	do	not	have	closed-form	model	posterior?	

Estep c=ket)

X(z(x)
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-

PLEIX)
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What	if	we	do	not	have	closed-form	model	posterior?	—>	Varia)onal	EM

The	process	of	approxima)ng	the	model	posterior	is	called	varia)onal	inference

We	will	learn	varia)onal	autoencoder	later



Thank	You!	
Q	&	A

30


