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Some Announcements

Don’t worry too much on midterm exam, it is only 20%

We have a makeup lecture on Nov 7, 7pm-820pm, at Room 2303
after we finish HMM. Attendance is not required, zoom
recording will be released



What Are Graphical Models?

a Informally, a GM is just a graph representing
relationship among random variables

o Nodes: random variables (features, not examples)
o Edges (or absence of edges): relationship

o Looks simple!
o But detall matters, as always.
o What exactly do we mean by relationship?
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Relationship between two random variables

a Many types of relationships exist:

o XandY are correlated

o Xand Y are dependent
o Xand Y are independent

o Xand Y are partially correlated given Z
o Xand Y are conditionally dependent given Z
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at work

Physical
exercise




What is a Graphical Model?

Graphical model represents a multivariate distribution in High-D space

A possible world for celluar signal transduction:

[ReceptorA ] X, [ReceptorB ] X,

[ Kinase C J X; [ Kinase D J X, [ Kinase E ] X

TF F

[ Gene G ] X, [ Gene H ] X,




Structure Simplifies Representation

Dependencies among variables




Probabilistic Graphical Models

0 If X's are conditionally independent (as described by a PGM}, the
joint can be factored to a product of simpler terms, e.qg.,

! o (XI’ Xzy X3) X4’ XS’ X6’ X 7 X8)

= P(X)) P(X;) P(X;| X;) P(X,| X;) P(X{| X))
P(X,| X5 X,) P(X/| X,) P(Xy| X5, X,)

Stay tune for what are these independencies!




Another Example

Seas@

@scle-@ @ngestion

P(Congestion | Flu, Hayfever, Season) = P(Congestion | Hu, Hayfever);



What is a PGM After All

It is a smart way to write/specify/compose/design exponentially-large probability
distributions without paying an exponential cost, and at the same time endow the
distributions with sfructured semantics

_ C ] . D | __E |
—>
_F |
_ 6 | H |
P(X,g)=P(X)P(X,)P(X; | X, X,)P(X,| X,)P(X5| X))
P(XI’XZ’X3’X4’X5’X6’X7’X8) P(X6|X3aX4)P(X7|X6)P(X8|X59X6)

It refers to a family of distributions on a set of random variables that are
More formal definition: compatible with all the probabilistic independence propositions encoded by a
graph that connects these variables
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Probabilistic Graphical Model is a
graphical language to express
conditional independence
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Two types of Graphical Models

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

B Recpior s | x,
P(Xb XZ’ X3’ X4’ XS’ X6’ X79 XS) l /\-
| Kinasec | X, Kinase D | X, | Kinase E
= P(X)) P(X)) P(X;| X)) P(X,| X,) P(X,| X))
P(X,| X, X,) PX| X)) POX,| X, X, { -

e Undirected edges simply give correlations between variables
(Markov Random Field or Undirected Graphical model):

P(X}, X5 X3 Xyp X5 X X7 X) _ /\

= I/Z exp{E(X,)+EQX)+E(X;, X,)+E(X, X)) +E(X;, X)) .
+ E(X, X; X)TE(X, X)+TE(Xg X, X()} _
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PGMs are Structural Specification of
Probability Distribution

e Separation properties in the graph imply independence
properties about the associated variables

e For the graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents
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Markov Blanket for Directed Acyclic Graph (DAG)

 Meaning: a node is Ancestor |
conditionally independent o C
of every other node in the
network outside its Markov
blanket

Parent ]

Descendent J

Markov blanket of a node is its parents + child + children’s co-parent
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Conditional Independence of
Undirected Graph

 Meaning: a node is conditionally
independent of every other node
In the network given its Directed
neighbors
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GMs are your old friends

@ m,s O Q Q Q
O X Y
ox ” > = OX OX
P(x) Regression, classification Generative vs

Discriminative Classificatior

Probabilistic Graphical Model is a language to express distributions
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Fancier GMs: Solid State Physics

Pad

2020200

OOV )

Pad
Pad

DAl
Dl
Dl

DAt
DAl
DAl

e

Ising/Potts model

Define the strengths/correlation between different atoms
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Why Graphical Models

e A language for communication
e A language for computation
e A language for development
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How to Factor a Distribution Given a DAG

[l | x [/J\ PXpy X X X Xy X X X,)

| KinaseC | X, | KinaseD | X, | KinaseE | X, = P(XI) P(XZ) P(X3| XI) P(XA XZ) P(X5| XZ)
\[»]/ P(X,| X3, X,) P(X;| X,) P(X;| X, X)

[G G ] X [G H ] X

e Theorem:

Given a DAG, The most general form of the probability distribution
that is consistent with the (probabilistic independence properties
encoded in the) graph factors according to “node given its parents”:

PX) =[] P(X, |X,)

where X is the set of parents of xi. d is the number of nodes
(variables) in the graph.
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Local Structures & Independence

e Common parent

e Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent”

e (Cascade
e Knowing B decouples A and C

"given the level of gene B, the level gene A provides no
extra prediction value for the level of gene C"

e \/-structure o ‘)

e Knowing C couples A and B
because A can "explain away" B w.r.t. C CC

"If A correlates to C, then chance for B to also correlate to B will decrease”

The language is compact, the concepts are rich!
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Global Markov Properties of DAGs

How to determine two variables are conditionally independent given
another variable?

X is d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball' algorithm illustrated bellow (and plus some boundary

conditions): i » “
Y Y 7 7~ \\ //
O—O—C @,
= X 7 Y
)

) -




Example

1. Are X2 and X4 independent?

2. Are X2 and X4 conditionally independent given X17?

3. Are X2 and X4 conditionally independent given X3?
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Conditional Probability Density Func

A~N(”aa :a) B~N(”b, [b)

P(a,b,c.d) =
C~N(A+B, £,) P(a)P(b)P(c|a,b)P(d|c)

|
‘ D~N(p,*C, 2,)
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Conditional Independencies

° Label
G @---) D Features

Are Xi D-separated from Xj given Y?

What is this model when Y is observed?
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Conditionally Independent Observations

Model parameters

@ @ o @ e Data {X1, X2 ... Xn}
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“Plate” Notation

Model parameters

@ Data = {x,,...X}

iI=1:n

variables within a plate are replicated
in a conditionally independent manner
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Example: Gaussian Model

.o

Generative model:

p(X1,...Xn I H, G) = P p(xi I H, G)
p(data | parameters)

p(D | 0)
where 0 = {u, ¢}

iI=1:n
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Observed Variable and Latent
Variable Notations

sQ\
oo oe

o 0

M

We typically use gray variables to denote observed variables
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Gaussian Mixture Model / Gaussian
Discriminative Analysis in PGMs
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Inference and Learning

Query a node (random
variable) in the graph

e Task 1: How do we answer queries about P?

o We use inference as a name for the process of computing answers to such
queries

e Task 2: How do we estimate a plausible model M from data D?

I.  We use learning as a name for the process of obtaining point estimate of M.

29



Examples

|
e Prediction: what is the probability of an outcome given the starting
condition :

e the query node is a descendent of the evidence

e Diagnosis: what is the probability of disease/fault given symptoms
()

e the query node an ancestor of the evidence

In practice, the observed variable is often the data that is on the leaf nodes
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How to Learn the Parameters

1. When 6@ is the parameter and does not have prior —> MLE

p(x, z;0)

2. When we add the prior over @ —> MAP (Bayesian)

p(x, z,0)
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How to do MLE on Latent Variable Models?

Expectation Maximization!

The E-step computes the posterior distribution p(z|x)

This process is referred to as inference
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Approaches to Inference

e EXxact inference algorithms

e The elimination algorithm
e Belief propagation
e The junction tree algorithms  (but will not cover in detalil here)

e Approximate inference techniques

e Variational algorithms Variational Autoencoders
e Stochastic simulation / sampling methods

e Markov chain Monte Carlo methods
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Elimination Algorithm/
Marginalization

P(h)y=> > > > > > > P(a,b,c,d,e, f,g,h)
g f e d ¢ b a

a nhalve summation needs to
enumerate over an exponential

number of terms

What if the random variables follow this chain structure?
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Thank You!
Q& A
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