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Some	Announcements
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Don’t	worry	too	much	on	midterm	exam,	it	is	only	20%

We	have	a	makeup	lecture	on	Nov	7,	7pm-820pm,	at	Room	2303	
aQer	we	finish	HMM.	AUendance	is	not	required,	zoom	
recording	will	be	released



What	Are	Graphical	Models?
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Rela8onship	between	two	random	variables
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Correla*on	does	not	imply	causa*on



What	is	a	Graphical	Model?
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Graphical	model	represents	a	mul*variate	distribu*on	in	High-D	space

A	possible	world	for	celluar	signal	transduc*on:



Structure	Simplifies	Representa8on
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Dependencies	among	variables



Probabilis8c	Graphical	Models
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Another	Example
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What	is	a	PGM	A@er	All
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More	formal	defini*on:



Probabilis8c	Graphical	Model	is	a	
graphical	language	to	express	
condi8onal	independence
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Two	types	of	Graphical	Models
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PGMs	are	Structural	Specifica8on	of	
Probability	Distribu8on
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Markov	Blanket	for	Directed	Acyclic	Graph	(DAG)
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Markov	blanket	of	a	node	is	its	parents	+	child	+	children’s	co-parent



Condi8onal	Independence	of	
Undirected	Graph
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GMs	are	your	old	friends
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P(x) Regression,	classifica*on
Genera*ve	vs	
Discrimina*ve	Classifica*on

Probabilis*c	Graphical	Model	is	a	language	to	express	distribu*ons



Fancier	GMs:	Solid	State	Physics
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Define	the	strengths/correla*on	between	different	atoms



Why	Graphical	Models
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How	to	Factor	a	Distribu8on	Given	a	DAG
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Local	Structures	&	Independence
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The	language	is	compact,	the	concepts	are	rich!



Global	Markov	Proper8es	of	DAGs
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How	to	determine	two	variables	are	condi*onally	independent	given	
another	variable?



Example
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1.	Are	X2	and	X4	independent?

2.	Are	X2	and	X4	condi*onally	independent	given	X1?

3.	Are	X2	and	X4	condi*onally	independent	given	X3?



Condi8onal	Probability	Density	Func
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Condi8onal	Independencies
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Are	Xi	D-separated	from	Xj	given	Y?

What	is	this	model	when	Y	is	observed?



Condi8onally	Independent	Observa8ons
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Model	parameters

Data	{X1,	X2	….	Xn}



“Plate”	Nota8on
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Example:	Gaussian	Model
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Observed	Variable	and	Latent	
Variable	Nota8ons
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We	typically	use	gray	variables	to	denote	observed	variables



Gaussian	Mixture	Model		/	Gaussian	
Discrimina8ve	Analysis	in	PGMs
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Inference	and	Learning
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Query	a	node	(random	
variable)	in	the	graph



Examples
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In	prac*ce,	the	observed	variable	is	oQen	the	data	that	is	on	the	leaf	nodes



How	to	Learn	the	Parameters
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1.	When	 	is	the	parameter	and	does	not	have	prior	—>	MLEθ

p(x, z; θ)

2.	When	we	add	the	prior	over	 	—>	MAP	(Bayesian)θ

p(x, z, θ)



How	to	do	MLE	on	Latent	Variable	Models?
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Expecta*on	Maximiza*on!

The	E-step	computes	the	posterior	distribu*on	p(z|x)

This	process	is	referred	to	as	inference



Approaches	to	Inference
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Varia*onal	Autoencoders



Elimina8on	Algorithm/
Marginaliza8on
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X1 X2 X3 X4

What	if	the	random	variables	follow	this	chain	structure?



Thank	You!	
Q	&	A
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