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Announcements

We have a makeup lecture this Thursday on Nov 7, 7pm-820pm,
at Room 2303 after we finish HMM. Attendance is not required,
zoom recording will be released



Recap: Probabilistic Graphical Models

It is a smart way to write/specify/compose/design exponentially-large probability
distributions without paying an exponential cost, and at the same time endow the
distributions with sfructured semantics
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It refers to a family of distributions on a set of random variables that are
More formal definition: compatible with all the probabilistic independence propositions encoded by a
graph that connects these variables
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Probabilistic Graphical Model is a
graphical language to express
conditional independence



Conditionally Independent Observations

Model parameters

@ @ o @ e Data {X1, X2 ... Xn}



“Plate” Notation

©

iI=1:n

Model parameters

Data = {x,,...X}

variables within a plate are replicated
in a conditionally independent manner



Example: Gaussian Model

.o

Generative model:

p(X1,...Xn I H, G) = P p(xi I H, G)
p(data | parameters)

p(D | 0)
where 0 = {u, ¢}

iI=1:n




Observed Variable and Latent
Variable Notations
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We typically use gray variables to denote observed variables



Gaussian Mixture Model / Gaussian
Discriminative Analysis in PGMs



Inference and Learning

Query a node (random
variable) in the graph

e Task 1: How do we answer queries about P?

o We use inference as a name for the process of computing answers to such
queries

e Task 2: How do we estimate a plausible model M from data D?

I.  We use learning as a name for the process of obtaining point estimate of M.
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Examples

|
e Prediction: what is the probability of an outcome given the starting
condition 2

e the query node is a descendent of the evidence

e Diagnosis: what is the probability of disease/fault given symptoms
()

e the query node an ancestor of the evidence

In practice, the observed variable is often the data that is on the leaf nodes
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How to Learn the Parameters

1. When 6@ is the parameter and does not have prior —> MLE

p(x, z;0)

2. When we add the prior over @ —> MAP (Bayesian)

p(x, z,0)
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How to do MLE on Latent Variable Models?

Expectation Maximization!

The E-step computes the posterior distribution p(z|x)

This process is referred to as inference
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Approaches to Inference

e EXxact inference algorithms

e The elimination algorithm
e Belief propagation
e The junction tree algorithms  (but will not cover in detalil here)

e Approximate inference techniques

e Variational algorithms Variational Autoencoders
e Stochastic simulation / sampling methods

e Markov chain Monte Carlo methods
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Elimination Algorithm/
Marginalization

P(h)y=> > > > > > > P(a,b,c,d,e, f,g,h)
g f e d ¢ b a

a nhalve summation needs to
enumerate over an exponential

number of terms

What if the random variables follow this chain structure?
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Hidden Markov Models

16



I.i.d to sequential data

1 So far we assumed independent, (X, iid p(X)
identically distributed data

JSequential (non i.i.d.) data

— Time-series data
E.g. Speech

Amplitude

— Base pairs along a DNA strand

"{M

(Sequential data is still i.i.d on the sequence level)
17




Markov Models

JJoint distribution of n arbitrary random variables

p(X) — p(X17X27°'°7Xn)
— p(Xl)p(XZ‘Xl)p(X3|X27 Xl) X °p(Xn‘Xn—17 e Xl)
— Hp(Xn|Xn_1, ., Xq) Chain rule
=1

dMarkov Assumption (mt" order)

p(X) = Hp(Xn\Xn_l, ..., Xpn_m) Current observation
i=1 only depends on past
m observations
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Markov Models

. Markov Assumption

15t order

2"d order
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Markov Models

Homogeneous/stationary Markov model (probabilities don't depend on n)

# parameters in
stationary model

1 Markov Assumption K-ary variables

n

15t order p(X) = |[p(XnlXno1) O(K?)
1=1
mthorder  p(X) = |]p(XnlXn-1,... Xnom) O(K™)
1=1
n-1thorder p(X) = ||p(XulXno1,....X1)  O(KY)
1=1

= no assumptions — complete (but directed) graph
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Hidden Markov Models

Osl SZ

® f ® f
Observation space O, €{yy, Yy s Yy}
Hidden states S, €11, ..., I}
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Hidden Markov Models

§ .HOS“ .QST
O

Or4 Or

O

T T
p(Sh"'?ST)Ol)"'?OT) — Hp(Otl‘St H St|St 1
— t=1

15t order Markov assumption on hidden states {S;} t=1, ..., T
(can be extended to higher order).

Is Orand O, independent?
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Hidden Markov Models

* Parameters — stationary/homogeneous markov model
(independent of time t)

S S;
Initial probabilities O O

p(S; =) =, O,

O

O

Transition probabilities
P(S; =]lS;1=1) = Pi;
p({St}i=1,{O}i=1) =

Emission probabilities d r
P P(Sl)HP(St\St 1 H Ot\St
t=2 t=1

p(0,=yIS=1) = ¢/
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HMM Example

e The Dishonest Casino

A casino has two dices: , |

Fair dice
P(1) =P(2) =P(3)=P(5)=P(6)=1/6

Loaded dice
P(1) = P(2) =P(3) =P(5)=1/10
P(6) =%

Casino player switches back-&-

forth between fair and loaded die
with 5% probability
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HMM Example

GIVEN: A sequence of rolls by the casino player

64627467467:67366676646676266762667636765756 6 6

Question

1. How likely is the sequence given our model?
This is the evaluation problem in HMMs

2. What portion of the sequence was generated with the fair die, and

what portion with the loaded die
This is the decoding question in HMMs

3.How “loaded” is the loaded die? How “fair” is the fair die? How often

does the casino player change from fair to loaded, and back?
This is the learning question in HIZ\S/IIVIS



State Space Representation

J Switch between F and L with 5% probability

0.05
0.95 0.95
0.05
1 HMM Parameters
Initial probs P(S,=L)=0.5=P(S, =F)
Transition probs P(S, = L/F|S,; =L/F) =0.95
P(S, = F/L|S,., = L/F) = 0.05
Emission probabilities P(O,=vy|S;=F)=1/6 v=1,2,3,4,5,6

P(O,=y|S=1)=1/10 y=1,2,3,4,5
=1/2 y=6
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Three Main Problems in HMMs

* Evaluation — Given HMM parameters & observation seqn{O;}/_,

find p({O:};—, |¢) prob of observed sequence

* Decoding — Given HMM parameters & observation seqn {O; };_,

,...

sequence of hidden states

* Learning — Given HMM with unknown parameters and {O:},_;
observation sequence

find argm@axp({Ot}z;l\Q) parameters that maximize

likelihood of observed data
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HMM Algorithms

* Evaluation — What is the probability of the observed
sequence? Forward Algorithm

* Decoding — What is the probability that the third roll was

loaded given the observed sequence? Forward-Backward
Algorithm

— What is the most likely die sequence given the observed
sequence? Viterbi Algorithm

* Learning — Under what parameterization is the observed
sequence most probable? Baum-Welch Algorithm (EM)
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Evaluation Problem

* Given HMM parameters p(S1), p(S:|Si—1), p(O:|S:) & observation
sequence {O:}/_;

S1.1\Sy P11 S

find probability of observed sequence

p({Ot}Z“:1) = Z p({O:}i=1,{St}i=1)

.....

T T
— Z P(Sl H St‘St 1 H Ot|St

Sy, ST

O,

requires summing over all possible hidden state values at all
times — K' exponential # terms!
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Forward Probability

p({O}21) =) p({O}=, St =k) =) ok
k k

Compute forward probability a't‘ recursively over t

lef .= p(Ol,...,Ot,St:k')

Introduce S, ,

Chain rule

Markov assumption

p(O]Se = k) > ap_1p(S = k|Si—1 = i)
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Forward Algorithm

Can compute a.* for all k, t using dynamic programming:

 Initialize: a,%=p(0,|S, =k) p(S; = k) for all k

 |terate:fort=2, ... T
o, = p(O,|S, = k) ol p(S, = k]S, , = i) for all k
|

e Termination: p({O} ) =3 a'}
k

Can we do in the backward direction?
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Decoding Problem 1

 Given HMM parameters p(S1), p(S:|Si—1), p(O¢]S:) & observation
sequence {O:}/—,

find probability that hidden state at time t was k »(S: = k|[{O:}_,)

p(St — ka {Ot}le) — p(017 o« . °7Ot75t — kaOt—I—lv .« o °7OT)
p(Ol, .. .,Ot,St — k)p(OH_l, . .,OT‘St — k)
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Forward-Backward Algorithm

Can compute B.X for all k, t using dynamic programming:

* Initialize: B*=1 for all k

 |terate:fort=T-1,..1
Bt = » p(Sts1=1|S: = k)p(Ors1|Si11 = 1)Bi,, for all k

* Termination: p(S; =k, {O}_,) = aF By

(St = k, {Ot};frzl) _ afﬁtk :
P({Ot};ﬁrzﬂ Z@ o b

33
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Most Likely State vs. Most Likely Sequence

J Most likely state assighment at time t

arg max p(.S; = kE{O:}—,) = arg max o LBy

E.g. Which die was most likely used by the casino in the third roll given the
observed sequence?

J Most likely assighnment of state sequence

arg{m}gx P({St}t 1‘{075}15 1)

Are the solutions the same?

34



Decoding Problem 2

* Given HMM parameters p(S;), p(S;|S;—1), p(O;]S;) & observation
seguence {ot}le

find most likely assignment of state sequence

afg{m]‘flx p({St}i=11{O+}i=1) —afg{m?X p({St}i—1,{Ot}1—1)

p— argmax IMax p(ST — k {St t—= 1 7{Ot}t 1)
k {St}f 11

\—'—I
Ve

Compute recursively

VK - probability of most likely sequence of states ending at
state S; = k
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Viterbi Decoding

ax p({St}izy, {Or}iz) = maxVy

Compute probability V't‘ recursively over t

Vvtk max p(St:k7817°°°7St—1701’°”’Ot)

Sl 77777 St—l

Bayes rule

Markov assumption

p(O¢|S; = k) miaxp(St = k|S;_1 = z’)Vti_l
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Viterbi Algorithm

Can compute VX for all k, t using dynamic programming:
* Initialize:  V,*=p(0,]|S,=k)p(S,; = k) for all k

 |terate:fort=2,.. T

VE = p(O4S; = k) maxp(S; = k|S,_y =i)V; ,  forallk

* Termination: {m?x p({S:}{—1,{0:}i_1) =m,§><Vz'f
St ?:1

Traceback: S* = arg max Vi Can we do in the

& | backward direction?
Si_1 = arg m;dXP(Sf\St—l =)V,
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Computational Complexity

* What is the running time for Forward, Backward, Viterbi?

S
|

k O )
qy E :&t—l Di.k
)

k Otr1 pi
IoH E Pri @ B
;
k O '
Viv = q" m?Xpi,k Vi1

O(K?T) linear in T instead of O(K') exponential in T!
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Learning with EM

e Start with random initialization of parameters

* E-step — Fix parameters, find expected state assighments

'Yz(t) :p(St; :Z‘O,H) — Zj agﬁg OZ{Ot}fZI
Forward-Backward algorithm
&i(t) = p(Si_1= i, S = §|0,0) You will derive the EM
In your HW

_ p(St—l — Z|079)p(st — j? Otv . °7OT‘St—1 — 279)
p(Otw"aOT‘St—l — 279)

vt —1) pij ¢ B
Bi_s
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Thank You!
Q&A
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