

COMP 5212

Machine Learning

Lecture 16

Hidden Markov Models

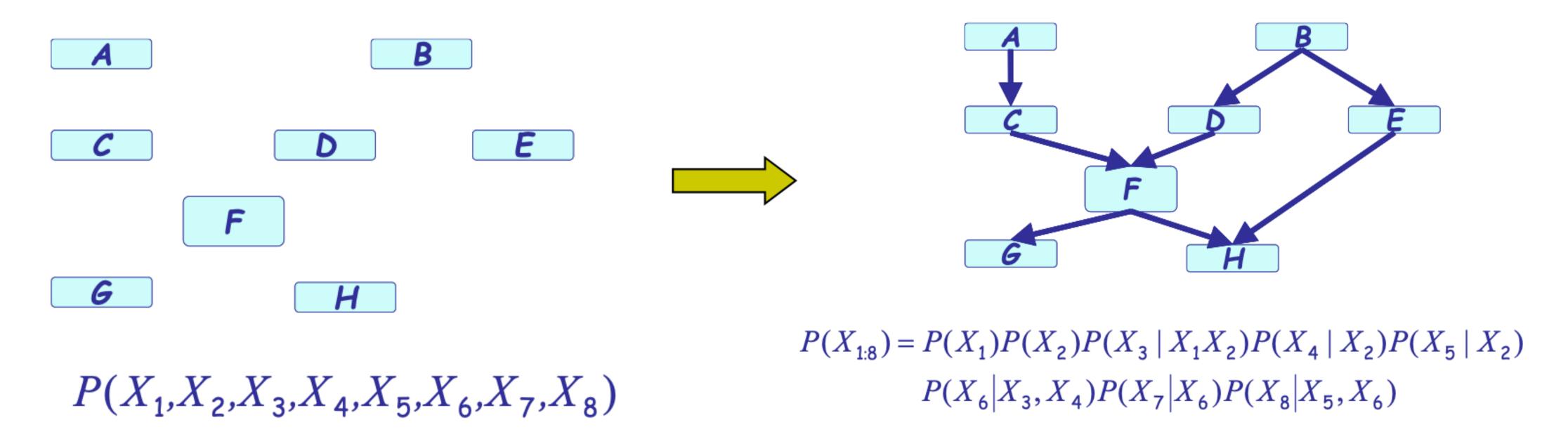
Junxian He Nov 5, 2024

Announcements

We have a makeup lecture this Thursday on Nov 7, 7pm-820pm, at Room 2303 after we finish HMM. Attendance is not required, zoom recording will be released

Recap: Probabilistic Graphical Models

It is a smart way to write/specify/compose/design exponentially-large probability distributions without paying an exponential cost, and at the same time endow the distributions with *structured semantics*

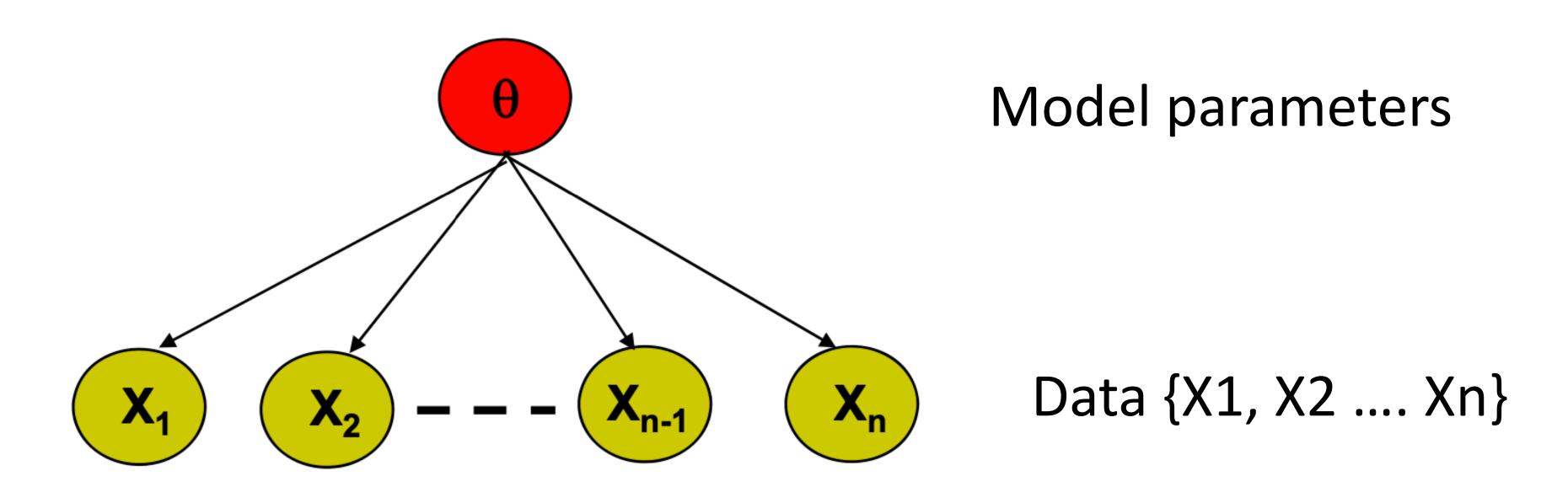


More formal definition:

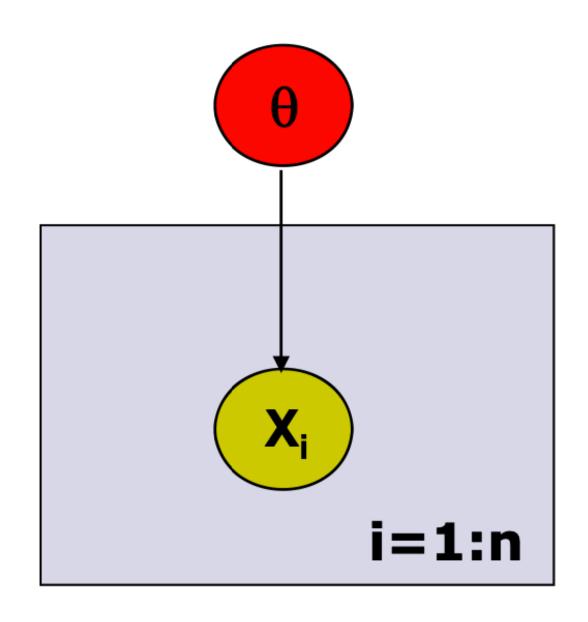
It refers to a family of distributions on a set of random variables that are compatible with all the probabilistic independence propositions encoded by a graph that connects these variables

Probabilistic Graphical Model is a graphical language to express conditional independence

Conditionally Independent Observations



"Plate" Notation



Model parameters

$$Data = \{x_1, ..., x_n\}$$

variables within a plate are replicated in a conditionally independent manner

Example: Gaussian Model

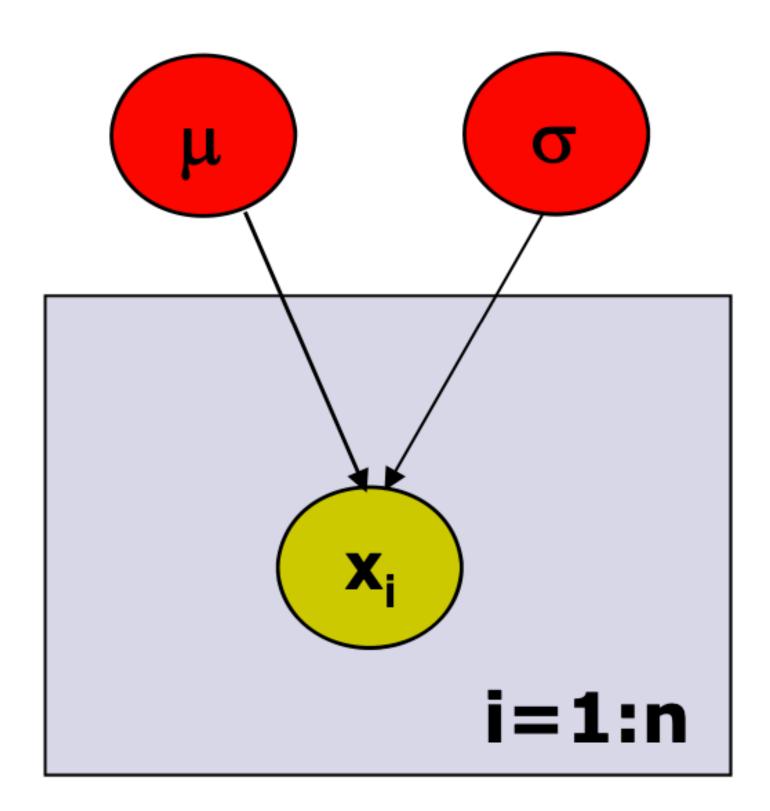
Generative model:

$$p(\mathbf{x}_{1},...,\mathbf{x}_{n} \mid \mu, \sigma) = \mathbf{P} p(\mathbf{x}_{i} \mid \mu, \sigma)$$

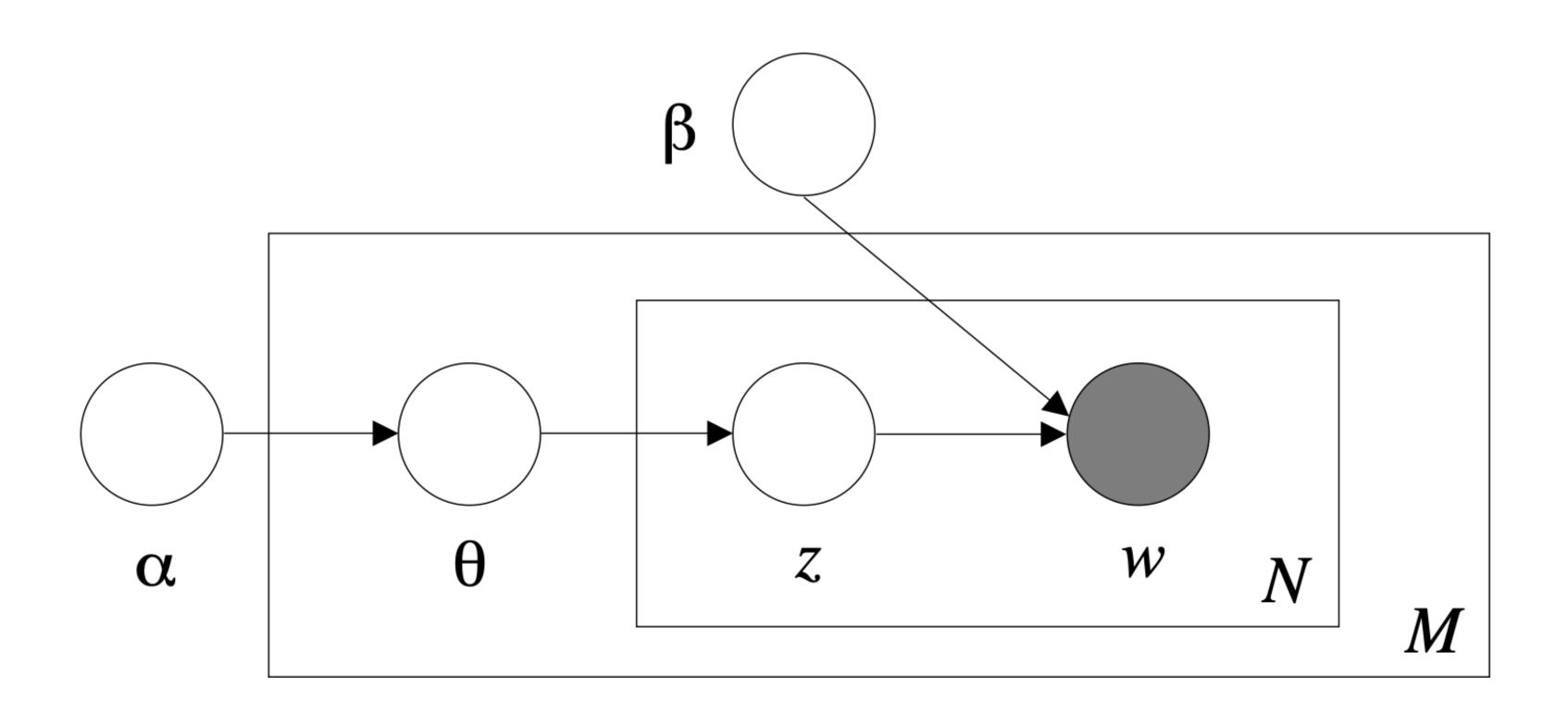
$$= p(\text{data} \mid \text{parameters})$$

$$= p(\mathbf{D} \mid \theta)$$

$$\text{where } \theta = \{\mu, \sigma\}$$



Observed Variable and Latent Variable Notations



We typically use gray variables to denote observed variables

Gaussian Mixture Model / Gaussian Discriminative Analysis in PGMs

Inference and Learning

Query a node (random variable) in the graph

- Task 1: How do we answer queries about P?
 - We use inference as a name for the process of computing answers to such queries

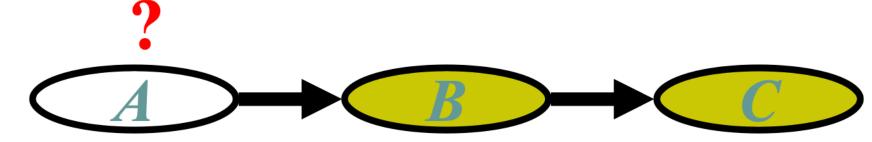
- Task 2: How do we estimate a plausible model M from data D?
 - i. We use **learning** as a name for the process of obtaining point estimate of *M*.

Examples

• **Prediction**: what is the probability of an outcome given the starting condition

• the query node is a descendent of the evidence

Diagnosis: what is the probability of disease/fault given symptoms



• the query node an ancestor of the evidence

In practice, the observed variable is often the data that is on the leaf nodes

How to Learn the Parameters

1. When θ is the parameter and does not have prior -> MLE

$$p(x, z; \theta)$$

2. When we add the prior over θ —> MAP (Bayesian)

$$p(x, z, \theta)$$

How to do MLE on Latent Variable Models?

Expectation Maximization!

The E-step computes the posterior distribution p(z|x)

This process is referred to as inference

Approaches to Inference

- Exact inference algorithms
 - The elimination algorithm
 - Belief propagation
 - The junction tree algorithms (but will not cover in detail here)

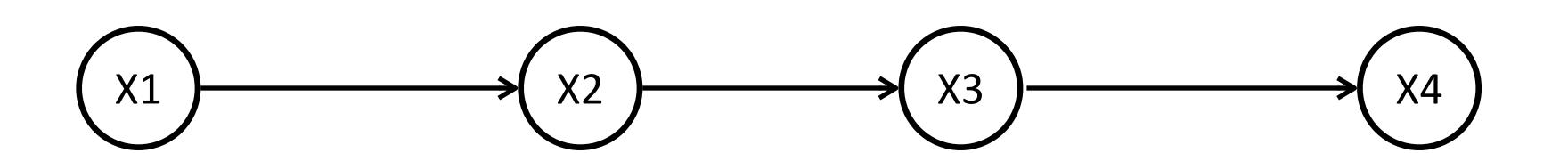
Approximate inference techniques

- Variational algorithms
- Stochastic simulation / sampling methods
- Markov chain Monte Carlo methods

Variational Autoencoders

Elimination Algorithm/ Marginalization

$$P(h) = \sum_{g} \sum_{f} \sum_{e} \sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a,b,c,d,e,f,g,h)$$
a naïve summation needs to enumerate over an exponential number of terms



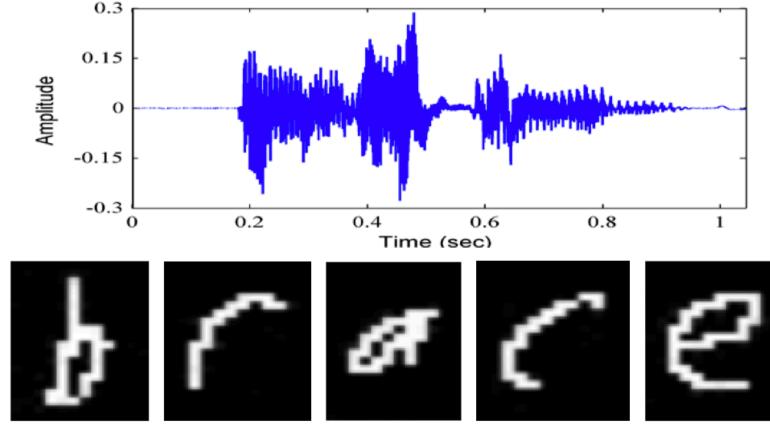
What if the random variables follow this chain structure?

i.i.d to sequential data

☐ So far we assumed independent, identically distributed data

$$\{X_i\}_{i=1}^n \stackrel{iid}{\sim} p(\mathbf{X})$$

- ☐ Sequential (non i.i.d.) data
 - Time-series dataE.g. Speech
 - Characters in a sentence



Base pairs along a DNA strand

(Sequential data is still i.i.d on the sequence level)

Markov Models

 \Box Joint distribution of n arbitrary random variables

$$\begin{array}{lcl} p(\mathbf{X}) & = & p(X_1, X_2, \dots, X_n) \\ & = & p(X_1) p(X_2 | X_1) p(X_3 | X_2, X_1) \dots p(X_n | X_{n-1}, \dots, X_1) \\ & = & \prod_{i=1}^n p(X_n | X_{n-1}, \dots, X_1) \end{array}$$
 Chain rule

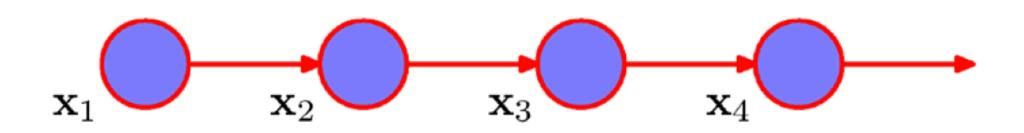
☐ Markov Assumption (mth order)

$$p(\mathbf{X}) = \prod_{i=1}^n p(X_n|X_{n-1},\dots,X_{n-m})$$
 Current observation only depends on past m observations

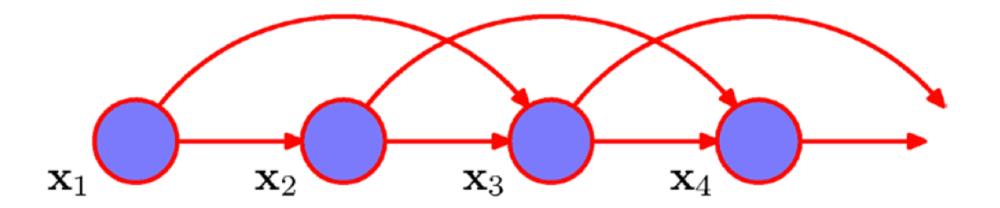
Markov Models

☐ Markov Assumption

1st order
$$p(\mathbf{X}) = \prod_{i=1}^n p(X_n|X_{n-1})$$



2nd order
$$p(\mathbf{X}) = \prod_{i=1}^{n} p(X_n | X_{n-1}, X_{n-2})$$



Markov Models

Homogeneous/stationary Markov model (probabilities don't depend on n)

☐ Markov Assumption

1st order
$$p(\mathbf{X}) = \prod_{i=1}^n p(X_n|X_{n-1})$$

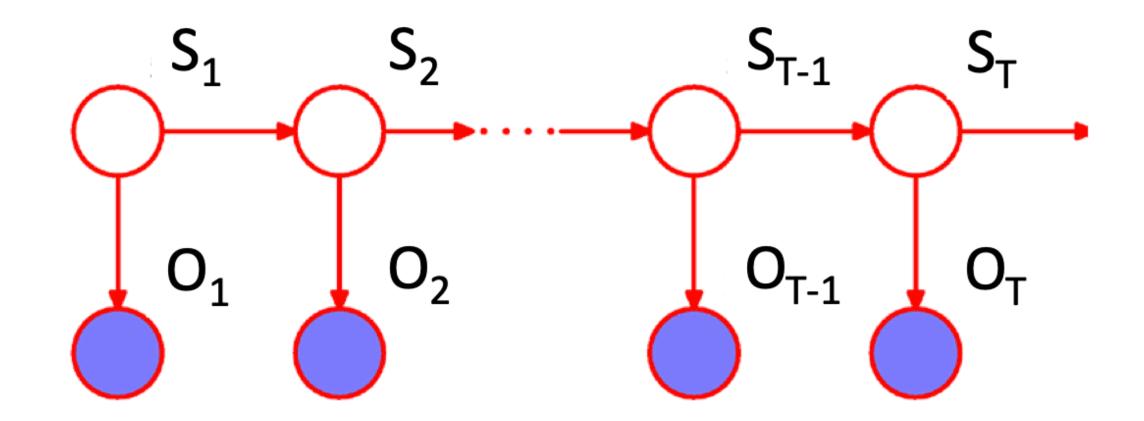
parameters in stationary model K-ary variables

 $O(K^2)$

$$\mathsf{m}^\mathsf{th} \ \mathsf{order} \qquad p(\mathbf{X}) = \prod_{i=1}^n p(X_n|X_{n-1},\ldots,X_{n-m}) \ \ \mathsf{O}(\mathsf{K}^\mathsf{m+1})$$

$$\mathsf{n-1^{th}}$$
 order $p(\mathbf{X}) = \prod_{i=1}^n p(X_n|X_{n-1},\ldots,X_1)$ O(Kⁿ)

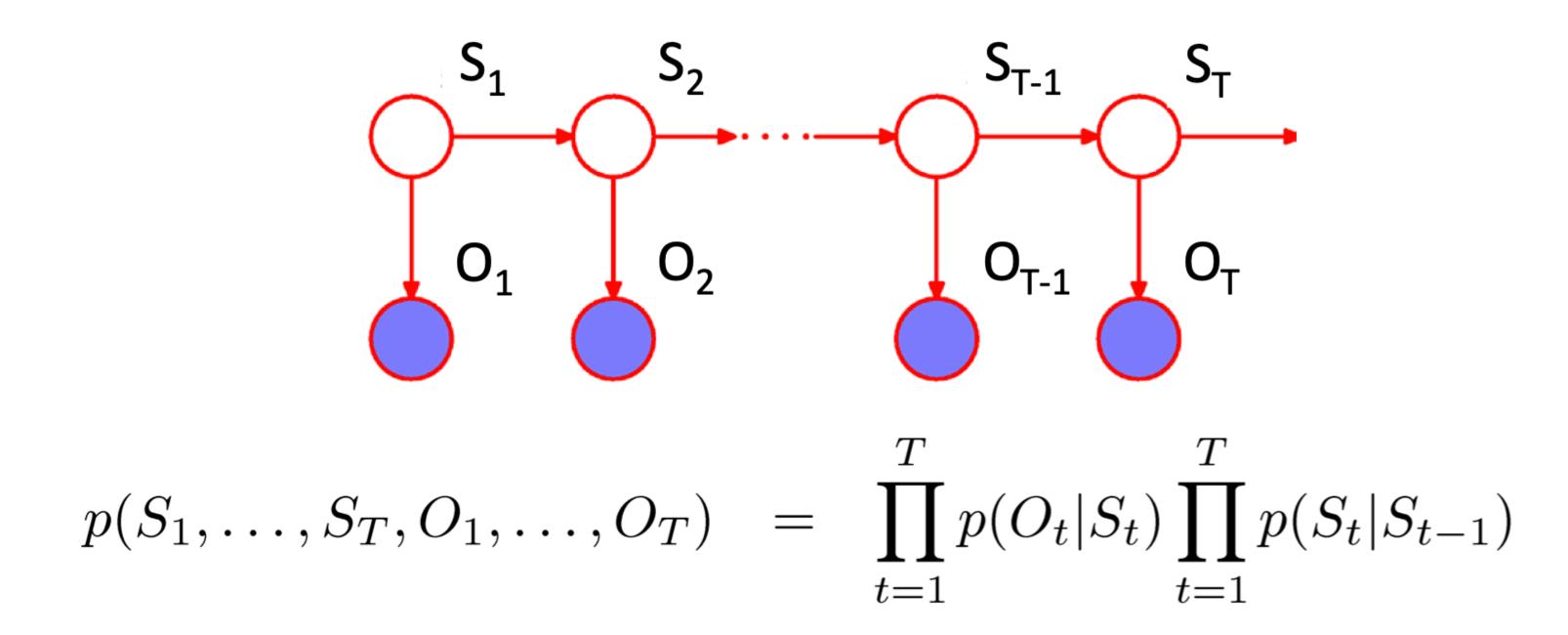
≡ no assumptions – complete (but directed) graph



Observation space Hidden states

$$O_t \in \{y_1, y_2, ..., y_K\}$$

 $S_t \in \{1, ..., I\}$



 1^{st} order Markov assumption on hidden states $\{S_t\}$ t = 1, ..., T (can be extended to higher order).

Is O_T and O_2 independent?

 Parameters – stationary/homogeneous markov model (independent of time t)

Initial probabilities

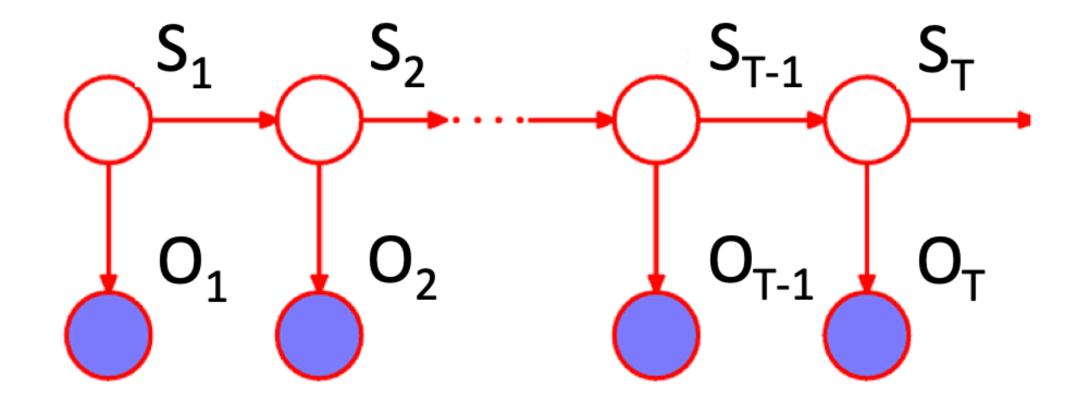
$$p(S_1 = i) = \pi_i$$

Transition probabilities

$$p(S_t = j | S_{t-1} = i) = p_{ij}$$

Emission probabilities

$$p(O_t = y | S_t = i) = q_i^y$$



$$p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T) = p(S_1) \prod_{t=2}^T p(S_t|S_{t-1}) \prod_{t=1}^T p(O_t|S_t)$$

HMM Example

The Dishonest Casino

A casino has two dices:

Fair dice

$$P(1) = P(2) = P(3) = P(5) = P(6) = 1/6$$

Loaded dice

$$P(1) = P(2) = P(3) = P(5) = 1/10$$

$$P(6) = \frac{1}{2}$$

Casino player switches back-&forth between fair and loaded die with 5% probability

HMM Example

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

Question

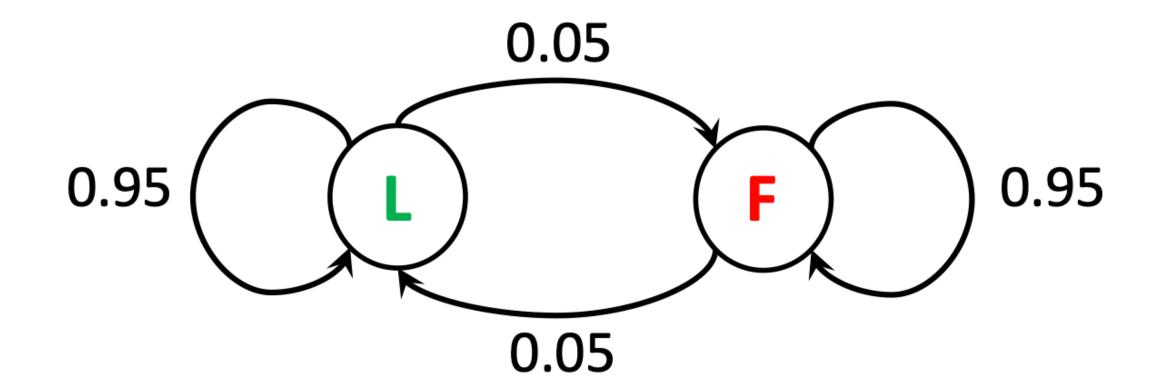
- 1. How likely is the sequence given our model? This is the evaluation problem in HMMs
- 2. What portion of the sequence was generated with the fair die, and what portion with the loaded die This is the decoding question in HMMs
- 3. How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

 This is the learning question in HMMs

25

State Space Representation

☐ Switch between F and L with 5% probability



☐ HMM Parameters

Initial probs
Transition probs

Emission probabilities

$$P(S_1 = L) = 0.5 = P(S_1 = F)$$

$$P(S_t = L/F | S_{t-1} = L/F) = 0.95$$

$$P(S_t = F/L | S_{t-1} = L/F) = 0.05$$

$$P(O_t = y | S_t = F) = 1/6 \qquad y = 1,2,3,4,5,6$$

$$P(O_t = y | S_t = L) = 1/10 \qquad y = 1,2,3,4,5$$

$$= 1/2 \qquad y = 6$$

Three Main Problems in HMMs

- Evaluation Given HMM parameters & observation seqn $\{O_t\}_{t=1}^T$ find $p(\{O_t\}_{t=1}^T | \theta)$ prob of observed sequence
- Decoding Given HMM parameters & observation seqn $\{O_t\}_{t=1}^T$ find $\arg\max_{s_1,\ldots,s_T} p(\{S_t\}_{t=1}^T | \{O_t\}_{t=1}^T, \theta)$ most probable sequence of hidden states
- Learning Given HMM with unknown parameters and $\{O_t\}_{t=1}^T$ observation sequence
 - find $\arg\max_{\theta} p(\{O_t\}_{t=1}^T | \theta)$ parameters that maximize likelihood of observed data

HMM Algorithms

 Evaluation — What is the probability of the observed sequence? Forward Algorithm

- Decoding What is the probability that the third roll was loaded given the observed sequence? Forward-Backward Algorithm
 - What is the most likely die sequence given the observed sequence? Viterbi Algorithm
- Learning Under what parameterization is the observed sequence most probable? Baum-Welch Algorithm (EM)

Evaluation Problem

Given HMM parameters $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t)$ & observation sequence $\{O_t\}_{t=1}^T$

find probability of observed sequence
$$p(\{O_t\}_{t=1}^T) = \sum_{S_1, \dots, S_T} p(\{O_t\}_{t=1}^T, \{S_t\}_{t=1}^T)$$

$$= \sum_{S_1, \dots, S_T} p(S_1) \prod_{t=2}^T p(S_t|S_{t-1}) \prod_{t=1}^T p(O_t|S_t)$$

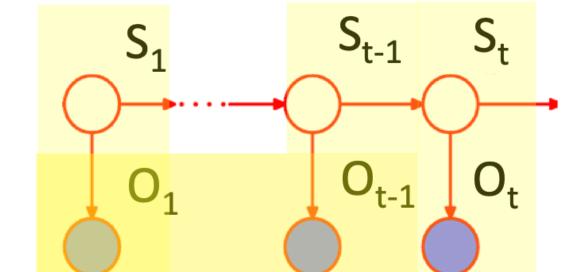
requires summing over all possible hidden state values at all times – K^T exponential # terms!

Forward Probability

$$p(\{O_t\}_{t=1}^T) = \sum_k p(\{O_t\}_{t=1}^T, S_T = k) = \sum_k \alpha_T^k$$

Compute forward probability α_t^k recursively over t

$$\alpha_t^k := p(O_1, \dots, O_t, S_t = k)$$



Introduce S_{t-1}

Chain rule

Markov assumption

$$= p(O_t|S_t = k) \sum_{i} \alpha_{t-1}^i p(S_t = k|S_{t-1} = i)$$

Forward Algorithm

Can compute α_t^k for all k, t using dynamic programming:

• Initialize:
$$\alpha_1^k = p(O_1|S_1 = k) p(S_1 = k)$$
 for all k

Iterate: for t = 2, ..., T

$$\alpha_t^k = p(O_t | S_t = k) \sum_i \alpha_{t-1}^i p(S_t = k | S_{t-1} = i)$$
 for all k

• Termination:
$$p(\{O_t\}_{t=1}^T) = \sum_{\mathbf{k}} \alpha_{\mathsf{T}}^{\mathbf{k}}$$

Can we do in the backward direction?

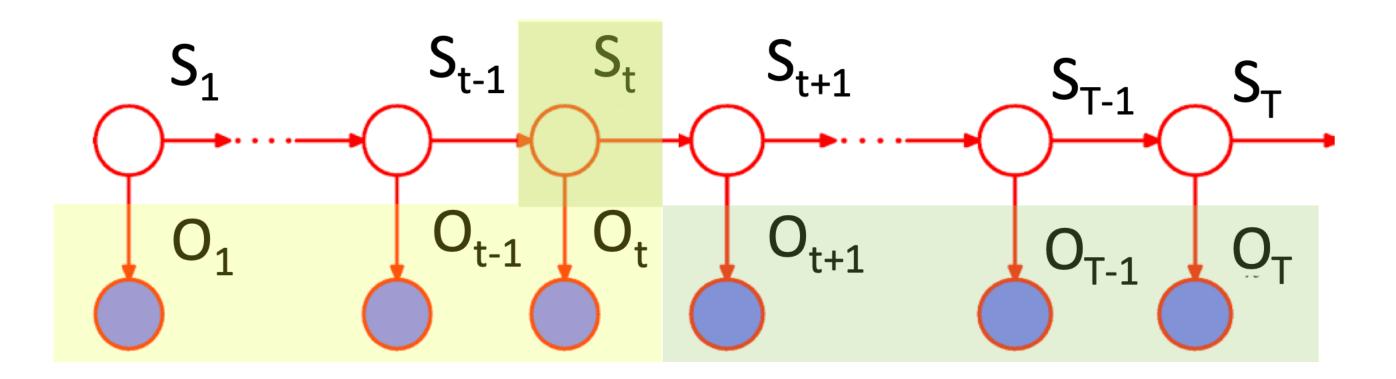
Decoding Problem 1

• Given HMM parameters $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t)$ & observation sequence $\{O_t\}_{t=1}^T$

find probability that hidden state at time t was k $p(S_t = k | \{O_t\}_{t=1}^T)$

$$p(S_t = k, \{O_t\}_{t=1}^T) = p(O_1, \dots, O_t, S_t = k, O_{t+1}, \dots, O_T)$$

$$= p(O_1, \dots, O_t, S_t = k)p(O_{t+1}, \dots, O_T | S_t = k)$$
Compute recursively
$$\mathbf{Q}_t^{\mathsf{k}}$$



Forward-Backward Algorithm

Can compute β_t^k for all k, t using dynamic programming:

• Initialize: $\beta_T^k = 1$ for all k

• Iterate: for t = T-1, ..., 1

$$\beta_t^k = \sum_i p(S_{t+1} = i | S_t = k) p(O_{t+1} | S_{t+1} = i) \beta_{t+1}^i$$
 for all k

• Termination: $p(S_t = k, \{O_t\}_{t=1}^T) = \alpha_t^k \beta_t^k$

$$p(S_t = k | \{O_t\}_{t=1}^T) = \frac{p(S_t = k, \{O_t\}_{t=1}^T)}{p(\{O_t\}_{t=1}^T)} = \frac{\alpha_t^k \beta_t^k}{\sum_i \alpha_t^i \beta_t^i}$$

Most Likely State vs. Most Likely Sequence

☐ Most likely state assignment at time t

$$\arg\max_{k} p(S_t = k | \{O_t\}_{t=1}^T) = \arg\max_{k} \alpha_t^k \beta_t^k$$

E.g. Which die was most likely used by the casino in the third roll given the observed sequence?

☐ Most likely assignment of state sequence

$$\arg\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T | \{O_t\}_{t=1}^T)$$

Are the solutions the same?

Decoding Problem 2

• Given HMM parameters $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t)$ & observation sequence $\{O_t\}_{t=1}^T$

find most likely assignment of state sequence

$$\arg\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T | \{O_t\}_{t=1}^T) = \arg\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T)$$

$$= \arg\max_{k} \max_{\{S_t\}_{t=1}^{T-1}} p(S_T = k, \{S_t\}_{t=1}^{T-1}, \{O_t\}_{t=1}^T)$$

$$\bigvee_{\mathsf{T}}^{\mathsf{K}}$$

Compute recursively

 V_T^k - probability of most likely sequence of states ending at state $S_T = k$

Viterbi Decoding

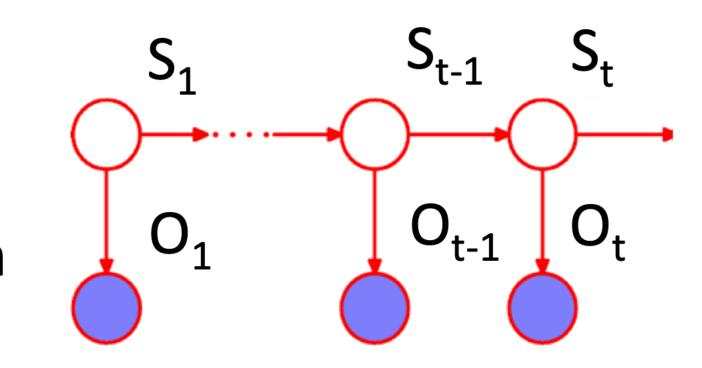
$$\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T) = \max_k V_T^k$$

Compute probability V_t^k recursively over t

$$V_t^k := \max_{S_1, \dots, S_{t-1}} p(S_t = k, S_1, \dots, S_{t-1}, O_1, \dots, O_t)$$

Bayes rule

Markov assumption



$$= p(O_t|S_t = k) \max_i p(S_t = k|S_{t-1} = i)V_{t-1}^i$$

Viterbi Algorithm

Can compute V_t^k for all k, t using dynamic programming:

• Initialize:
$$V_1^k = p(O_1|S_1=k)p(S_1=k)$$
 for all k

• Iterate: for t = 2, ..., T

$$V_t^k = p(O_t|S_t = k) \max_i p(S_t = k|S_{t-1} = i)V_{t-1}^i$$
 for all k

• Termination:
$$\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T) = \max_k V_T^k$$

Traceback:
$$S_T^* = \arg\max_k V_T^k$$

$$S_{t-1}^* = \arg\max_i p(S_t^*|S_{t-1}=i)V_{t-1}^i$$

Can we do in the backward direction?

Computational Complexity

• What is the running time for Forward, Backward, Viterbi?

$$\alpha_{t}^{k} = q_{k}^{O_{t}} \sum_{i} \alpha_{t-1}^{i} p_{i,k}$$

$$\beta_{t}^{k} = \sum_{i} p_{k,i} q_{i}^{O_{t+1}} \beta_{t+1}^{i}$$

$$V_{t}^{k} = q_{k}^{O_{t}} \max_{i} p_{i,k} V_{t-1}^{i}$$

O(K²T) linear in T instead of O(K^T) exponential in T!

Learning with EM

- Start with random initialization of parameters
- E-step Fix parameters, find expected state assignments

$$\gamma_i(t) = p(S_t = i | O, \theta) = \frac{\alpha_t^i \beta_t^i}{\sum_i \alpha_t^j \beta_t^j}$$
 $\mathbf{O} = \{O_t\}_{t=1}^T$

Forward-Backward algorithm

$$\xi_{ij}(t) = p(S_{t-1} = i, S_t = j | O, \theta)$$

$$= \frac{p(S_{t-1} = i | O, \theta) p(S_t = j, O_t, \dots, O_T | S_{t-1} = i, \theta)}{p(O_t, \dots, O_T | S_{t-1} = i, \theta)}$$

$$= \frac{\gamma_i(t-1) p_{ij} q_j^{O_t} \beta_t^j}{\beta_{t-1}^i}$$

You will derive the EM in your HW

Thank You! Q&A