

Neural Networks, Backpropagation

Junxian He Nov 7, 2024 COMP 5212 Machine Learning Lecture 18

Logistic Function as a Graph

Output, $o(\mathbf{x}) = \sigma(w_0 + \sum_i w_i)$

$$
v_i X_i) = \frac{1}{1 + \exp(-(w_0 + \sum_i w_i X_i))}
$$

Computation Graph

- f can be a non-linear function
- X (vector of) continuous and/or discrete variables
- Y (vector of) continuous and/or discrete variables
	- Neural networks Represent f by *network* of sigmoid (more recently ReLU - next lecture) units :

Neural Networks

Multilayer Networks of Sigmoid Units

Two layers of logistic units

Highly non-linear decision surface

Neural Network trained to drive a car!

More Applications

Expressive Capabilities of ANNs

Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989; Hornik et al. 1989
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

Prediction using Neural Networks

Prediction – Given neural network (hidden units and weights), use it to predict the label of a test point

Forward Propagation -Start from input layer For each subsequent layer, compute output of sigmoid unit

 $o(x) =$

Sigmoid unit:

1-Hidden layer,

1 output NN:

$$
o(\mathbf{x}) = \sigma(w_0 + \sum_i w_i x_i)
$$

$$
o(\mathbf{x}) = \sigma\left(w_0 + \sum_h w_h \sigma(w_0^h + \sum_i w_i^h x_i)\right)
$$

Objective Functions for NNs

- Regression:
	- Use the same objective as Linear Regression - Quadratic loss (i.e. mean squared error)

- Classification:
	- "softmax" layer at the end of our network
	-
	- Use the same objective as Logistic Regression - Cross-entropy (i.e. negative log likelihood) - This requires probabilities, so we add an additional

Gradient descent for training NNs

 $W \leftarrow$

$$
w - \alpha \cdot \frac{\partial L}{\partial w}
$$

$$
\frac{\partial net}{\partial w_i} = o(1 - o)x_i
$$

Gradient decent for 1 node:

Chain rule

Univariate Chain Rule

• We've already been using the univariate Chain Rule. • Recall: if $f(x)$ and $x(t)$ are univariate functions, then

Example:

Let's compute the loss derivatives.

$$
\frac{\mathrm{d}}{\mathrm{d}t}f(x(t))=\frac{\mathrm{d}f}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}.
$$

$$
z = wx + b
$$

$$
y = \sigma(z)
$$

$$
\mathcal{L} = \frac{1}{2}(y - t)^2
$$

Example of Chain Rule

$$
\mathcal{L} = \frac{1}{2} (\sigma(wx+b) - t)^2
$$

$$
\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial}{\partial w} \left[\frac{1}{2} (\sigma(wx+b) - t)^2 \right]
$$

$$
= \frac{1}{2} \frac{\partial}{\partial w} (\sigma(wx+b) - t)^2
$$

 $\sigma(\omega x + t)$

- $= (\sigma(wx + b$
 $= (\sigma(wx + b$
-

$$
b)-t)\frac{\partial}{\partial w}(\sigma(wx+b)-t)
$$
\n
$$
b)-t)\sigma'(wx+b)\frac{\partial}{\partial w}(wx+b)
$$
\n
$$
b)-t)\sigma'(wx+b)x
$$

Using Chain Rules

Computing the loss:

$$
z = wx + b
$$

\n
$$
y = \sigma(z)
$$

\n
$$
\mathcal{L} = \frac{1}{2}(y - t)^2
$$

The goal isn't to obtain closed-form solutions, but to be able to write a program that efficiently computes the derivatives

Computing the derivatives:

$$
\frac{d\mathcal{L}}{dy} = y - t
$$

$$
\frac{d\mathcal{L}}{dz} = \frac{d\mathcal{L}}{dy} \sigma'(z)
$$

$$
\frac{\partial \mathcal{L}}{\partial w} = \frac{d\mathcal{L}}{dz} \times \frac{\partial \mathcal{L}}{\partial z} = \frac{d\mathcal{L}}{dz}
$$

Univariate Chain Rule

Compute Derivatives

A Slightly More Convenient Notation

Use \overline{y} to denote the derivative $d\mathcal{L}/dy$, sometimes called the error signal

Computing the loss:

$$
z = wx + b
$$

$$
y = \sigma(z)
$$

$$
\mathcal{L} = \frac{1}{2}(y - t)^2
$$

Computing the derivatives:

$$
\overline{y} = y - t
$$

$$
\overline{z} = \overline{y} \sigma'(z)
$$

$$
\overline{w} = \overline{z} x
$$

$$
\overline{b} = \overline{z}
$$

Multivariate Chain Rule

This requires the multivariate Chain Rule!

 $\frac{d}{dt}f(x(t))$

Example:

$$
f(x, y) = y + e^{xy}
$$

\n
$$
x(t) = \cos t
$$

\n
$$
y(t) = t^2
$$

Problem: what if the computation graph has fan-out > 1 ?

$$
f(y,t) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}
$$

 $\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$ $= (ye^{xy}) \cdot (-\sin t) + (1 + xe^{xy}) \cdot 2t$

Multivariate Chain Rule

Another Example

Let v_1, \ldots, v_N be a topological ordering of the computation graph (i.e. parents come before children.) v_N denotes the variable we're trying to compute derivatives of (e.g. loss).

by back-propagating errors. Nature. 1986

$$
j\!\in\!\text{Ch}(v_i)\stackrel{\overline{\partial} v_j}{\overline{\partial} v_i}
$$

Multilayer Perceptron (multiple outputs):**Forward pass:**

Backward pass: $\overline{\mathcal{L}}=1$ $z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)}$ $\overline{w_{ki}^{(2)}} = \overline{y_k} h_i$ $h_i = \sigma(z_i)$ $\overline{b_k^{(2)}} = \overline{y_k}$ $y_k = \sum_i w_{ki}^{(2)} h_i + b_k^{(2)}$
 $\mathcal{L} = \frac{1}{2} \sum_k (y_k - t_k)^2$

 $\overline{y_k} = \overline{\mathcal{L}}(y_k - t_k)$ $\overline{h_i} = \sum_k \overline{y_k} w_{ki}^{(2)}$ $\overline{z_i} = \overline{h_i} \sigma'(z_i)$ $w_{ii}^{(1)} = \overline{z_i} x_j$ $\overline{b_i^{(1)}} = \overline{z_i}$

In vectorized form:

Forward pass:

$$
z = W^{(1)}x + b^{(1)}
$$

\n
$$
h = \sigma(z)
$$

\n
$$
y = W^{(2)}h + b^{(2)}
$$

\n
$$
\mathcal{L} = \frac{1}{2} ||t - y||^2
$$

Backward pass:

 $\overline{\mathcal{L}}=1$ $\overline{\mathbf{y}} = \overline{\mathcal{L}} (\mathbf{y} - \mathbf{t})$ $\overline{\mathbf{W}^{(2)}} = \overline{\mathbf{y}} \mathbf{h}^{\top}$ $\overline{\mathbf{b}^{(2)}} = \overline{\mathbf{y}}$ $\overline{\mathbf{h}} = \mathbf{W}^{(2)\top} \overline{\mathbf{y}}$ $\overline{z} = \overline{h} \circ \sigma'(z)$ $\overline{\mathbf{W}^{(1)}} = \overline{\mathbf{z}} \mathbf{x}^{\top}$ $\overline{\mathbf{b}^{(1)}} = \overline{\mathbf{z}}$

• Each node receives a bunch of messages from its children, which it aggregates to get its error signal. It then passes messages to its parents.

Each node only has to know how to compute derivatives with respect to its arguments, and doesn't have to know anything about the rest of the graph

Computational Cost

weight

per weight

 $\frac{\overline{w_{ki}^{(2)}}}{h_i} =$

 $z_i = \sum_i$

The backward pass is about as expensive as two forward passes For a multilayer perceptron, this means the cost is linear in the number of layers, quadratic in the number of units per layer

• Computational cost of forward pass: one add-multiply operation per

$$
w_{ij}^{(1)}x_j + b_i^{(1)}
$$

• Computational cost of backward pass: two add-multiply operations

$$
=\frac{\overline{y_k}}{\overline{y_k}}h_i
$$

$$
=\sum_{k}\overline{y_{k}}w_{ki}^{(2)}
$$

- Backprop is used to train the overwhelming majority of neural nets today.
	- Even optimization algorithms much fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.

- Despite its practical success, backprop is believed to be neurally implausible. • No evidence for biological signals analogous to error derivatives. • All the biologically plausible alternatives we know about learn much
- - more slowly (on computers).
	- So how on earth does the brain learn?
-

- By now, we've seen three different ways of looking at gradients: • Geometric: visualization of gradient in weight space • Algebraic: mechanics of computing the derivatives
-
- Implementational: efficient implementation on the computer

Stochastic Gradient Descent

Vanilla backpropagation training is slow with lot of data and lot of weights

$$
L = \mathbb{E}_{x \sim p_{data}} l(x) \approx \frac{1}{N} \sum_{i=1}^{N} l(x_i)
$$

 $\nabla L = \nabla \mathbb{E}_{x \sim p_{data}} l(x) \approx \nabla$ 1 *n n* ∑ *i*=1

Denote the loss of a single data example x_i as $l(x_i)$, the training loss L is:

This is slow on the entire training dataset, thus we use MCMC to approximate:

N is the size of the entire training dataset

n is the size of a (batch size)

random minibatch n can be as small as one

Background

1. Given training data: $\{\boldsymbol{x}_i, \boldsymbol{y}_i\}_{i=1}^N$

2. Choose each of these: - Decision function

 $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$

- Loss function

 $\ell(\hat{\bm{y}}, \bm{y}_i) \in \mathbb{R}$

A Recipe for Machine Learning

3. Define goal: $\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^N \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$

4. Train with SGD: (take small steps opposite the gradient)

$$
\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)
$$

Activation Functions

So far, we've assumed that the activation function (nonlinearity) is always the sigmoid function...

• A new change: modifying the nonlinearity - The logistic is not widely used in modern ANNs

Tanh

Alternate 1: tanh

Like logistic function but shifted to range [-1, +1]

Activation Function

Understanding the difficulty of training deep feedforward neural networks

Figure from Glorot & Bentio (2010)

ReLU

Other Activation Functions

$$
\sigma(z) = \frac{1}{1 + e^{-z}} \qquad \text{(sigmoid)}
$$
\n
$$
\sigma(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}} \qquad \text{(tanh)}
$$
\n
$$
\sigma(z) = \max\{z, \gamma z\}, \gamma \in (0, 1) \qquad \text{(leaky ReLU)}
$$
\n
$$
\sigma(z) = \frac{z}{2} \left[1 + \text{erf}(\frac{z}{\sqrt{2}}) \right] \qquad \text{(GELU)}
$$
\n
$$
\sigma(z) = \frac{1}{\beta} \log(1 + \exp(\beta z)), \beta > 0 \qquad \text{(Softplus)}
$$

Multilayer Perceptron Neural Networks (MLP)

