
1

Neural	Networks,	Backpropaga3on

Junxian	He	
Nov	7,	2024

COMP	5212	
Machine	Learning	
Lecture	18

PGM -> Hand



Logis&c	Func&on	as	a	Graph

2

computation Gruph



Logis&c	Func&on	as	a	Graph

2

expl-z wixt
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Logis&c	Func&on	as	a	Graph
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Mul&layer	Networks	of	Sigmoid	Units
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More	Applica&ons
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Expressive	Capabili&es	of	ANNs
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Predic&on	using	Neural	Networks
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Objec&ve	Func&ons	for	NNs
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Gradient	descent	for	training	NNs
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Gradient	descent	for	training	NNs
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Gradient	decent	for	1	node:
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Gradient	descent	for	training	NNs
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Gradient	decent	for	1	node:
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Univariate	Chain	Rule
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Univariate	Chain	Rule
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Example	of	Chain	Rule
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Using	Chain	Rules
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Using	Chain	Rules
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The	goal	isn’t	to	obtain	closed-form	solu3ons,	but	to	be	able	to	write	a	
program	that	efficiently	computes	the	deriva3ves
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A	Slightly	More	Convenient	Nota&on
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Mul&variate	Chain	Rule
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Mul&variate	Chain	Rule
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Mul&variate	Chain	Rule
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Mul&variate	Chain	Rule

15

Example:
↓za

, b , 2) A

0
-



Mul&variate	Chain	Rule
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17

O Of
Na

0 O
O

F
E

,
Y, Ja
- related W,
Cross
- entropy



Backpropaga&on
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Backpropaga&on
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Mul3layer	Perceptron	(mul3ple	outputs):

D



Backpropaga&on

20

W matrix
-

O

--Of-

-



Backpropaga&on	as	Message	Passing
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Backpropaga&on	as	Message	Passing
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Each	node	only	has	to	know	how	to	compute	deriva3ves	with	respect	to	its	
arguments,	and	doesn’t	have	to	know	anything	about	the	rest	of	the	graph
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Computa&onal	Cost
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Computa&onal	Cost
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The	backward	pass	is	about	as	expensive	as	two	forward	passes
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Computa&onal	Cost
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The	backward	pass	is	about	as	expensive	as	two	forward	passes
For	a	mul3layer	perceptron,	this	means	the	cost	is	linear	in	the	number	of	
layers,	quadra3c	in	the	number	of	units	per	layer
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Backpropaga&on
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Stochas&c	Gradient	Descent
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Stochas&c	Gradient	Descent
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Vanilla	backpropaga3on	training	is	slow	with	lot	of	data	and	lot	of	weights

SGR
-

-
-

N 2[
- for all dataz 2 w

-
N



Stochas&c	Gradient	Descent
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Vanilla	backpropaga3on	training	is	slow	with	lot	of	data	and	lot	of	weights

Denote	the	loss	of	a	single	data	example	 	as	 ,	the	training	loss	 	is:xi l(xi) L
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Stochas&c	Gradient	Descent
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Vanilla	backpropaga3on	training	is	slow	with	lot	of	data	and	lot	of	weights

L = ←x−pdata
l(x) ⋅ 1

N
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Denote	the	loss	of	a	single	data	example	 	as	 ,	the	training	loss	 	is:xi l(xi) L
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Stochas&c	Gradient	Descent
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Vanilla	backpropaga3on	training	is	slow	with	lot	of	data	and	lot	of	weights

L = ←x−pdata
l(x) ⋅ 1

N
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Denote	the	loss	of	a	single	data	example	 	as	 ,	the	training	loss	 	is:xi l(xi) L

N	is	the	size	of	the	
en3re	training	dataset
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Vanilla	backpropaga3on	training	is	slow	with	lot	of	data	and	lot	of	weights

L = ←x−pdata
l(x) ⋅ 1

N
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Denote	the	loss	of	a	single	data	example	 	as	 ,	the	training	loss	 	is:xi l(xi) L

This	is	slow	on	the	en3re	training	dataset,	thus	we	use	MCMC	to	approximate:

N	is	the	size	of	the	
en3re	training	dataset
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Vanilla	backpropaga3on	training	is	slow	with	lot	of	data	and	lot	of	weights
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Denote	the	loss	of	a	single	data	example	 	as	 ,	the	training	loss	 	is:xi l(xi) L

This	is	slow	on	the	en3re	training	dataset,	thus	we	use	MCMC	to	approximate:

N	is	the	size	of	the	
en3re	training	dataset
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ReLU
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Other	Ac&va&on	Func&ons
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Mul&layer	Perceptron	Neural	
Networks	(MLP)
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