
1

Neural	Networks,	Backpropaga3on

Junxian	He	
Nov	7,	2024

COMP	5212	
Machine	Learning	
Lecture	18

PGM -> Hand

Logis&c	Func&on	as	a	Graph

2

computation Gruph

Logis&c	Func&on	as	a	Graph

2

expl-z wixt

Logis&c	Func&on	as	a	Graph

2

8
8 -

-

Ocx

O u
-

I
-

Ite
=

Logis&c	Func&on	as	a	Graph

2

Computa3on	Graph

Neural	Networks	

3

Neural	Networks	

3

-X

Neural	Networks	

3

PSM :

randen varimble
h = g(x) -clic
↑
-

signoitW. x, + W
=

"

xy

& h /2-layou
signl(a , X , + c2X2S

Mul&layer	Networks	of	Sigmoid	Units

4

Mul&layer	Networks	of	Sigmoid	Units

4

Mul&layer	Networks	of	Sigmoid	Units

4

mem

univeral function -
approximators

More	Applica&ons

5

Expressive	Capabili&es	of	ANNs

6

②

Predic&on	using	Neural	Networks

7

Predic&on	using	Neural	Networks

7

Operameters

Predic&on	using	Neural	Networks

7

-
-

-
- ·
-

Predic&on	using	Neural	Networks

7

X

-

Objec&ve	Func&ons	for	NNs

8

&
MSE
-

E

O

~Parametric function
-

/)

Poselse)= NN"StycO
+S

PCO+ ISe)=NNSe
Neural Ha

Gradient	descent	for	training	NNs

9

Gradient	descent	for	training	NNs

9

w ← w − α ⋅ ∂L
∂w
p

p
- -

- -

Gradient	descent	for	training	NNs

9

w ← w − α ⋅ ∂L
∂w

Gradient	decent	for	1	node:

Gradient	descent	for	training	NNs

9

w ← w − α ⋅ ∂L
∂w

Gradient	decent	for	1	node:

backward()
0:Fetmet d
-
20

Onenet- -
OW
;
-

chain cule

Gradient	descent	for	training	NNs

9

w ← w − α ⋅ ∂L
∂w

Gradient	decent	for	1	node:

Chain	rule

Univariate	Chain	Rule

10

⑪t
-

fox(t))

Ex(z(111)

Univariate	Chain	Rule

10

Example:

-

(input
hiddenE g

-
O

hidden(·

Example	of	Chain	Rule

11

y= 6 (wX
+b) - t

↳= y2
Y

A

&2

Using	Chain	Rules

12

-

Using	Chain	Rules

12

The	goal	isn’t	to	obtain	closed-form	solu3ons,	but	to	be	able	to	write	a	
program	that	efficiently	computes	the	deriva3ves

I

Univariate	Chain	Rule

13

=
x0L
-

8 =9-t,
chain

A	Slightly	More	Convenient	Nota&on

14

A	Slightly	More	Convenient	Nota&on

14

A	Slightly	More	Convenient	Nota&on

14

o
At ↓

Mul&variate	Chain	Rule

15

T

--

I
t

Mul&variate	Chain	Rule

15

Op
dfaxes . y (+ 1)
-

de

Mul&variate	Chain	Rule

15

Example:

-

-

-

Mul&variate	Chain	Rule

15

Example:
↓za

, b , 2) A

0
-

Mul&variate	Chain	Rule

16

-

Another	Example

17

O Of
Na

0 O
O

F
E

,
Y, Ja
- related W,
Cross
- entropy

Backpropaga&on

18

[1]	David	Rumelhart,	Geoffrey	Hinton,	Ronald	Williams.	Learning	representa3ons	
by	back-propaga3ng	errors.	Nature.	1986

-

-Vn-loss

dVa

Ta

Backpropaga&on

18

[1]	David	Rumelhart,	Geoffrey	Hinton,	Ronald	Williams.	Learning	representa3ons	
by	back-propaga3ng	errors.	Nature.	1986

Backpropaga&on

18

[1]	David	Rumelhart,	Geoffrey	Hinton,	Ronald	Williams.	Learning	representa3ons	
by	back-propaga3ng	errors.	Nature.	1986

ChcVi)

So&

~
a

d ⑮
Vi -

Ti [Vj . E
JEChavis

#proprigation multivariant chain-rule
-

F- Va-L

-

Backpropaga&on

19

Mul3layer	Perceptron	(mul3ple	outputs):

D

Backpropaga&on

20

W matrix
-

O

--Of-

-

Backpropaga&on	as	Message	Passing

21

signal neurons

Pam elimination for

belifet propagation

Backpropaga&on	as	Message	Passing

21

Each	node	only	has	to	know	how	to	compute	deriva3ves	with	respect	to	its	
arguments,	and	doesn’t	have	to	know	anything	about	the	rest	of	the	graph

P

⑳---O

-

-

Computa&onal	Cost

22

Computa&onal	Cost

22

Em

Computa&onal	Cost

22

O
-

for bothh
& parameter w

learning parameter

Computa&onal	Cost

22

The	backward	pass	is	about	as	expensive	as	two	forward	passes
-

Computa&onal	Cost

22

The	backward	pass	is	about	as	expensive	as	two	forward	passes
For	a	mul3layer	perceptron,	this	means	the	cost	is	linear	in	the	number	of	
layers,	quadra3c	in	the	number	of	units	per	layer

N-N

Oct
-o -

Backpropaga&on

23

Backpropaga&on

23

adam

-seem

-radient-basedme ther

-

Backpropaga&on

23

-

Backpropaga&on

24

②
②
- Simple equation

↓ ↓ ↓

0-0- 0
- 0

X
Xa

-

Stochas&c	Gradient	Descent

25

Stochas&c	Gradient	Descent

25

Vanilla	backpropaga3on	training	is	slow	with	lot	of	data	and	lot	of	weights

SGR
-

-
-

N 2[
- for all dataz 2 w

-
N

Stochas&c	Gradient	Descent

25

Vanilla	backpropaga3on	training	is	slow	with	lot	of	data	and	lot	of	weights

Denote	the	loss	of	a	single	data	example	 	as	 ,	the	training	loss	 	is:xi l(xi) L
-

Stochas&c	Gradient	Descent

25

Vanilla	backpropaga3on	training	is	slow	with	lot	of	data	and	lot	of	weights

L = ←x−pdata
l(x) ⋅ 1

N

N

∑
i=1

l(xi)

Denote	the	loss	of	a	single	data	example	 	as	 ,	the	training	loss	 	is:xi l(xi) L

mem

W can be

E
X-Paat
outCall

Stochas&c	Gradient	Descent

25

Vanilla	backpropaga3on	training	is	slow	with	lot	of	data	and	lot	of	weights

L = ←x−pdata
l(x) ⋅ 1

N

N

∑
i=1

l(xi)

Denote	the	loss	of	a	single	data	example	 	as	 ,	the	training	loss	 	is:xi l(xi) L

N	is	the	size	of	the	
en3re	training	dataset

--

Non to Carlo

Stochas&c	Gradient	Descent

25

Vanilla	backpropaga3on	training	is	slow	with	lot	of	data	and	lot	of	weights

L = ←x−pdata
l(x) ⋅ 1

N

N

∑
i=1

l(xi)

Denote	the	loss	of	a	single	data	example	 	as	 ,	the	training	loss	 	is:xi l(xi) L

This	is	slow	on	the	en3re	training	dataset,	thus	we	use	MCMC	to	approximate:

N	is	the	size	of	the	
en3re	training	dataset

-

Stochas&c	Gradient	Descent

25

Vanilla	backpropaga3on	training	is	slow	with	lot	of	data	and	lot	of	weights

L = ←x−pdata
l(x) ⋅ 1

N

N

∑
i=1

l(xi)

Denote	the	loss	of	a	single	data	example	 	as	 ,	the	training	loss	 	is:xi l(xi) L

This	is	slow	on	the	en3re	training	dataset,	thus	we	use	MCMC	to	approximate:

N	is	the	size	of	the	
en3re	training	dataset

∂L = ∂←x−pdata
l(x) ⋅ ∂ 1

n

n

∑
i=1

l(xi)
n	is	the	size	of	a	

random	minibatch	
(batch	size)

-

9
-O hatch

size

Stochas&c	Gradient	Descent

25

Vanilla	backpropaga3on	training	is	slow	with	lot	of	data	and	lot	of	weights

L = ←x−pdata
l(x) ⋅ 1

N

N

∑
i=1

l(xi)

Denote	the	loss	of	a	single	data	example	 	as	 ,	the	training	loss	 	is:xi l(xi) L

This	is	slow	on	the	en3re	training	dataset,	thus	we	use	MCMC	to	approximate:

N	is	the	size	of	the	
en3re	training	dataset

∂L = ∂←x−pdata
l(x) ⋅ ∂ 1

n

n

∑
i=1

l(xi)
n	is	the	size	of	a	

random	minibatch	
(batch	size)

n	can	be	as	small	as	one-

26

⑨ &

data·- d LSTM

CNN

Ac&va&on	Func&ons

27

~⑨
E17
-

Tanh

28

tarh

-o
M

-tanh-

Ac&va&on	Func&on

29

o T

ReLU

30

I fix) = may co
, X
-

"
linearIM

-

Other	Ac&va&on	Func&ons

31

--⑤-
nonlinear function

Mul&layer	Perceptron	Neural	
Networks	(MLP)

32

-

↑op
--

Thank	You!

33

