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Announcement

Lecture on Sep 17 (Mid-Autumn Festival) is rescheduled to Sep 23
(Monday) from 130pm - 250pm at LG3009.



Supervised Learning

@ A hypothesis or a prediction function is function h: X — )
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Supervised Learning
A hypothesis or a prediction function is function h : X — Y

A training set is set of pairs {(xV),y()), ..., (x(" y")}
s.t. xU) € X and y(i) c ) for i - 1,....n.

Given a training set our goal is to produce a good prediction function A

If ) is continuous, then called a regression problem

If ) is discrete, then called a classification problem
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Supervised Learning

How to define “good” for a prediction function?
~ Metrics / performance
~ Good on unseen data

Validation dataset is another set of pairs {(A(l), A(l)), v, (JAC(m), A(m))}

Does not overlap with training dataset

Test dataset is another set of pairs { (", 31, ..., G, D))
Does not overlap with training and validation dataset
Completely unseen before deployment

. , o Realistic setting
Hyperparameter tuning is a form of training
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Supervised Training

Train Validation Test

Not only for supervised learning



Example: Regression using Housing Data

Example from Stanford CS229
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Represent /1 as a Linear Function

h(x) = 0y + 01x1 is an affine function

Popular choice

The function is defined by parameters ¢, and 0,, the function space is
greatly reduced



Simple Line Fit
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More Features

size bedrooms lot size Price
x(1) | 2104 4 45k  y(1) | 400
x(2) | 2500 3 30k y(@ | 900

What's a prediction here?

h(X) = 0y + O1x1 + Orx0 + O3x3.

With the convention that xg = 1 we can write:

3
h(x) = Z 0 x;
J=0
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Vector Notations

size bedrooms lot size Price
x) 12104 4 45k y) 1400
x(2) | 2500 3 30k y® | 900

We write the vectors as (important notation)

(1)
0o X(()l) 1
0 = 01 and x!) = X11 = | and y!) = 400
02 s\ 4
0 X§1) 45

We call 6 parameters, x{/) is the input or the features, and the
output or target is y{). To be clear,

(x,y) is a training example and (x\"), y{1)) is the i example.

We have n examples. There are d features. x% and @ are d+1 dimensional (since x5 = 1)
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Vector Notation of Prediction
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d
hy(x) = 2 (9jxj =x'6
j=0

We want to choose @ so that hy(x) =~ y
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Loss Function
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0 We want to choose 0 so that hy(x) = y
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How to quantify the deviation of /i,(x) fromy
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d
hy(x) = Z Q,-xj =x'6
j=0

Choose

Least Squares
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§ = argmin J(6).
0
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Solving Least Square Problem

Direct Minimization
d 1 < | A\ 2
hy(x) = Hjxj = x'6 J(6) = = Z (he(x(')) _ y(1)>

. 2 “
j=0 i=1

§ = argmin J(0).
0
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Solving Least Square Problem

1 _, -
Vei(Xe — )" (X0 —79)

Vo ((X0)"X60 — (X0)"5 — i (X6) + §"5)

VoJ (6)

Vo (0"(XTX)0 — ¢ (X0) — §"(X0))

N DN N =N -

Vo (07 (XTX)0 —2(X"9)"6)
= —(2X'X6-2X"7)
— XTx0— X7y
Normal equations X~ X6 = X1 o= (XTX)'XTy.
When is X! X invertible? What if it is not invertible?
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Why Least-Square Loss Function?

J(0) = % Zn: (he(x(i)) — y("))z

=1
Assume
y(i) — ot x(i) + 6(i)

¢: deviation of prediction from the

X, yV: random variable , ,
> truth, Gaussian random variable

x, y(i): observations, or the data

e'": the actual prediction error of the i, example, sampled from the
Gaussian distribution, IID (independently and identically distributed)
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Why Least-Square Loss Function?

() =~ (-5 T)
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Why Least-Square Loss Function?

L) = |[p@®|z9;06)
=1

ﬁ 1 exp( (y@)—eTa:(i))z) Likelihood Function
Pl 21O

207

What is a reasonable guess of 67

Maximize the probability of Y's happening!
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Maximum Likelihood Estimation (MLE)
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Why MLE?
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ﬁ 1 exp( (y@)—e%(i))?) Likelihood Function
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What is a reasonable guess of 67

Maximize the probability of Y’s happening?
Maximizing likelihood estimation -> 0

Ground-truth &%

22



Another Solution — Gradient Descent

d
hy(x) = Z «9jxj =x'6
j=0

Choose
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Gradient Descent

5(8) = 23 (ho(x) -y

Learning Rate —
| =

0
09,

7(6)

Hj 229]'—0(

This update is simultaneously
performed for all values of j =0,...,d.

The direction of the
steepest descrease of J
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Gradient Descent

For a single training example:

9,
5_9]}](9) =

LMS (Least Mean Square) Update Rule
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Batch Gradient Descent

For a multiple training examples:

0, =06, + Z (y(i) _ ho(x(i))) xgz')
i=1

Repeat until convergence
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Local Minimum

For least square optimization, are we likely to get local minima rather
than the global minima through gradient descent?
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J is a convex quadratic function

There is only one local minima for J
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Convex Function

fltz + (1 —t)y) <tf(z) + (1 —-)f(y) for 0<t <1

(v, f())
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Thank You!
Q& A
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