

Transformers, VAEs

Junxian He Nov 19, 2024 **COMP 5212** Machine Learning Lecture 20

Transformer

Vaswani et al. Attention is All You Need. NeurIPS 2017.

2

Encoder

decoder

4

Transformer Encoder

Residual connection

What is Attention

V: value

- $Q \in R^{n \times d} \qquad K \in R^{m \times d} \qquad V \in R^{m \times d}$
 - We have n queries, m (key, value) pairs

- Attention weight = softmax(QK^T)
 - Dot-products grow large in magnitude

ntion weight = softmax(
$$\frac{QK^T}{\sqrt{d_k}}$$
)

Shape is mxn

Attention weight represents the strength to "attend" values V

$$\operatorname{con}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

What are Q, K, V in the transformer

Self-Attention

=

Query, key, and value are from the same input, thus it is called "self"-attention

Jay Alammar. The Illustrated Transformer.

At each step, the attention computation attends to all steps in the input example

Self-Attention

Attention weight on every word in the sequence

Self-Attention

Multi-Head Attention

Multi-Head Self-Attention

ATTENTION HEAD #0

ATTENTION HEAD #1

...

ATTENTION HEAD #7

Jay Alammar. The Illustrated Transformer.

Multi-Head Self-Attention

1) Concatenate all the attention heads

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

=

2) Multiply with a weight matrix W^o that was trained jointly with the model

Х

Jay Alammar. The Illustrated Transformer.

Multi-head Self-Attention

17

Multi-head Self-Attention

Concat and output projection

Multi-head Self-Attention + FFN

Transformer Encoder

This encoder-decoder arch is originally proposed as a seq2seq arch, for classification tasks, often only encoder is used. And language models often only have a decoder 20

Currently we only cover the encoder side

Transformer Decoder in Seq2Seq

Cross-attention uses the output of encoder as input

Masked Attention

Typical attention attends to the entire sequence, while masked

Position Embeddings

Question: If we shuffle the order of words in the sequence, will that change the attention output and feed forward output of the corresponding

Position embeddings are added to each word embedding, otherwise our model is unaware of the position of a word

Positional Encoding

suis

étudiant

Transformer Positional Encoding

pos = dimension of the word d model = 512

Positional encoding is a 512d vector i = a particular dimension of this vector

Layer Type

Self-Attention Recurrent Convolutional Self-Attention (restricted)

Restricted self-attention means not attending all words in the sequence, but only a restricted field

with long sequence

Complexity per Layer	Sequential Operations
$O(n^2 \cdot d)$	O(1)
$O(n \cdot d^2)$	O(n)
$O(\vec{k}\cdot n\cdot \vec{d^2})$	O(1)
$O(r \cdot n \cdot d)$	O(1)

- n is sequence length, d is embedding dimension.
- Square complexity of sequence length is a major issue for transformers to deal

Auto-Encoding Variational Bayes

Diederik P. Kingma Machine Learning Group Universiteit van Amsterdam dpkingma@gmail.com

Max Welling Machine Learning Group Universiteit van Amsterdam welling.max@gmail.com

Variational Autoencoders

VAE is a Generative Model

f is a neural network taking Z as input

The VAE Model

p(z) is a normal distribution in most cases

Neural Networks

 $X \sim P(x, f(z; \theta))$

How to train the model? Can we do MLE?

Intractable P(X), EM algorithm?

In most cases, we cannot do the sum, and cannot easily sample from Q(z) either

Let's try EM

E-Step: compute P(z|x)

$$(z) = P(z | x) \propto P(z)P(x | z)$$
 This is ok?

M-Step: the ELBO objective

 $\operatorname{argmax}_{\theta} \sum Q(z) \log p(x, z; \theta) = \operatorname{argmax}_{\theta} \mathbb{E}_{z \sim Q(z)} \log p(x, z; \theta)$

- We need an easy-to-sample distribution to approximate P(z|x)
 - $q(z | x; \phi)$ to approximate $p(z | x; \theta)$ Why conditioned on x?
- ϕ is the parameter for the approximate function, θ is the generative model parameter

Approximate Posterior

How to train $q(z | x; \phi)$, what would be the loss to find ϕ ?

Recap: ELBO

 $\text{ELBO}(x; Q, \theta) = \sum_{x \in Q} \sum_{x$

What is $\operatorname{argmax}_{O}$

- ELBO is maximized when Q(z) is equal to p(z|x)
- Therefore, we can approximate the true posterior by maximizing ELBO: $\operatorname{argmax}_{\phi} \sum q(z \mid x; \phi) \log \frac{p(x, z; \theta)}{q(z \mid x; \phi)}$ $q(z | x; \phi)$

$$\sum_{z} Q(z) \log rac{p(x,z; heta)}{Q(z)}$$

$$(z)$$
ELBO $(x; Q, \theta)$?

Variational Inference

Z

E-Step:

$\operatorname{argmax}_{\phi} \sum_{z} q(z \mid x; \phi) \log \frac{p(x, z; \theta)}{q(z \mid x; \phi)}$

M-Step:

$\operatorname{argmax}_{\theta} \sum q(z \mid x; \phi) \log (z \mid x; \phi)$ Ζ.

Because we use approximate rather than exact posterior, it is also called Variational EM

$$\log \frac{p(x,z;\theta)}{q(z \,|\, x;\phi)}$$

Same objective, different parameters to optimize

Training VAEs

E-Step:

$\operatorname{argmax}_{\phi} \sum_{z} q(z | x; \phi) \log \frac{p(x, z; \theta)}{q(z | x; \phi)} \quad \begin{array}{c} \operatorname{Can we do gradie} \\ \operatorname{descent over} \phi? \end{array}$

M-Step:

$\operatorname{argmax}_{\theta} \sum q(z \mid x; \phi) \log (z \mid x; \phi)$ Z

and use gradient descent to optimize θ

Can we do gradient

$$\sum_{z \in \mathcal{P}(x,z;\theta)} \frac{p(x,z;\theta)}{q(z \mid x;\phi)}$$

We use MC sampling to approximate expectation