

Transformers, VAEs

Junxian He Nov 19, 2024 COMP 5212 Machine Learning Lecture 20

Transformer

² Vaswani et al. Attention is All You Need. NeurIPS 2017.

Encoder

encoder

decoder

Transformer Encoder

Residual connection

What is Attention

V: value

- $Q \in R^{n \times d}$ $K \in R^{m \times d}$ $V \in R^{m \times d}$
	- We have n queries, m (key, value) pairs

- Attention weight = softmax (QK^T)
	- Dot-products grow large in magnitude

ntion weight = softmax(
$$
\frac{QK^{T}}{\sqrt{d_k}}
$$
)

Attention weight represents the strength to "attend" values V

$$
\operatorname{on}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V
$$

Shape is mxn

What are Q, K, V in the transformer

Self-Attention

 \equiv

Query, key, and value are from the same input, thus it is called "self"-attention

Jay Alammar. The Illustrated Transformer.

Slides by Emma Strubell

At each step, the attention computation attends to all steps in the input example

Slides by Emma Strubell

Self-Attention

Slides by Emma Strubell

Attention weight on every word in the sequence

Slides by Emma Strubell

Self-Attention

Slides by Emma Strubell

Multi-Head Attention

Multi-Head Self-Attention

ATTENTION HEAD #0

ATTENTION HEAD #1

ATTENTION HEAD #1

 \cdots

ATTENTION HEAD #7

15 **Jay Alammar. The Illustrated Transformer.**

Multi-Head Self-Attention

1) Concatenate all the attention heads

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

 $=$

2) Multiply with a weight matrix W^o that was trained jointly with the model

X

16 **Jay Alammar. The Illustrated Transformer.**

Multi-head Self-Attention

Slides by Emma Strubell

Multi-head Self-Attention

Slides by Emma Strubell

Concat and output projection

Multi-head Self-Attention + FFN

Slides by Emma Strubell

Transformer Encoder

Currently we only cover the encoder side

20 This encoder-decoder arch is originally proposed as a seq2seq arch, for classification tasks, often only encoder is used. And language models often only have a decoder

Transformer Decoder in Seq2Seq

Cross-attention uses the output of encoder as input

Masked Attention

Typical attention attends to the entire sequence, while masked

Position Embeddings

Question: If we shuffle the order of words in the sequence, will that change the attention output and feed forward output of the corresponding

Position embeddings are added to each word embedding, otherwise our model is unaware of the position of a word

Positional Encoding

suis

étudiant

Transformer Positional Encoding

 $PE_{(pos, 2i+1)} = \cos(\frac{pos}{10000^{2i/d_{model}}})$

 $pos = dimension of the word$ d model = 512

Positional encoding is a 512d vector $i = a$ particular dimension of this vector

Layer Type

Self-Attention Recurrent Convolutional Self-Attention (restricted)

- n is sequence length, d is embedding dimension.
	-
- Square complexity of sequence length is a major issue for transformers to deal

Restricted self-attention means not attending all words in the sequence, but only a restricted field

with long sequence

Auto-Encoding Variational Bayes

Diederik P. Kingma **Machine Learning Group** Universiteit van Amsterdam dpkingma@gmail.com

Max Welling Machine Learning Group Universiteit van Amsterdam welling.max@gmail.com

Variational Autoencoders

VAE is a Generative Model

The VAE Model

Neural Networks

X ∼ $P(x, f(z; \theta))$

p(z) is a normal distribution in most cases

f is a neural network taking Z as input

How to train the model? Can we do MLE?

Intractable P(X), EM algorithm?

Let's try EM

E-Step: compute P(z|x)

$$
Q(z) = P(z|x) \propto P(z)P(x|z)
$$
 This is ok?

M-Step: the ELBO objective

 $argmax_{\theta} \sum Q(z) \log p(x, z; \theta) = argmax_{\theta} E_{z \sim Q(z)} \log p(x, z; \theta)$

In most cases, we cannot do the sum, and cannot easily sample from Q(z) either

Approximate Posterior

How to train $q(z|x; \phi)$, what would be the loss to find ϕ ?

- We need an easy-to-sample distribution to approximate $P(z|x)$
	- $q(z|x; \phi)$ to approximate $p(z|x; \theta)$ Why conditioned on x?
- $\boldsymbol{\phi}$ is the parameter for the approximate function, $\boldsymbol{\theta}$ is the generative model parameter

 $ELBO(x; Q, \theta) = \sum$

What is argmax $_{O}$

$$
\sum_z Q(z) \log \frac{p(x,z;\theta)}{Q(z)}
$$

$$
_{(z)}\text{ELBO}(x;Q,\theta)
$$
?

- ELBO is maximized when $Q(z)$ is equal to $p(z|x)$
- Therefore, we can approximate the true posterior by maximizing ELBO: argmax*ϕ*∑ *z* $q(z|x; \phi) \log \frac{p(x, z; \theta)}{p(z)}$ *q*(*z*| *x*; *ϕ*) Variational Inference

E-Step:

argmax*ϕ*∑ *z*

 $q(z|x; \phi) \log \frac{p(x, z; \theta)}{p(z)}$ *q*(*z*| *x*; *ϕ*)

M-Step:

argmax*θ*∑ *z*

$$
q(z|x; \phi) \log \frac{p(x, z; \theta)}{q(z|x; \phi)}
$$

Same objective, different parameters to optimize

Because we use approximate rather than exact posterior, it is also called Variational EM

Training VAEs

E-Step:

argmax*ϕ*∑ *z* $q(z|x; \phi) \log \frac{p(x, z; \theta)}{p(z)}$ *q*(*z*| *x*; *ϕ*)

M-Step:

argmax*θ*∑ *z*

$$
q(z|x; \phi) \log \frac{p(x, z; \theta)}{q(z|x; \phi)}
$$

We use MC sampling to approximate expectation

Can we do gradient descent over *ϕ*?

and use gradient descent to optimize *θ*