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Slides	by	Emma	Strubell

At	each	step,	the	aHenIon	computaIon	aHends	
to	all	steps	in	the	input	example
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AHenIon	weight	on	every	
word	in	the	sequence
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Slides	by	Emma	Strubell

Concat	and	output	projecIon
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Currently	we	only	cover	the	encoder	side

This	encoder-decoder	arch	is	originally	proposed	as	a	seq2seq	arch,	for	classificaIon	tasks,	o^en	only	
encoder	is	used.	And	language	models	o^en	only	have	a	decoderme -
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Self-aHenIon

Cross-aHenIon

Cross-aHenIon	uses	the	output	of	
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Typical	aHenIon	aHends	to	the	enIre	sequence,	while	masked	
aHenIon	only	aHends	to	the	ones	on	the	le^	because	future	words	
have	not	been	generated
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QuesIon:	If	we	shuffle	the	order	of	words	in	the	
sequence,	will	that	change	the	aHenIon	output	
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QuesIon:	If	we	shuffle	the	order	of	words	in	the	
sequence,	will	that	change	the	aHenIon	output	
and	feed	forward	output	of	the	corresponding	
word?

PosiIon	embeddings	are	added	to	each	
word	embedding,	otherwise	our	model	is	
unaware	of	the	posiIon	of	a	word
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n	is	sequence	length,	d	is	embedding	dimension.
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n	is	sequence	length,	d	is	embedding	dimension.

Restricted	self-aHenIon	means	not	aHending	all	words	in	the	
sequence,	but	only	a	restricted	field
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n	is	sequence	length,	d	is	embedding	dimension.

Square	complexity	of	sequence	length	is	a	major	issue	for	transformers	to	deal	
with	long	sequence

Restricted	self-aHenIon	means	not	aHending	all	words	in	the	
sequence,	but	only	a	restricted	field
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VariaIonal	Autoencoders



VAE	is	a	Genera5ve	Model
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Label

Data

p(z):	mulInomial	,	k	
classes(e.g.	uniform)

(μ1, ∈1), (μ2, ∈2), . . . (μk, ∈k)

Gaussian	Mixture	Model	(GMM)



The	VAE	Model

29

Z

XData

p(z)
p(z)	is	a	normal	distribuIon	in	most	cases	



The	VAE	Model

29

Z

XData

p(z)

Neural	Networks

p(z)	is	a	normal	distribuIon	in	most	cases	



The	VAE	Model

29

Z

XData

p(z)

Neural	Networks

p(z)	is	a	normal	distribuIon	in	most	cases	

X × P(x, f(z; θ))



The	VAE	Model

29

Z

XData

p(z)

Neural	Networks

p(z)	is	a	normal	distribuIon	in	most	cases	

X × P(x, f(z; θ))
	is	a	neural	network	taking	Z	as	inputf
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Z

XData

p(z)

Neural	Networks

X × P(x, f(z; θ))

How	to	train	the	model?	Can	we	do	MLE?

Intractable	P(X),	EM	algorithm?
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Z

X

p(z)

Neural	Networks

X × P(x, f(z; θ))

E-Step:	compute	P(z|x)

Q(z) = P(z |x) Σ P(z)P(x |z) This	is	ok?

M-Step:	the	ELBO	objecIve

In	most	cases,	we	cannot	do	the	sum,	and	cannot	easily	
sample	from	Q(z)	either
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We	need	an	easy-to-sample	distribuIon	to	approximate	P(z|x)

	to	approximate	q(z |x; ϕ) p(z |x; θ)

	is	the	parameter	for	the	approximate	funcIon,	 	is	the	generaIve	model	
parameter
ϕ θ

How	to	train	 ,	what	would	be	the	loss	to	find	 ?q(z |x; ϕ) ϕ

Why	condiIoned	on	x?
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ELBO	is	maximized	when	Q(z)	is	equal	to	p(z|x)

Therefore,	we	can	approximate	the	true	posterior	by	maximizing	ELBO:

argmaxϕ ∑
z

q(z |x; ϕ)log p(x, z; θ)
q(z |x; ϕ)

VariaIonal	Inference
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E-Step:	

argmaxϕ ∑
z

q(z |x; ϕ)log p(x, z; θ)
q(z |x; ϕ)

M-Step:	

argmaxθ ∑
z

q(z |x; ϕ)log p(x, z; θ)
q(z |x; ϕ)

Same	objecIve,	different	parameters	to	opImize

Because	we	use	approximate	rather	than	exact	posterior,	it	is	also	
called	VariaIonal	EM
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Training	VAEs

E-Step:	

argmaxϕ ∑
z

q(z |x; ϕ)log p(x, z; θ)
q(z |x; ϕ)

M-Step:	

argmaxθ ∑
z

q(z |x; ϕ)log p(x, z; θ)
q(z |x; ϕ)

Can	we	do	gradient	
descent	over	 ?ϕ

We	use	MC	sampling	to	approximate	expectaIon	
and	use	gradient	descent	to	opImize	θ


