

Junxian He Nov 21, 2024 **COMP 5212** Machine Learning Lecture 21

Variational Autoencoders

Auto-Encoding Variational Bayes

Diederik P. Kingma Machine Learning Group Universiteit van Amsterdam dpkingma@gmail.com

Max Welling

Machine Learning Group Universiteit van Amsterdam welling.max@gmail.com

The first test-of-time award in ICLR

VAE is a Generative Model

f is a neural network taking Z as input

The VAE Model

p(z) is a normal distribution in most cases

Neural Networks

 $X \sim P(x, f(z; \theta))$

How to train the model? Can we do MLE?

Intractable P(X), EM algorithm?

In most cases, we cannot do the sum, and cannot easily sample from Q(z) either

Let's try EM

E-Step: compute P(z|x)

$$(z) = P(z | x) \propto P(z)P(x | z)$$
 This is ok?

M-Step: the ELBO objective

 $\operatorname{argmax}_{\theta} \sum Q(z) \log p(x, z; \theta) = \operatorname{argmax}_{\theta} \mathbb{E}_{z \sim Q(z)} \log p(x, z; \theta)$

- We need an easy-to-sample distribution to approximate P(z|x)
 - $q(z | x; \phi)$ to approximate $p(z | x; \theta)$ Why conditioned on x?
- ϕ is the parameter for the approximate function, θ is the generative model parameter

Approximate Posterior

- How to train $q(z | x; \phi)$, what would be the loss to find ϕ ?
- It needs to be some distance metric between $q(z | x; \phi)$ and $p(z | x; \theta)$

Recap: ELBO

$$ext{ELBO}(x; Q, \theta) = \sum_{z} Q(z) \log rac{p(x, z; Q(z))}{Q(z)}$$

What is $\operatorname{argmax}_{O(z)} \operatorname{ELBO}(x; Q, \theta)$?

ELBO is maximized when Q(z) is equal to p(z|x)

Therefore, we can approximate the true posterior by maximizing ELBO: $\operatorname{argmax}_{\phi} \sum q(z \mid x; \phi) \log \frac{p(x, z; \theta)}{q(z \mid x; \phi)}$ $q(z | x; \phi)$ Variational Inference

 $\theta)$

Maximizing ELBO is equivalent to minimize the KL divergence

 $ELBO(x; Q, \theta) = \log p(x) - D_{KL}(Q \| p_{z|x})$

E-Step:

$\operatorname{argmax}_{\phi} \sum_{z} q(z \mid x; \phi) \log \frac{p(x, z; \theta)}{q(z \mid x; \phi)}$

M-Step:

$\operatorname{argmax}_{\theta} \sum q(z \mid x; \phi) \log (z \mid x; \phi)$ Ζ.

Because we use approximate rather than exact posterior, it is also called Variational EM

$$\sum_{z \in \mathcal{P}} \frac{p(x, z; \theta)}{q(z \mid x; \phi)}$$

Same objective, different parameters to optimize

Training VAEs

E-Step:

$\operatorname{argmax}_{\phi} \sum_{z} q(z | x; \phi) \log \frac{p(x, z; \theta)}{q(z | x; \phi)} \quad \begin{array}{c} \operatorname{Can we do gradie} \\ \operatorname{descent over} \phi? \end{array}$

M-Step:

$\operatorname{argmax}_{\theta} \sum q(z \mid x; \phi) \log (z \mid x; \phi)$ Z

and use gradient descent to optimize θ

Can we do gradient

$$\sum_{z \in \mathcal{P}(x,z;\theta)} \frac{p(x,z;\theta)}{q(z \mid x;\phi)}$$

We use MC sampling to approximate expectation

 $\mu, \sigma = g(x; \phi)$

A Common Choice for $q(z | x; \phi)$

 $q(z \mid x; \phi) = N(\mu, \sigma^2)$

Inference model/network

E-Step:

$\operatorname{argmax}_{\phi} \sum_{z} q(z \mid x; \phi) \log \frac{p(x, z; \theta)}{q(z \mid x; \phi)}$

M-Step:

$\operatorname{argmax}_{\theta} \sum q(z \mid x; \phi) \log (z \mid x; \phi)$ Ζ.

Because we use approximate rather than exact posterior, it is also called Variational EM

$$\sum_{z \in \mathcal{P}} \frac{p(x, z; \theta)}{q(z \mid x; \phi)}$$

Same objective, different parameters to optimize

Training VAEs

E-Step:

$\operatorname{argmax}_{\phi} \sum_{z} q(z | x; \phi) \log \frac{p(x, z; \theta)}{q(z | x; \phi)} \quad \begin{array}{c} \operatorname{Can we do gradie} \\ \operatorname{descent over} \phi? \end{array}$

M-Step:

$\operatorname{argmax}_{\theta} \sum q(z \mid x; \phi) \log (z \mid x; \phi)$ Z

and use gradient descent to optimize θ

Can we do gradient

$$\sum_{z \in \mathcal{P}(x,z;\theta)} \frac{p(x,z;\theta)}{q(z \mid x;\phi)}$$

We use MC sampling to approximate expectation

Reparameterization Trick

E-Step:

$\operatorname{argmax}_{\phi} \sum q(z \mid x; \phi) lc$ Ζ.

depends on ϕ , how do we propagate gradients to ϕ ?

Try to express z as a deterministic function $z = g_{\phi}(\epsilon, x)$, where ϵ is an auxiliary random variable

$$z \sim N(\mu, \sigma^2) \longrightarrow z = \mu + \sigma \odot \epsilon, \quad \epsilon \sim N(0, 1)$$

Can you verify z in this equation is Gaussian?

$$\log \frac{p(x, z; \theta)}{q(z \,|\, x; \phi)}$$

First, we cannot do sum, but we can sample z_i from $q(z | x; \phi)$, which

Reparameterization Trick

E-Step:

$\operatorname{argmax}_{\phi} \sum q(z \mid x; \phi) lc$

For every gradient step (assuming batch size=1):

- 1. Randomly sample $\epsilon^{(i)} \sim N(0,1)$
- 2. Obtain z sample as $z^{(i)} = \mu + \sigma \odot e^{(i)}$
- 3.

$$\log \frac{p(x, z; \theta)}{q(z \,|\, x; \phi)}$$

We can now propagate gradients from z to ϕ Perform gradient descent w.r.t. $\log \frac{p(x, z^{(i)}; \theta)}{q(z^{(i)} | x; \phi)}$

Reparameterization Trick

VAE is a class of models What kind of $q(z | x; \phi)$ allows for such a reparameterization trick?

- 1. Tractable inverse CDF. In this case, let $\epsilon \sim \mathcal{U}(\mathbf{0}, \mathbf{I})$, and let $g_{\phi}(\epsilon, \mathbf{x})$ be the inverse CDF of $q_{\phi}(\mathbf{z}|\mathbf{x})$. Examples: Exponential, Cauchy, Logistic, Rayleigh, Pareto, Weibull, Reciprocal, Gompertz, Gumbel and Erlang distributions.
- 2. Analogous to the Gaussian example, for any "location-scale" family of distributions we can choose the standard distribution (with location = 0, scale = 1) as the auxiliary variable ϵ , and let $g(.) = \text{location} + \text{scale} \cdot \epsilon$. Examples: Laplace, Elliptical, Student's t, Logistic, Uniform, Triangular and Gaussian distributions.
- 3. Composition: It is often possible to express random variables as different transformations of auxiliary variables. Examples: Log-Normal (exponentiation of normally distributed variable), Gamma (a sum over exponentially distributed variables), Dirichlet (weighted sum of Gamma variates), Beta, Chi-Squared, and F distributions.

Kingma et al. Auto-Encoding Variational Bayes

 $\sum_{z} q(z \mid x; \phi) \log \frac{p(x, z; \theta)}{q(z \mid x; \phi)} = \mathbb{E}_{z \sim q_{\phi}(z \mid x)} [\log p_{\theta}(x, z) - \log q_{\phi}(z \mid x)]$

ELBO is implemented with the following form:

 $\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$ KL Regularizer **Reconstruction Loss**

Autoencoder

Reconstruction Loss Autoencoder Loss

This is why it is called variational "autoencoder"

$D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$ $\int q_{\theta}(\mathbf{z}) \log p(\mathbf{z}) d\mathbf{z} = \int \mathcal{N}(\mathbf{z};\boldsymbol{\mu},\boldsymbol{\sigma}^2) \log \mathcal{N}(\mathbf{z};\mathbf{0},\mathbf{I}) d\mathbf{z}$ $= -\frac{J}{2} \log(2\pi) - \frac{1}{2} \sum_{j=1}^{J} (\mu_j^2 + \sigma_j^2)$

$$\int q_{\theta}(\mathbf{z}) \log q_{\theta}(\mathbf{z}) d\mathbf{z} = \int \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}, \boldsymbol{\sigma}^2) \log \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}, \boldsymbol{\sigma}^2) d\mathbf{z}$$
$$= -\frac{J}{2} \log(2\pi) - \frac{1}{2} \sum_{j=1}^{J} (1 + \log \sigma_j^2)$$

$$\begin{aligned} -D_{KL}((q_{\phi}(\mathbf{z})||p_{\theta}(\mathbf{z})) &= \int q_{\theta}(\mathbf{z}) \left(\log p_{\theta}(\mathbf{z}) - \log q_{\theta}(\mathbf{z})\right) \\ &= \frac{1}{2} \sum_{j=1}^{J} \left(1 + \log((\sigma_j)^2) - (\mu_j)^2 - (\mu_j)^2\right) \end{aligned}$$

J is the dimensionality of z

 $d\mathbf{z}$

 $-(\sigma_j)^2$

19

Intuitively we hope to approximate p(z|x) with q(z|x) accurately in the E-step, to approximate the true EM algorithm

 $\operatorname{argmax}_{\phi} \underbrace{\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]}_{\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]} - \underbrace{D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))}_{\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{z}|\mathbf{z})]} - \underbrace{D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z})]}_{\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{z}|\mathbf{z})]} - \underbrace{D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}|\mathbf{z})]}_{\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{z}|\mathbf{z})]} - \underbrace{D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}|\mathbf{z})]}_{\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{z}|\mathbf{z})]} - \underbrace{D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}|\mathbf{z})]}_{\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{z})}[\log p_{\theta}(\mathbf{z}|\mathbf{z})]} - \underbrace{D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{z}) \| p(\mathbf{z}|\mathbf{z})]}_{\mathbb{E}_{\mathbf{z} \sim q_$ KL Regularizer

 $\operatorname{argmax}_{\theta} \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \underbrace{D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))}_{\mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))}$ KL Regularizer

Review VAE

- Only the right (black) part defines the generative model, and the distribution
 - $p_{\theta}(x \mid z)$: generative network/decoder
 - $q_{\phi}(z \mid x)$: inference network/encoder

VAE is a name to represent both the model p(x) and the inference network that is used to train the model, but do not confuse them together

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two SGVB estimators in section 2.3 can be used. We use settings M = 100 and L = 1 in experiments.

 $\theta, \phi \leftarrow$ Initialize parameters repeat

 $\mathbf{X}^M \leftarrow \text{Random minibatch of } M \text{ datapoints (drawn from full dataset)}$ $\epsilon \leftarrow \text{Random samples from noise distribution } p(\epsilon)$ $\mathbf{g} \leftarrow \nabla_{\boldsymbol{\theta}, \boldsymbol{\phi}} \widetilde{\mathcal{L}}^{M}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{X}^{M}, \boldsymbol{\epsilon})$ (Gradients of minibatch estimator (8)) $\theta, \phi \leftarrow Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])$ until convergence of parameters (θ, ϕ) return $\boldsymbol{\theta}, \boldsymbol{\phi}$

End-to-end, because the objectives are the same (ELBO)

VAE training is optimizing ELBO with gradient descent

$\log p(x; \theta)$ Only related to θ , no z

ELBO

$\log p(x;\theta)$

ELBO

E-step: $Q(z) = p(z | x; \theta)$, making ELBO tight "dog" doesn't change, because θ does not change

$\log p(x;\theta)$

ELBO

ELBO becomes larger, and it is not tight anymore because posterior changes

M-step: max *ELBO* θ

Is VAE training still Hill Climbing?

It is not, because q(z|x) may not be accurate to approximate p(z|x)

E-Step:

According to EM, ϕ should be optimized to convergence to have a good approximation for p(z|x) before conducting the M-step, but VAE does not

- In VAE training, there is no guarantee that log p(x) is monotonically increasing It just works in many cases

 $\operatorname{argmax}_{\phi} \underbrace{\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]}_{\mathcal{H}} - \underbrace{D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))}_{\mathcal{H}}$ KL Regularizer

The Posterior Collapse Issue

 $\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{x})]$

Reconstruction Loss

In practice, it is often found that after training, $q_{\phi}(z | x) = p(z)$ and z and x becomes independent (especially in applications of NLP)

Z does not affect x, the model degenerates to a generative model without latent variables

Researchers commonly blame that the KL regularizer is too strong for this and use a weight $0 < \lambda < 1$ to control it:

Reconstruction Loss - λ * KL regularizer

This is not a lower-bound of log p(x) anymore and it breaks MLE, but what is wrong with MLE?

$$\mathbf{z})] - \underbrace{D_{\mathrm{KL}}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))}_{\mathrm{KL Regularizer}}$$

Is VAE training still Hill Climbing?

E-Step:

$$\operatorname{argmax}_{\phi} \underbrace{\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}]}_{\operatorname{Reconstruction Loss}}$$

 $(\mathbf{x}|\mathbf{z})] - D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$ KL Regularizer SS

According to EM, ϕ should be optimized to convergence to have a good approximation for p(z|x) before conducting the M-step, but VAE does not

Can we make it closer to EM to have good guarantees?

VAE training that is Closer to EM

At every iteration, perform multiple performing one step of θ (M-step)

Published as a conference paper at ICLR 2019

LAGGING INFERENCE NETWORKS AND POSTERIOR COLLAPSE IN VARIATIONAL AUTOENCODERS

Junxian He, Daniel Spokoyny, Graham Neubig
Carnegie Mellon UniversityTaylor Berg-Kirkpatrick
University of California San Diego
tberg@eng.ucsd.edu

At every iteration, perform multiple gradient updates of ϕ (E-step) before

AutoEncoders

VAE:
$$\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[l]$$

Reconstruction

AE: $\log p_{\theta}(x \mid q(x))$

- space from AE and VAE?

 $\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z})] - D_{\mathrm{KL}}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$ KL Regularizer tion Loss

Can we generate X samples from an autoencoder? 2. Can we approximate p(x) given x with an autoencoder? 3. What is the difference between the representation

Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie^{*}, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair[†], Aaron Courville, Yoshua Bengio[‡] Département d'informatique et de recherche opérationnelle Université de Montréal Montréal, QC H3C 3J7

Generative Adversarial Networks

- The same as the VAE model, except that x is a deterministic function of z, but it can be a distribution as well
 - Can VAE use a deterministic x = G(z)?

Sometimes we call GANs *implicit* generative models You can draw samples, but hard to evaluate p(x)

Computation Graph

- 1.
- Discriminator is trained to discriminate real and fake examples 2.

Generator is trained to produce realistic examples to fool the discriminator

Training GANs

- Generator is trained to produce realistic examples to fool the discriminator 1. Discriminator is trained to discriminate real and fake examples 2.
- - The two objectives are against each other
 - **Adversarial Game**

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

Classification loss

D(x) is trained with a standard classification loss

- G(z) is trained to minimize the probability of G(z) recognized as "fake" by D

GAN is a new algorithm to train a c GAN training is not MLE

1. GAN is a new algorithm to train a common generative model (VAE as well)