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The	first	test-of-&me	award	in	ICLR



VAE	is	a	Genera,ve	Model
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Z

X

Label

Data

p(z):	mul&nomial	,	k	
classes(e.g.	uniform)

(μ1, Σ1), (μ2, Σ2), . . . (μk, Σk)

Gaussian	Mixture	Model	(GMM)



The	VAE	Model
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Z

XData

p(z)

Neural	Networks

p(z)	is	a	normal	distribu&on	in	most	cases	

X ∼ P(x, f(z; θ))

	is	a	neural	network	taking	Z	as	inputf



Training
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Z

XData

p(z)

Neural	Networks

X ∼ P(x, f(z; θ))

How	to	train	the	model?	Can	we	do	MLE?

Intractable	P(X),	EM	algorithm?



Let’s	try	EM
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Z

X

p(z)

Neural	Networks

X ∼ P(x, f(z; θ))

E-Step:	compute	P(z|x)

Q(z) = P(z |x) ∝ P(z)P(x |z) This	is	ok?

M-Step:	the	ELBO	objec&ve

In	most	cases,	we	cannot	do	the	sum,	and	cannot	easily	
sample	from	Q(z)	either



Approximate	Posterior
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We	need	an	easy-to-sample	distribu&on	to	approximate	P(z|x)

	to	approximate	q(z |x; ϕ) p(z |x; θ)

	is	the	parameter	for	the	approximate	func&on,	 	is	the	genera&ve	model	
parameter
ϕ θ

How	to	train	 ,	what	would	be	the	loss	to	find	 ?q(z |x; ϕ) ϕ

Why	condi&oned	on	x?

It	needs	to	be	some	distance	metric	between	 	and	q(z |x; ϕ) p(z |x; θ)



Recap:	ELBO
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ELBO	is	maximized	when	Q(z)	is	equal	to	p(z|x)

Therefore,	we	can	approximate	the	true	posterior	by	maximizing	ELBO:

argmaxϕ ∑
z

q(z |x; ϕ)log
p(x, z; θ)
q(z |x; ϕ)

Varia&onal	Inference

Maximizing	ELBO	is	equivalent	to	
minimize	the	KL	divergence



Training	VAEs
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E-Step:	

argmaxϕ ∑
z

q(z |x; ϕ)log
p(x, z; θ)
q(z |x; ϕ)

M-Step:	

argmaxθ ∑
z

q(z |x; ϕ)log
p(x, z; θ)
q(z |x; ϕ)

Same	objec&ve,	different	parameters	to	op&mize

Because	we	use	approximate	rather	than	exact	posterior,	it	is	also	
called	Varia&onal	EM
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Training	VAEs

E-Step:	

argmaxϕ ∑
z

q(z |x; ϕ)log
p(x, z; θ)
q(z |x; ϕ)

M-Step:	

argmaxθ ∑
z

q(z |x; ϕ)log
p(x, z; θ)
q(z |x; ϕ)

Can	we	do	gradient	
descent	over	 ?ϕ

We	use	MC	sampling	to	approximate	expecta&on	
and	use	gradient	descent	to	op&mize	θ



A	Common	Choice	for	q(z |x; ϕ)
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q(z |x; ϕ) = N(μ, σ2)

μ, σ = g(x; ϕ)

X

NN

μ σ

Inference	model/network



Training	VAEs
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E-Step:	

argmaxϕ ∑
z

q(z |x; ϕ)log
p(x, z; θ)
q(z |x; ϕ)

M-Step:	

argmaxθ ∑
z

q(z |x; ϕ)log
p(x, z; θ)
q(z |x; ϕ)

Same	objec&ve,	different	parameters	to	op&mize

Because	we	use	approximate	rather	than	exact	posterior,	it	is	also	
called	Varia&onal	EM
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Training	VAEs

E-Step:	

argmaxϕ ∑
z

q(z |x; ϕ)log
p(x, z; θ)
q(z |x; ϕ)

M-Step:	

argmaxθ ∑
z

q(z |x; ϕ)log
p(x, z; θ)
q(z |x; ϕ)

Can	we	do	gradient	
descent	over	 ?ϕ

We	use	MC	sampling	to	approximate	expecta&on	
and	use	gradient	descent	to	op&mize	θ



Reparameteriza,on	Trick
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E-Step:	

argmaxϕ ∑
z

q(z |x; ϕ)log
p(x, z; θ)
q(z |x; ϕ)

First,	we	cannot	do	sum,	but	we	can	sample	 	from	 ,	which	
depends	on	 ,	how	do	we	propagate	gradients	to	 ?		

zi q(z |x; ϕ)
ϕ ϕ

Try	to	express	z	as	a	determinis&c	func&on	 ,	where	 	is	an	
auxiliary	random	variable

z = gϕ(ϵ, x) ϵ

z ∼ N(μ, σ2) z = μ + σ ⊙ ϵ, ϵ ∼ N(0,1)
Can	you	verify	z	in	this	equa&on	is	Gaussian?



Reparameteriza,on	Trick
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E-Step:	

argmaxϕ ∑
z

q(z |x; ϕ)log
p(x, z; θ)
q(z |x; ϕ)

1. Randomly	sample	 	

2. Obtain	z	sample	as	 	

3. Perform	gradient	descent	w.r.t.	

ϵ(i) ∼ N(0,1)
z(i) = μ + σ ⊙ ϵ(i)

log
p(x, z(i); θ)
q(z(i) |x; ϕ)

For	every	gradient	step	(assuming	batch	size=1):

We	can	now	propagate	
gradients	from	z	to	ϕ



Reparameteriza,on	Trick
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What	kind	of	 	allows	for	such	a	reparameteriza&on	trick?q(z |x; ϕ)

Kingma	et	al.	Auto-Encoding	Varia&onal	Bayes

VAE	is	a	class	of	models	



ELBO
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∑
z

q(z |x; ϕ)log
p(x, z; θ)
q(z |x; ϕ)

= 𝔼z∼qϕ(z|x)[log pθ(x, z) − log qϕ(z |x)]

ELBO	is	implemented	with	the	following	form:

Autoencoder



ELBO
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Autoencoder	Loss q(z|x)	and	p(z)	are	both	Gaussian,	
there	is	a	closed-form	for	this

Z

X

This	is	why	it	is	called	varia&onal	“autoencoder”



ELBO
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J	is	the	dimensionality	of	z



Training	VAEs
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E-Step:	

M-Step:	

argmaxϕ

argmaxθ

Intui&vely	we	hope	to	approximate	p(z|x)	with	q(z|x)	accurately	
in	the	E-step,	to	approximate	the	true	EM	algorithm



Review	VAE
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Z

X

p(z)

pθ(x |z)
qϕ(z |x)

It	is	not	part	of	
the	genera&ve	
model

Only	the	right	(black)	part	defines	the	
genera&ve	model,	and	the	distribu&on

:	genera&ve	network/decoderpθ(x |z)

:	inference	network/encoderqϕ(z |x)

VAE	is	a	name	to	represent	both	the	model	p(x)	
and	the	inference	network	that	is	used	to	train	
the	model,	but	do	not	confuse	them	together



Training	VAEs
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End-to-end,	because	the	objec&ves	are	the	same	(ELBO)

VAE	training	is	op&mizing	ELBO	with	gradient	descent



Recap:	EM	is	Hill	Climbing
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log p(x; θ)

ELBO

Larger
Only	related	to	 ,	no	θ z
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log p(x; θ)

ELBO

Larger

E-step:	 ,	making	ELBO	&ghtQ(z) = p(z |x; θ)
“dog”	doesn’t	change,	because	 	does	not	changeθ

Recap:	EM	is	Hill	Climbing
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log p(x; θ)

ELBO

Larger

M-step:	max
θ

ELBO

ELBO	becomes	larger,	and	it	is	not	&ght	
anymore	because	posterior	changes

Recap:	EM	is	Hill	Climbing



Is	VAE	training	s,ll	Hill	Climbing?
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It	is	not,	because	q(z|x)	may	not	be	accurate	to	approximate	p(z|x)

In	VAE	training,	there	is	no	guarantee	that	log	p(x)	is	monotonically	increasing

E-Step:	

argmaxϕ

According	to	EM,	 	should	be	op&mized	to	convergence	to	have	a	good	
approxima&on	for	p(z|x)	before	conduc&ng	the	M-step,	but	VAE	does	not

ϕ

It	just	works	in	many	cases



The	Posterior	Collapse	Issue
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In	prac&ce,	it	is	onen	found	that	aner	training,		 	and	z	and	
x	becomes	independent	(especially	in	applica&ons	of	NLP)

qϕ(z |x) = p(z)

Z	does	not	affect	x,	the	model	degenerates	to	a	genera&ve	model	without	latent	variables

Researchers	commonly	blame	that	the	KL	regularizer	is	too	strong	for	this	and	use	a	
weight	 	to	control	it:0 < λ < 1

Reconstruc&on	Loss	-	 	*	KL	regularizerλ
This	is	not	a	lower-bound	of	log	p(x)	anymore	and	it	breaks	MLE,	but	
what	is	wrong	with	MLE?



Is	VAE	training	s,ll	Hill	Climbing?
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E-Step:	

argmaxϕ

According	to	EM,	 	should	be	op&mized	to	convergence	to	have	a	good	
approxima&on	for	p(z|x)	before	conduc&ng	the	M-step,	but	VAE	does	not

ϕ

Can	we	make	it	closer	to	EM	to	have	good	guarantees?	



VAE	training	that	is	Closer	to	EM

29

At	every	itera&on,	perform	mul&ple	gradient	updates	of	 	(E-step)	before	
performing	one	step	of	 	(M-step)

ϕ
θ



AutoEncoders
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Z

X

VAE:

AE: log pθ(x |q(x))

1. Can	we	generate	X	samples	from	an	autoencoder?	
2. Can	we	approximate	p(x)	given	x	with	an	autoencoder?	
3. What	is	the	difference	between	the	representa&on	

space	from	AE	and	VAE?



VAE	v.s.	AE
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Generative Adversarial Networks



The	GAN	Model
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Z

X

p(z)

Neural	Networks

X = G(z)

The	same	as	the	VAE	model,	except	that	x	is	a	determinis&c	
func&on	of	z,	but	it	can	be	a	distribu&on	as	well

Can	VAE	use	a	determinis&c	x	=	G(z)?

Some&mes	we	call	GANs	implicit	genera&ve	models
You	can	draw	samples,	but	hard	to	evaluate	p(x)



Training	GANs
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Z X

p(z)

X = G(z)
Discriminate	whether	
the	input	is	real	or	fake

Computa&on	Graph

Discriminator
D(x)

x ∼ pdata(x)

1. Generator	is	trained	to	produce	realis&c	examples	to	fool	the	discriminator	
2. Discriminator	is	trained	to	discriminate	real	and	fake	examples



Training	GANs
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1. Generator	is	trained	to	produce	realis&c	examples	to	fool	the	discriminator	
2. Discriminator	is	trained	to	discriminate	real	and	fake	examples

The	two	objec&ves	are	against	each	other

Adversarial	Game

Classifica&on	loss

G(z)	is	trained	to	minimize	the	probability	of	G(z)	recognized	as	“fake”	by	D

D(x)	is	trained	with	a	standard	classifica&on	loss



Training	GANs
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1.	GAN	is	a	new	algorithm	to	train	a	common	genera&ve	model	(VAE	as	well)

2.	GAN	training	is	not	MLE


