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VAE is a Generative Model

p(z): multinomial , k
classes(e.g. uniform)

Label

k (> 21)s (g5 29), -+ - (Mg 2p)

Data @éussian Mixture Model (GMM)



The VAE Model

p(z) is a normal distribution in most cases
p(z)

Neural Networks

Data X ~ P(x,f(z;0))

fis a neural network taking Z as input

A



Training

p(z)

How to train the model? Can we do MLE?

Neural Networks
Intractable P(X), EM algorithm?

Data X ~ P(x,f(z; 0))



o(2) Let's try EM

E-Step: compute P(z|x)

0(z) = P(z|x) «x P(z2)P(x|z) Thisisok?
Neural Networks

X ~ P(x,f(z; 0
(x./(z: ) M-Step: the ELBO objective

argmaxHZ Q(9)log p(x, z; 0) = argmax,k, ., log p(x, z; 0)
<

In most cases, we cannot do the sum, and cannot easily

sample from Q(z) either
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Approximate Posterior

We need an easy-to-sample distribution to approximate P(z|x)

q(z | x; @) to approximate p(z|x;0) why conditioned on x?

@ is the parameter for the approximate function, @ is the generative model
parameter

How to train g(z| x; @), what would be the loss to find ¢?

It needs to be some distance metric between g(z | x; ¢) and p(z | x; 6)
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Recap: ELBO

p(z, 2, 6) Maximizing ELBO is equivalent to
Q(2) minimize the KL divergence

ELBO(z; Q,0) = log p(r) — Drr(Q||p2z)

ELBO(z; Q, 6) ZQ ) log

What is argmaxQ(Z)ELBO(x; 0, 0)?

ELBO is maximized when Q(z) is equal to p(z|x)

Therefore, we can approximate the true posterior by maximizing ELBO:

, 250
argmax 2 q(z|x; P)log %

Variational Inference



Training VAEs

E-Step:
p(x,z;0)

argmax Zq(z\x P)log —— )

M-Step:

p(x, z; 0)
q(z|x; P)

Same objective, different parameters to optimize

argmax, Z q(z|x; p)log ———

Because we use approximate rather than exact posterior, it is also
called Variational EM
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Training VAEs

E-Step:
p(x,z;6)  Can we do gradient

argmax, Z 9(z|x; ¢)log m descent over ¢?

M-Step:

p(x,z;0)

argmaxgz q(z|x; p)log ————— )

We use MC sampling to approximate expectation
and use gradient descent to optimize &
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A Common Choice for g(z | x; ¢)

q(z|x; ) = N(u, 6°)

i, = gx; )

Inference model/network
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Training VAEs

E-Step:
p(x,z;0)

argmax Zq(z\x P)log —— )

M-Step:

p(x, z; 0)
q(z|x; P)

Same objective, different parameters to optimize

argmax, Z q(z|x; p)log ———

Because we use approximate rather than exact posterior, it is also
called Variational EM
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Training VAEs

E-Step:
p(x,z;6)  Can we do gradient

argmax, Z 9(z|x; ¢)log m descent over ¢?

M-Step:

p(x,z;0)

argmaxgz q(z|x; p)log ————— )

We use MC sampling to approximate expectation
and use gradient descent to optimize &
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Reparameterization Trick

E-Step:
p(x, z; 0)
q(z|x; @)

First, we cannot do sum, but we can sample z; from g(z | x; ¢), which
depends on ¢, how do we propagate gradients to ¢?

argmax , Z q(z|x; ¢)log
<

Try to express z as a deterministic function 7 = g¢(€,x), where € is an
auxiliary random variable

z~NWu,6?) —— z=u+00e¢, €~ NO,1)

Can you verify z in this equation is Gaussian?
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Reparameterization Trick

E-Step:
p(x, z; 0)
q(z|x; @)

For every gradient step (assuming batch size=1):

argmax , Z q(z|x; ¢)log

1. Randomly sample €' ~ N(0,1) We can now propagate

2. Obtain z sample as Z(l) =u+o60e? gradients from z to ¢

p(x, z; 0)
qg(zW | x; P)

3. Perform gradient descent w.r.t. log
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Reparameterization Trick
VAE is a class of models

What kind of g(z | x; @) allows for such a reparameterization trick?

1. Tractable inverse CDF. In this case, let € ~ U/(0,I), and let g4 (€, x) be the inverse CDF of
94 (z|x). Examples: Exponential, Cauchy, Logistic, Rayleigh, Pareto, Weibull, Reciprocal,
Gompertz, Gumbel and Erlang distributions.

2. Analogous to the Gaussian example, for any “location-scale” family of distributions we can
choose the standard distribution (with location = 0, scale = 1) as the auxiliary variable
€, and let g(.) = location + scale - €. Examples: Laplace, Elliptical, Student’s t, Logistic,
Uniform, Triangular and Gaussian distributions.

3. Composition: It 1s often possible to express random variables as different transtformations
of auxiliary variables. Examples: Log-Normal (exponentiation of normally distributed
variable), Gamma (a sum over exponentially distributed variables), Dirichlet (weighted
sum of Gamma variates), Beta, Chi-Squared, and F distributions.

Kingma et al. Auto-Encoding Variational Bayes
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ELBO

p(x,z;60)
qz|x; )

Z Q'(Z ‘ Xs ¢)10g z~q¢(z|x) [lOg pg(X, 2) — lOg ng(z ‘ x)]

ELBO is implemented with the following form:

‘Ezwqu(zlx) log pe(x|z)| — DKL(QC/J (z|x)||p(z))
N N\ e

Reconstruction Loss KL Regularizer

Autoencoder
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ELBO

<

Sz ~qe (2]X) [10%179 (X‘Z)] _ DKL(qu (Z‘X)Hp(z))
N——— e N\ e

Reconstruction Loss KL Regularizer

Autoencoder Loss q(z|x) and p(z) are both Gaussian,
there is a closed-form for this

III

This is why it is called variational “autoencoder”
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Training VAEs

E-Step:

<

argmax,, \tz’“qu(Z\X) log pe(x|z)] — Dk1.(qe(2x)|[p(2))

Reconstruction Loss KL Regularizer

M-Step:

<

argmax, Sz~q g (27]%) log pe(x|z)| — DKL(qu (z|x)||p(2z))
—_—

Reconstruction Loss KL Regularizer

Intuitively we hope to approximate p(z|x) with g(z|x) accurately
in the E-step, to approximate the true EM algorithm
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Review VAE

Only the right (black) part defines the

p(z) generative model, and the distribution

py(x|2): generative network/decoder

Q¢(Z|X) q4(2 | X): inference network/encoder
' Po(x|2)

Itis not part of
the generative
model

VAE is a name to represent both the model p(x)
and the inference network that is used to train
the model, but do not confuse them together

21



Training VAEs

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators 1n section 2.3 can be used. We use settings M = 100 and L = 1 in experiments.

0, ¢ < Initialize parameters

repeat
XM < Random minibatch of M datapoints (drawn from full dataset)
e < Random samples from noise distribution p(e€)

o <— Vg 4 ZM 0. d: XM  €) (Gradients of minibatch estimator (8

0, ¢ <+ Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])

un ONVETZENCE OI parameters (U, @
return 0, ¢

End-to-end, because the objectives are the same (ELBO)

VAE training is optimizing ELBO with gradient descent
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@

log p(x; 0)

ELBO

Recap: EM is Hill Climbing

Only related to @, no 7

23




Recap: EM is Hill Climbing

log p(x; 0)

Larger

)
fe@x ELBO

QS E-step: O(2) = p(z|x; 6), making ELBO tight
P' “dog” doesn’t change, because @ does not change

0
P
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Recap: EM is Hill Climbing

log p(x; 0)

Larger

M-step: max ELBO
0

ELBO becomes larger, and it is not tight
anymore because posterior changes

25



Is VAE training still Hill Climbing?

It is not, because g(z|x) may not be accurate to approximate p(z|x)

In VAE training, there is no guarantee that log p(x) is monotonically increasing

It just works in many cases

E-Step:

2V

argmax,, \tz“’qu(Z\X) log pe(x|z)] — Dk1.(qe(2x)|[p(2))

Reconstruction Loss KL Regularizer

According to EM, @ should be optimized to convergence to have a good
approximation for p(z|x) before conducting the M-step, but VAE does not
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The Posterior Collapse Issue

<

Sz ~qe (2]%) [IOgPH(X‘Z)] — DKL(CM; (Z‘X) Hp(Z))
N e N\

Reconstruction Loss KL Regularizer

In practice, it is often found that after training, q¢(z | x) = p(z) and z and
X becomes independent (especially in applications of NLP)

/ does not affect x, the model degenerates to a generative model without latent variables

Researchers commonly blame that the KL regularizer is too strong for this and use a
weight 0 < 4 < 1 to control it:

Reconstruction Loss - 4 * KL regularizer

This is not a lower-bound of log p(x) anymore and it breaks MLE, but

what is wrong with MLE? .



Is VAE training still Hill Climbing?
E-Step:

<

argmax,, 2 (/) log pe(x|z)] — Dx1.(q4(2]x)[[p(2))
\_\/_/ N———, _——

Reconstruction Loss KL Regularizer

According to EM, @ should be optimized to convergence to have a good
approximation for p(z|x) before conducting the M-step, but VAE does not

Can we make it closer to EM to have good guarantees?
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VAE training that is Closer to EM

At every iteration, perform multiple gradient updates of @ (E-step) before
performing one step of @ (M-step)

Published as a conference paper at ICLR 2019

[_AGGING INFERENCE NETWORKS AND POSTERIOR
COLLAPSE IN VARIATIONAL AUTOENCODERS

Junxian He, Daniel Spokoyny, Graham Neubig Taylor Berg-Kirkpatrick
Carnegie Mellon University University of California San Diego
{junxianh, dspokoyn, gneubig}@cs.cmu.edu tbergldeng.ucsd.edu
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VAE:

AE:

AutoEncoders

<

Sz ~qe (2]%) [k)ng(X‘Z)] — DKL(QdJ (Z‘X) Hp(Z))
T

Reconstruction Loss KL Regularizer

log py(x|g(x))

Can we generate X samples from an autoencoder?
Can we approximate p(x) given x with an autoencoder?

What is the difference between the representation
space from AE and VAE?
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Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair] Aaron Courville, Yoshua Bengio*
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, QC H3C 3J7

Generative Adversarial Networks
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The GAN Model

p(z) The same as the VAE model, except that x is a deterministic
l function of z, but it can be a distribution as well

Can VAE use a deterministic x = G(z)?
Neural Networks

Sometimes we call GANs implicit generative models

You can draw samples, but hard to evaluate p(x)

X = G(2)
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Training GANSs

Computation Graph

p(z)

Discriminator
D(x)

9

X = G(2)

Discriminate whether

the input is real or fake
A diata(x)

1. Generator is trained to produce realistic examples to fool the discriminator
2. Discriminator is trained to discriminate real and fake examples

34



Training GANSs

1. Generator is trained to produce realistic examples to fool the discriminator
2. Discriminator is trained to discriminate real and fake examples

The two objectives are against each other

Adversarial Game

mén max V(D,G) = Egnpy(x) 108 D(x)] + Eznp, (2)l0g(1 — D(G(2)))]-
Classification loss
G(z) is trained to minimize the probability of G(z) recognized as “fake” by D

D(x) is trained with a standard classification loss
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Training GANSs

1. GAN is a new algorithm to train a common generative model (VAE as well)

2. GAN training is not MLE
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