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VAE	is	a	Genera,ve	Model
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The	VAE	Model
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Neural	Networks

p(z)	is	a	normal	distribu&on	in	most	cases	

X ∼ P(x, f(z; θ))
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deep Intent-variable

-.
0



Training

5

Z

XData

p(z)

Neural	Networks

X ∼ P(x, f(z; θ))

-PcX
,
z1 =Let) Pixit)
- &

Wor
. 1S NCH I t : 0) , 6t: of



Training

5

Z

XData

p(z)

Neural	Networks

X ∼ P(x, f(z; θ))

How	to	train	the	model?	Can	we	do	MLE?
-

-

-
li : (i) Pixiz) d

-

-



Training

5

Z

XData

p(z)

Neural	Networks

X ∼ P(x, f(z; θ))

How	to	train	the	model?	Can	we	do	MLE?

Intractable	P(X),	EM	algorithm?
--



Let’s	try	EM

6

Z

X

p(z)

Neural	Networks

X ∼ P(x, f(z; θ))



Let’s	try	EM

6

Z

X

p(z)

Neural	Networks

X ∼ P(x, f(z; θ))

E-Step:	compute	P(z|x)

Q(z) = P(z |x) ∝ P(z)P(x |z)

O Eny
--

PCX,E
=



Let’s	try	EM

6

Z

X

p(z)

Neural	Networks

X ∼ P(x, f(z; θ))

E-Step:	compute	P(z|x)

Q(z) = P(z |x) ∝ P(z)P(x |z) This	is	ok?



Let’s	try	EM

6

Z

X

p(z)

Neural	Networks

X ∼ P(x, f(z; θ))

E-Step:	compute	P(z|x)

Q(z) = P(z |x) ∝ P(z)P(x |z) This	is	ok?

M-Step:	the	ELBO	objec&ve

Not Gaussian
-

PlzzwNcO , 1)

S
X Le ?

↑ Di
-



Let’s	try	EM

6

Z

X

p(z)

Neural	Networks

X ∼ P(x, f(z; θ))

E-Step:	compute	P(z|x)

Q(z) = P(z |x) ∝ P(z)P(x |z) This	is	ok?

M-Step:	the	ELBO	objec&ve

In	most	cases,	we	cannot	do	the	sum,	and	cannot	easily	
sample	from	Q(z)	either
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Approximate	Posterior
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We	need	an	easy-to-sample	distribu&on	to	approximate	P(z|x)
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Approximate	Posterior
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We	need	an	easy-to-sample	distribu&on	to	approximate	P(z|x)

	to	approximate	q(z |x; μ) p(z |x; θ)

	is	the	parameter	for	the	approximate	func&on,	 	is	the	genera&ve	model	
parameter
μ θ

How	to	train	 ,	what	would	be	the	loss	to	find	 ?q(z |x; μ) μ

Why	condi&oned	on	x?

It	needs	to	be	some	distance	metric	between	 	and	q(z |x; μ) p(z |x; θ)
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Recap:	ELBO
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Recap:	ELBO
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Recap:	ELBO
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ELBO	is	maximized	when	Q(z)	is	equal	to	p(z|x)

Maximizing	ELBO	is	equivalent	to	
minimize	the	KL	divergence
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Recap:	ELBO
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ELBO	is	maximized	when	Q(z)	is	equal	to	p(z|x)

Therefore,	we	can	approximate	the	true	posterior	by	maximizing	ELBO:
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Recap:	ELBO
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ELBO	is	maximized	when	Q(z)	is	equal	to	p(z|x)

Therefore,	we	can	approximate	the	true	posterior	by	maximizing	ELBO:

argmaxμ ∑
z

q(z |x; μ)log p(x, z; θ)
q(z |x; μ)

Varia&onal	Inference

Maximizing	ELBO	is	equivalent	to	
minimize	the	KL	divergence
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q(z |x; μ)log p(x, z; θ)
q(z |x; μ)

M-Step:	

argmaxθ ∑
z

q(z |x; μ)log p(x, z; θ)
q(z |x; μ)

We	use	MC	sampling	to	approximate	expecta&on	
and	use	gradient	descent	to	op&mize	θ
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Training	VAEs

E-Step:	

argmaxμ ∑
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q(z |x; μ)log p(x, z; θ)
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M-Step:	
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A	Common	Choice	for	q(z |x; μ)
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11

q(z |x; μ) = N(ϕ, σ2)
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A	Common	Choice	for	q(z |x; μ)
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q(z |x; μ) = N(ϕ, σ2)

ϕ, σ = g(x; μ)
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E-Step:	

argmaxμ ∑
z

q(z |x; μ)log p(x, z; θ)
q(z |x; μ)

First,	we	cannot	do	sum,	but	we	can	sample	 	from	 ,	which	
depends	on	 ,	how	do	we	propagate	gradients	to	 ?		

zi q(z |x; μ)
μ μ

Try	to	express	z	as	a	determinis&c	func&on	 ,	where	 	is	an	
auxiliary	random	variable

z = gμ(ϵ, x) ϵ

z Σ N(ϕ, σ2) z = ϕ + σ ∼ ϵ, ϵ Σ N(0,1)
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E-Step:	

argmaxμ ∑
z

q(z |x; μ)log p(x, z; θ)
q(z |x; μ)

First,	we	cannot	do	sum,	but	we	can	sample	 	from	 ,	which	
depends	on	 ,	how	do	we	propagate	gradients	to	 ?		

zi q(z |x; μ)
μ μ

Try	to	express	z	as	a	determinis&c	func&on	 ,	where	 	is	an	
auxiliary	random	variable

z = gμ(ϵ, x) ϵ

z Σ N(ϕ, σ2) z = ϕ + σ ∼ ϵ, ϵ Σ N(0,1)
Can	you	verify	z	in	this	equa&on	is	Gaussian?
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E-Step:	

argmaxμ ∑
z

q(z |x; μ)log p(x, z; θ)
q(z |x; μ)

1. Randomly	sample	ϵ(i) Σ N(0,1)
2. Obtain	z	sample	as	z(i) = ϕ + σ ∼ ϵ(i)

3. Perform	gradient	descent	w.r.t.	log p(x, z(i); θ)
q(z(i) |x; μ)

For	every	gradient	step	(assuming	batch	size=1):

We	can	now	propagate	
gradients	from	z	to	μO
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Kingma	et	al.	Auto-Encoding	Varia&onal	Bayes

VAE	is	a	class	of	models	
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q(z |x; μ)log p(x, z; θ)
q(z |x; μ) = ∝zΣqμ(z|x)[log pθ(x, z) ⊙ log qμ(z |x)]

ELBO	is	implemented	with	the	following	form:
↓

↓ N10,1

may d⑰
-

- X- z- X

-

L L I P(X (t)

PrX*E)~NCH , by



ELBO

17

∑
z

q(z |x; μ)log p(x, z; θ)
q(z |x; μ) = ∝zΣqμ(z|x)[log pθ(x, z) ⊙ log qμ(z |x)]

ELBO	is	implemented	with	the	following	form:

Autoencoder⑳AE
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there	is	a	closed-form	for	this
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Autoencoder	Loss q(z|x)	and	p(z)	are	both	Gaussian,	
there	is	a	closed-form	for	this
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ELBO
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Autoencoder	Loss q(z|x)	and	p(z)	are	both	Gaussian,	
there	is	a	closed-form	for	this

Z

X

This	is	why	it	is	called	varia&onal	“autoencoder”
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J	is	the	dimensionality	of	z
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Training	VAEs
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E-Step:	

M-Step:	

argmaxμ

argmaxθ

Intui&vely	we	hope	to	approximate	p(z|x)	with	q(z|x)	accurately	
in	the	E-step,	to	approximate	the	true	EM	algorithm

Log P(x, 9
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q(z(x)
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Z

X

p(z)

pθ(x |z)
qμ(z |x)

It	is	not	part	of	
the	genera&ve	
model

Only	the	right	(black)	part	defines	the	
genera&ve	model,	and	the	distribu&on

:	genera&ve	network/decoderpθ(x |z)
:	inference	network/encoderqμ(z |x)

VAE	is	a	name	to	represent	both	the	model	p(x)	
and	the	inference	network	that	is	used	to	train	
the	model,	but	do	not	confuse	them	together
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End-to-end,	because	the	objec&ves	are	the	same	(ELBO)
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Training	VAEs

22

End-to-end,	because	the	objec&ves	are	the	same	(ELBO)

VAE	training	is	op&mizing	ELBO	with	gradient	descent
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Recap:	EM	is	Hill	Climbing
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log p(x; θ)

ELBO

Larger
Only	related	to	 ,	no	θ z
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log p(x; θ)

ELBO

Larger

Recap:	EM	is	Hill	Climbing
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log p(x; θ)

ELBO

Larger

E-step:	 ,	making	ELBO	&ghtQ(z) = p(z |x; θ)

Recap:	EM	is	Hill	Climbing
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ELBO
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E-step:	 ,	making	ELBO	&ghtQ(z) = p(z |x; θ)
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It	is	not,	because	q(z|x)	may	not	be	accurate	to	approximate	p(z|x)

In	VAE	training,	there	is	no	guarantee	that	log	p(x)	is	monotonically	increasing

E-Step:	

argmaxμ

According	to	EM,	 	should	be	op&mized	to	convergence	to	have	a	good	
approxima&on	for	p(z|x)	before	conduc&ng	the	M-step,	but	VAE	does	not

μ

It	just	works	in	many	casesO
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In	prac&ce,	it	is	onen	found	that	aner	training,		 	and	z	and	
x	becomes	independent	(especially	in	applica&ons	of	NLP)

qμ(z |x) = p(z)

Z	does	not	affect	x,	the	model	degenerates	to	a	genera&ve	model	without	latent	variables

Researchers	commonly	blame	that	the	KL	regularizer	is	too	strong	for	this	and	use	a	
weight	 	to	control	it:0 < λ < 1

Reconstruc&on	Loss	-	 	*	KL	regularizerλ
This	is	not	a	lower-bound	of	log	p(x)	anymore	and	it	breaks	MLE,	but	
what	is	wrong	with	MLE?

⑧
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E-Step:	

argmaxμ

According	to	EM,	 	should	be	op&mized	to	convergence	to	have	a	good	
approxima&on	for	p(z|x)	before	conduc&ng	the	M-step,	but	VAE	does	not

μ

Can	we	make	it	closer	to	EM	to	have	good	guarantees?	

00



VAE	training	that	is	Closer	to	EM

29



VAE	training	that	is	Closer	to	EM

29

At	every	itera&on,	perform	mul&ple	gradient	updates	of	 	(E-step)	before	
performing	one	step	of	 	(M-step)

μ
θ



VAE	training	that	is	Closer	to	EM

29

At	every	itera&on,	perform	mul&ple	gradient	updates	of	 	(E-step)	before	
performing	one	step	of	 	(M-step)

μ
θ



AutoEncoders

30



eliminate

T
↓ & ↓ ↓↓

0 02 u

O



AutoEncoders

30

VAE:



AutoEncoders

30

VAE:

AE: log pμ(x |q(x))



AutoEncoders

30

Z

X

VAE:

AE: log pμ(x |q(x))



AutoEncoders

30

Z

X

VAE:

AE: log pμ(x |q(x))

1. Can	we	generate	X	samples	from	an	autoencoder?	
2. Can	we	approximate	p(x)	given	x	with	an	autoencoder?	
3. What	is	the	difference	between	the	representa&on	

space	from	AE	and	VAE?
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Generative Adversarial Networks
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Z

X

p(z)

Neural	Networks

X = G(z)

The	same	as	the	VAE	model,	except	that	x	is	a	determinis&c	
func&on	of	z,	but	it	can	be	a	distribu&on	as	well

Can	VAE	use	a	determinis&c	x	=	G(z)?

Some&mes	we	call	GANs	implicit	genera&ve	models
You	can	draw	samples,	but	hard	to	evaluate	p(x)
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1. Generator	is	trained	to	produce	realis&c	examples	to	fool	the	discriminator	
2. Discriminator	is	trained	to	discriminate	real	and	fake	examples

The	two	objec&ves	are	against	each	other

Adversarial	Game

Classifica&on	loss

G(z)	is	trained	to	minimize	the	probability	of	G(z)	recognized	as	“fake”	by	D

D(x)	is	trained	with	a	standard	classifica&on	loss
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1.	GAN	is	a	new	algorithm	to	train	a	common	genera&ve	model	(VAE	as	well)

2.	GAN	training	is	not	MLE


