EERMRAKE COMP 5212

== TLE HONG KONG : :
UNIVERSITY OF SCIENCE Machine Learning
AND TECHNOLOGY Lecture 22

Generative Adversarial Networks,
Reinforcement Learning

Junxian He
Nov 26, 2024

Announcement

HW4 is out, it is fairly easy, mainly a reflection of all the COMP5212 contents with only
multi-choice questions

The first round of Kaggle private leaderboard was released las
overoptimize the public leaderboard too much

- S
| Zﬁgm(\/(/[(x(jy
J

Recap: VAEs

p(z)

q,(z|x)
: Po(x|2)

Recap: VAEs

p(z)

q,(z|x) X

tis not part of
the generative
odel

Po(x|2)

Recap: VAEs

Only the right (black) part defines the

p(2) generative model, and the distribution

q,(z|x)

Itis not part of
the generative
model

Po(x|2)

Recap: VAEs

Only the right (black) part defines the

p(z) generative model, and the distribution

Po(x | z2): generative network/decoder

—

S

Q¢(Z|X) q4(2 | X): inference network/encoder
' pé’(x‘z) — — D

Itis not part of
the generative
model

Recap: VAEs

Only the right (black) part defines the

p(z) generative model, and the distribution

py(x|2): generative network/decoder

Q¢(Z|X) q4(2 | X): inference network/encoder
' Po(x|2)

Itis not part of
the generative
model

VAE is a name to represent both the model p(x)
and the inference network that is used to train
the model, but do not confuse them together

3

Training VAEs

E-Step:

<

argmax,, \tz“’qu(Z\X) log pe(x|z)|] — Dkr1.(q¢(2|x)|/p(2))

— Reconstruction Loss KL Regularizer

—

M-Step: G Lg@

<

argmax, Sz~q g (27]%) log pe(x|z)| — DKL((Jcﬁ(Z‘X)HP(Z))
—_— L

Reconstruction Loss KL Regularizer o

7

f

Training VAEs

E-Step:

<

argmax,, \tz’“qu(Z\X) log pe(x|z)] — Dk1.(qe(2x)|[p(2))

Reconstruction Loss KL Regularizer

M-Step:

<

argmax, Sz~q g (27]%) log pe(x|z)| — DKL(qu (z|x)||p(2z))
—_—

Reconstruction Loss KL Regularizer

Intuitively we hope to approximate p(z|x) with g(z|x) accurately
in the E-step, to approximate the true EM algorithm

A

Training VAEs

Algorithm 1 ch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB-estimators 1n section 2.3 can be used. We use settings M = 100 and L = 1 in experiments.

0, ¢ < Initialize parameters

repeat
XM < Random minibatch of M datapoints (drawn from full dataset)
e < Random samples from noise distribution p(e€)

g «No.oLY(0,0; XM €) (Gradients of minibatch estimator (8)) - LLK D

0,9 < Up using gradients g (e.g. SGD or Adagrad [DHS10])
until convergence of parameters (0, ¢)
return 0, @

T ///

Training VAEs

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators 1n section 2.3 can be used. We use settings M = 100 and L = 1 in experiments.

0, ¢ < Initialize parameters

repeat
XM < Random minibatch of M datapoints (drawn from full dataset)
e < Random samples from noise distribution p(e€)

o < Vo LM (0, p;: XM, €) (Gradients of minibatch estimator (8

0, ¢ <+ Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])
un ONVETZENCE OI paramecters (U, @

return 0, ¢

Training VAEs

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators 1n section 2.3 can be used. We use settings M = 100 and L = 1 in experiments.

0, ¢ < Initialize parameters
repeat
XM < Random minibatch of M datapoints (drawn from full dataset) (
e < Random samples from noise distribution p(e) & Je Zwaww 222 él/ ((k

o <— Vg 4 EM 0. d: XM €) (Gradients of minibatch estimator (8

0, ¢ <+ Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])

un ONVETZENCE OI paramerers (U, ¢
return 0, @

End-to-end, because the objectives are the same (ELBO)

- _

Training VAEs

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators 1n section 2.3 can be used. We use settings M = 100 and L = 1 in experiments.

0, ¢ < Initialize parameters

repeat
XM < Random minibatch of M datapoints (drawn from full dataset)
e < Random samples from noise distribution p(e€)

o <— Vg 4 ZM 0. d: XM €) (Gradients of minibatch estimator (8

0, ¢ <+ Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])

un ONVETZENCE OI parameters (U, @
return 0, ¢

End-to-end, because the objectives are the same (ELBO)

VAE training is optimizing ELBO with gradient descent

5

AutoEncoders

AutoEncoders

2y

VAE: Ezrq,(zx)l0gPe(x|2)| — Dkr(q4(2]x)||p(2))
N———— N\ —p—

Reconstruction Loss KL Regularizer

—_

AutoEncoders

VAE: i’zwq(p(z\x) [lngg X‘Z)] D L(q(/;(Z‘X)Hp(Z))

Reconstruction Loss KL Regularizer

oe fopkela®)” (2= 7<) otomiv

PSS ACTR)

AutoEncoders

<

VAE.: Lz ~qe (2]%) [lOg pg(X‘Z)] o DKL(QC/J (Z‘X) Hp(z))
—— N —— —— — p—

Reconstruction Loss KL Regularizer

AE: logpy(x|g(x))

AutoEncoders QA/W‘QU

A —

U2~aq(z1x) 108 Po (X|2)] —Dxr(qe(2|X) HP(Z)D

| N ——
Reconstruction Loss KL Regularizer 5 = D
‘l [52}
0g py(x | g(x)) fC)Q/ D TPx
\ — L
an We generate X samples from an autoencoder?

space from AE and VAE? 2
¢SO ——
(Vbﬁéy/}\/\/)/fﬁﬂ\/e/ v

— — P - 27
- Aoézzt/)ﬂ [)éj/X)) 6 z /V/c)//) A %_

—

: ° o
: e, 2 §) -
E .'.’.: ‘:" : A/ [ib
: - ° : §
» ® “ .- o |]
*+ N
. . - k |/ ¥ . .
: 3'.‘.‘..'

= 2dg . 1 Inductive bias !

Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair; Aaron Courville, Yoshua Bengi03t
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, QC H3C 3J7

Generative Adversarial Networks
ML

B }/j —

-

The GAN Model [W @NN

y doe

VAE. x ~ N ey F02)

p(z

The GAN Model

The same as the VAE model, except that x is a deterministic

function of z, b)a@n be a distribution a@

Neural Networks

X = G(2)
—_ =)
%M/\/[/‘//Z)z 6 L%7)

~_

9

'(;?/The GAN Model 2
<= Lcr) J0 2

o o
—plz) e same as the VAE model, except that x is a deterministic

l function of z, but it can be a distribution-as wel
Qawewz” /e o wwyép
Can VAE use a deterministi m
Neural Networks =~ — ~——— (v
[x/ é @) @
X=G Z / ~N ///‘
(2) ff/‘ /2) ? s
=

&
(/4 f&

The GAN Model

p(z) The same as the VAE model, except that x is a deterministic
l function of z, but it can be a distribution as well

Can VAE use a deterministic x = G(z)?
Neural Networks

Sometimes we call GANg pgenerative mo@
You can draw samples, but hard To evaluate p(x
p p(x) /ch)

X = G(2)

) e Y |

N e’

ZV/L/CJZD <
){25&2) X = 9553/ rmé/oj/?(fa) ?

Training GANs

Computation Graph

p(z)

O

10

Training GANs

Computation Graph

o(z) at@ daty
<) @ Discriminator
D(x)

X =G

—

YO / J X~ ‘pdata@

10

Training GANSs

Computation Graph

p(z)

Discriminator
D(x)

X = G(z)

Discriminate whether
the input is real or fake

bv/‘/lay %@5S/~étw

A~ pdata(x)

/Z?zw y

10

Training GANSs

Computation Graph

p(z)
< > @ Discriminator
X = G(2)

Discriminate whether

the input is real or fake
A diata(x)

1. Generator is trained to produce realistic examples to fool the discriminator

\— NS — —

10

Training GANSs

Computation Graph

p(z)
<) @ Discriminator
X = G(2)

Discriminate whether

the input is real or fake
A diata(x)

1. Generator is trained to produce realistic examples to fool the discriminator
2. Discriminator is trained to discriminate real and fake examples

10

Training GANSs

1. Generator is trained to produce realistic examples to fool the discriminator
2. Discriminator is trained to discriminate real and fake examples

11

Training GANs

1. efierator is trained to broduce realistic examoles to fool the discriminator>
2. iscriminator is trained to discriminate real and fake ex

The two objectives are against each other

Adversarial Game

o) @ ot Ly /[&ZL/ZVC/ S 1 /%/%

11

Training GANs

1. Generator is trained to produce realistic examples to fool the discriminator
2. Discriminator is trained to discriminate real and fake examples

The two objectives are against each other 5
o/
Adversarial Game pex) WOB (HL A (7]

/ f[ﬂr//b Veﬂ/
mi 12X V(D,G) :PN. gmdim(w)[l‘oMI/ L zmop, (2)108(1 — D(G(z)))@

/\/\

S ——/ .

TN, T
/) [P Grey)

(//m@w%% W’MJ Pub,

\

—

11

Training GANSs

1. Generator is trained to produce realistic examples to fool the discriminator
2. Discriminator is trained to discriminate real and fake examples

The two objectives are against each other

Adversarial Game

ngn max V(D,G) = Exnpp(a) 108 D(@)] + Eznp, (2)[log(1 — D(G(2)))].

Classification loss

/ \

11

Training GANSs

1. Generator is trained to produce realistic examples to fool the discriminator
2. Discriminator is trained to discriminate real and fake examples

The two objectives are against each other

Adversarial Game

min max V (D, G) = Egpy,@)[10g D(@)] + Exanp, (s log(1 — D(G(2)))]
Classification loss

G(z) is trained to minimize the probability of G(z) recognized as “fake” by D

11

Training GANSs

1. Generator is trained to produce realistic examples to fool the discriminator

2. Discriminator is trained to discriminate real and fake examples

The two objectives are against each other

minmax V' (D, G) =
G D
" e
M — O —

Adversarial Game

ﬂazrvpdata(w) [k)g D(m)] +

4:zrvpz(z) [lOg(]. o D(G(Z)

Classification loss

y’y/&'m - i,
)]

G(z) is trained to minimize the probability of G(z) recognized as “fake” by D

D(x) is trained with a standard classification loss

11

Training GANSs

1. GAN is a new algorithm to train a common generative model (VAE as well)

Z.B/GAN training Is not@ /
m —

12

minmax V(D,G) =

G

D

Theory of GANs

Lz~ paua () [108 D ()] +

13

Lzpa(z) 108(1 — D(G(2)))]:

Theory of GANs

min max V (D, G) = Egrpy () 108 D(@)] + Ezp () log(1 — D(G(2)))].

G D

f-—/ e

Proposition 1. For G fixed, the optimal discrimi

13

minmax V(D,G) =

G D

Theory of GANs

Proposition 1. For G fixed, the optimal discriminator D is

D

—|H,
&L~ Pdata

— ‘E
L~ PDdata

4
<4~ Ddata

:max V (G, D)
log D () Lz~p, log(1 — Dg(G(

Dg(z) =

Pdata (CU)

ﬂwrvpdata(w) [lOgD(m)] + gzwpz (2) [lOg(l _ D(G(Z)))]

B pdata(m) + Pg (33)

/_\

log D¢ ()| + Eznp, [log(1 — Dg(z)))

lOg p data (m)

- Pan(z) +pg(x)

——

+ T

log

z)))]

13

minmax V(D,G) =

G

D

Theory of GANs

Lz~ paua () [108 D ()] +

14

Lzpa(z) 108(1 — D(G(2)))]:

Theory of GANs

mg'n max V(D,G) = Egnpyu(a) 108 D()] + Ezp, (2) log(l — D(G(2)))].

14

Yywax l{—ﬁﬂﬂfﬂ“‘) L" /?C)‘ -
“ry v’ J9 L""’I’W‘M]

[73 (%7 - —
é:> Ib/vdwlvt‘;sl [;)c-Pdatd [l:]fd“f o) = 4 ’

Theory of GANs

minmax V (D, G) = Egepy @) 108 D()] + Exn, () log(1 — D(G(2)))]

Theorem 1. The global minimum of the virtual training criterion C(QG) is achieved if and only if
Pg = Ddata- At that point, C'(G) achieves the value — log 4.

C(G) — —lOg(4) 4 KL (pdata pdata;‘pg) 4 KL (pg Pdata ‘|‘pg)

-

14

Theory of GANs

minmax V (D, G) = Egepy @) 108 D()] + Exn, () log(1 — D(G(2)))]

Theorem 1. The global minimum of the virtual training criterion C(QG) is achieved if and only if
Pg = Ddata- At that point, C'(G) achieves the value — log 4.

C(G) = —log(4) + KL (pdata £ data; - g) + KL (pg Dawa 1 P)

2
8
|

— —log(4) + 2 JSD (Pgasa ||y)

14

Theory of GANs

minmax V(D, G) = Egp)10 D(@)] + Exnp, (x)[log(1 — D(G(2)))]

Theorem 1. The global minimum of the virtual training criterion C(QG) is achieved if and only if
Pg = Ddata- At that point, C'(G) achieves the value — log 4.

C(G) _ —lOg(4) + KL (pdata pdata;‘pg) + KL (pg Pdata +pg)

A
Q
|

— —log(4) + 2 JSD (Pgasa ||y)

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reackits optimumm given G, and D, is updated so as to improve the criterion

Lo npiua 108 D (€)] + Egnp, [log(l — Dg(x))]

then p, converges 10 Pgaq
. e ~

14

Theory of GANs

minmax V (D, G) = Egepy @) 108 D()] + Exn, () log(1 — D(G(2)))]

Theorem 1. The global minimum of the virtual training criterion C(QG) is achieved if and only if
Pg = Ddata- At that point, C'(G) achieves the value — log 4.

C(G) = —log(4) + KL (pdata £ data; - g) + KL (pg Dawa 1 P)

C(G) = —log(4) +2- JSD (pdata ||pg) 0%

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 2’ the discriminator
is allowed to reach its optimum given G, and p, is updated so as to improve the criterion &

L ~pia 108 D ()] + Egp, [10g(1 — D (x))]

14

Training GANSs

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(1), ..., 2(™)} from noise prior p,(2).
e Sample minibatch of m examples {z(!),... £(™} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo, L 3" [1og D () + 108 (1~ D (& (=)))]

=1
end for

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

o, 2tos (1-0 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum 1n our experiments.

15

Training GANs

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

o oo T e e

r k steps do
e Sample minibatch of m noise samples {z(1), ..., 2(™)} from noise prior p,(2):
Inner |00p to update e Sample minibatch of m examples {z(!),... (™} from data generating distribition

. . . . pdata(m) .
discriminator first e Update the discriminator by ascending its stochastic gradient:

— - 1

g Sl () rs(1- (0 w»yj

hak '] rom noise priorp,(z).
e Update the generator by dgs: X

—) fg)//,/\/’,‘/t Apa

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum 1n our experiments.

15

Training GANs

16

Training GANSs

1. GAN is a new algorithm to train a common generative model (like VAE)

16

Training GANSs

1. GAN is a new algorithm to train a common generative model (like VAE)

2. GAN training is not MLE

16

Training GANs

1. GAN is a new algorithm to train a common generative model (like VAE)

2. GAN training is not MLE haﬁs it@

pux);% P&u/@ c) MLE: /) 1)@&f/x)

16

Training GANSs

1. GAN is a new algorithm to train a common generative model (like VAE)

2. GAN training is not MLE What i< it then?

Suppose the generator G(x) is parameterized by @, then what is the
gradient when updating G(x)?

16

Training GANSs

1. GAN is a new algorithm to train a common generative model (like VAE)

2. GAN training is not MLE What i< it then?

Suppose the generator G(x) is parameterized by ¢, then what is the
gradient when updating G(x)?) —

a’ata_l_pg< pa’azta_l_pg<
>) + KL(p, | |)

p
C(G) =—log4)+ KL(p,,, | 5

- —

16

Training GANSs

1. GAN is a new algorithm to train a common generative model (like VAE)

2. GAN training is not MLE What i< it then?

Suppose the generator G(x) is parameterized by 6, then what is the
gradient when updating G(x)? AL A

) v
Pdata T p g data
C(G) = —log(d) + KL(Pyara |) + K@I\ =

rom the solution of the dlscrlmlnator which is fixed when optimizing &

/\/\/\

16

o 04[7(\) FKa) o %(/Q)
Training GANs 1, =X J1 -

/<L At e P S gt n{Zm/zmé IC

1. GAN is a new algorithm to train a common genérative model (like VAE)

2. GAN training is not MLE

=X, 3 [

What is it then?

Suppose the generator G(x) is parameterized by @, then what is the
gradient when updating G(x)?

Pdata T P2 Pdata + Pg
data g)-l—KL(ng data g)

C(G) = —log(4) + KL(pdam\ | 2 .
N 5:

T —— 2

Training GANs

17

Training GANSs

Recall that MLE is equivalent to minimizing KL(p ,,,(X) | | p,(x))

17

Training GANSs

Recall that MLE is equivalent to minimizing KL(p ,,,(X) | | p,(x))

Pdara + Pg (X)
For GANs, the generator is to minimize KL(p,(x; 0) | | M+)

17

Training GANSs

Recall that MLE is equivalent to minimizing KL(p,,..(X) | \pg(x))

= —

Pdata + Py (X)
For GANSs, the generator is to minimize KL(p,(x; 0) | |am—g)

-

B

KL(p||q) # KL(g||p) //

L[@C}é) @ /‘V /u 5)</
fﬂ/ W)

. g)CN wa &mf/mé)é/

17 /d\/—/

Training GANs

Recall that MLE is equivalent to minimizing KL(p ,,,(X) | | p,(x))

Pdara + Pg (X)
For GANs, the generator is to minimize KL(p,(x; 0) | \M+)

\

E(L(p\ |q) # KL(q| | p)

KL divergence is asymmetric, and GANs’ KL divergence is in the opposite
direction with respect to MLE — T — —

- \

/

17

GANs v.s. VAEs

Brock et al. LARGE SCALE GAN TRAINING FOR HIGH

T FIDELITY NATURAL IMAGE SYNTHESIS. ICLR 2019.

GANs v.s. VAEs

GANs are widely demonstrated to show superiority to VAEs on generating
realistic, vivid images. In contrast, VAEs" generation is more blurred

/‘\ \

Brock et al. LARGE SCALE GAN TRAINING FOR HIGH

T FIDELITY NATURAL IMAGE SYNTHESIS. ICLR 2019.

GANs v.s. VAEs

GANs are widely demonstrated to show superiority to VAEs on generating
realistic, vivid images. In contrast, VAEs' generation is more blurred

Brock et al. LARGE SCALE GAN TRAINING FOR HIGH
FIDELITY NATURAL IMAGE SYNTHESIS. ICLR 2019.

18

GANs v.s. VAEs

GANs are widely demonstrated to show superiority to VAEs on generating
realistic, vivid images. In contrast, VAEs" generation is more blurred

. -
Y e

T N)] ! >l P i
e WP Gl oS SRS -l
s . \ Fra e .
v y - el f o N
A y - o =
S 7 oY ' ’A\Y‘\
v~ L ‘
3
J ‘ LAy

GANs’ generated images

GANs’ generation can “miss mode” of the data distribution, where the
generated images are not diverse to cover all the data distributions (VAEs
do not have this issue)

Brock et al. LARGE SCALE GAN TRAINING FOR HIGH

T FIDELITY NATURAL IMAGE SYNTHESIS. ICLR 2019.

Implication of the KL divergence

19

Implication of the KL divergence

KL(pdata(x) ‘ \pg(x)) V.S. KL(pg()C) ‘ |pdata(x))

VAES GANSs (approximately)

— o —

e\
L m— ‘

(

~—— o

19

— Pdata

"~ " PVAE

Implication of the KL divergence

KL(pdata(x) ‘ \pg(x)) V.S. KL(pg()C) ‘ |pdata(x))

VAEs GANs (approximately)

Implication of the KL divergence

KL(pdata(x) ‘ \pg(x)) V.S. KL(pg()C) ‘ |pdata(x))

VAEs GANSs (approximately)
7
— Pdata /< L (/[)éfaﬁu LX [L Jﬁ all j
-~ - PVAE ~ £ 5
-~ PGAN - i S
/\

—--.
g 5

Implication of the KL divergence

KL(pdata(x) ‘ \pg(x)) V.S. KL(pg()C) ‘ |pdata(x))

VAES GANSs (approximately)

— Pdata

"~ " PVAE

%@red/unrealisﬁc Images

o" " N

|
44444
s

Implication of the KL divergence

KL(pdata(x) ‘ \pg(x)) V.S. KL(pg()C) ‘ |pdata(x))

VAEs /-GA;Nj—hpp@(imatély) —

p | o
— FMdata . j — [;
- - - PuaF | W@ cx;@w /)C/“/)j C”)[”J/dazf’y
—
1557026/ S /ow/t'
W

[Pc(u&, C(/Sce)nerate blurred/unr

/

-~ "PGAN

= &'--.“
/}‘\ s)7
Nz "7 Y 4 \ * 40‘&1@5‘()
\ " ¢ ’ / \ L
2 4 ss ‘ // ‘\ S
X 4
\‘ " s~ /// \s/‘ MO(/
‘5 - =~ L ' N == - 6// - N— ~ .
el = m o e o m m m m == = omom omom o= AL--.-.-.—.\- =
) J - —_
.

Implication of the KL divergence

KL(P100) P v KL, 1P 0)
WNS (approxima \

— Pdata] o
- - - ! [Generate realistic images but lack diversity
PvAE . T~

Generate blurre realistic images

Reinforcement Learning

20

Learning Tasks

N

* Supervised learning - D = {(x(i);y(i))}izl

_ —
* Regression -y(‘) eER —

» Classification - y(i) e{l,..,C}

N
- Unsupervised learning - D = {x(‘)}i=1

—

* Clustering s ~

* Dimensionality reduction
— T

—

21

Learning Tasks

* Supervised learning - D = {(x(i),y(i))}liv=1
* Regression -y(i) e R
» Classification - y(i) e{l,..,C}

~yN
* Unsupervised learning - D = {x(‘)}i=1
* Clustering

* Dimensionality reduction

* Reinforcement learning - D = @)@%tl}:ﬂ
_

21

RL Setup

In many cases, we cannot precisely define what the correct output is (think
of we want to train a robot towalk) — —~ ~

N g

ek

4\

Environment Al agent

) z/t/?é/%%é/éﬁ Y T ff (w

L — e ——

—

22

RL Setup

In many cases, we cannot precisely define what the correct output is (think
of we want to train a robot to walk)

Enviroament | Al agent

Agent chooses actions which can depend on pz < ™

22

RL Setup

In many cases, we cannot precisely define what the correct output is (think
of we want to train a robot to walk)

Environment Al agent

Agent chooses actians which can depend on past
S s

Environment can change state with each action

S~ //

—

22

RL Setup

In many cases, we cannot precisely define what the correct output is (think
of we want to train a robot to walk)

Environment Al agent

Agent chooses actions which can depend on past

Environment can change;tate with each action

Reward (Output) depends on (Inputs) action and state of environment

/

<

- —
22

RL Setup

In many cases, we cannot precisely define what the correct output is (think
of we want to train a robot to walk)

Environment Al agent

Agent chooses actions which can depend on past

Environment can change state with each action

Reward (Output) depends on (Inputs) action and state of environment

Goal: maximize the total reward
22

Differences from Supervised
Learning

Environment Al agent

23

Differences from Supervised
Learning

Environment Al agent

o Maximize reward (rather than learn reward)

< e N\

23

Differences from Supervised
Learning

Environment Al agent

o Maximize reward (rather than learn reward) Supervised training s like imitation

—

23

Differences from Supervised
Learning

Environment Al agent

o Maximize reward (rather than learn reward) Supervised training s like imitation

o Inputs are not iid — state & action depends on past

23

RL Examples

|
e VL

ALPHAGDO

24

RL Setup

25

RL Setup

- State space, &

* Action space, A

25

RL Setup

- State space, &

* Action space, A

* Reward function

» Stochastic, p(r | s, a)

* Deterministic, R: S X A - R

25

RL Setup

- State space, &

* Action space, A
» Reward function
» Stochastic, p(r | s, a)

* Deterministic, R: S X A - R
* Transition function

» Stochastic, p(s' | s, a)

* Deterministic, 0: S XA > §

25

RL Setup

- State space, &

* Action space, A

* Reward function

» Stochastic, p(r | s, a)

* Deterministic, R: S X A - R
* Transition function

» Stochastic, p(s' | s, a)

* Deterministic, 0: S XA > §

* Reward and transition functions can be known or unknown

25

RL Setup

- State space, &

* Action space, A

* Reward function

» Stochastic, p(r | s, a)

* Deterministic, R: S X A - R
* Transition function

» Stochastic, p(s' | s, a)

* Deterministic, 0: S XA > §

In this lecture, we assume they are known
* Reward and transition functions can be known or unknown

25

RL Setup

* Policy m: 8 - A

* Specifies an action to take in every state

26

RL Setup

* Policy m: 8 - A

* Specifies an action to take in every state

* Value function, V™*: § - R

- Measures the expected total reward of starting in

some state s and executing policy i, i.e., in every

state, taking the action that o returns

26

RL Example - gridworld

S = all empty squares in the
grid

A = {up, down, left, right}

Deterministic transitions

Rewards of +1 and -1 for
entering the labelled squares

Terminate after receiving either
reward

27

RL Example - gridworld

A 4
:
-

-
1
1

RL Example - gridworld

- =))|
1)
t - - -

Is this policy optimal?

28

RL Example - gridworld

Optimal policy given a reward of -2 per step

29

RL Example - gridworld

Optimal policy given a reward of -2 per step

29

RL Example - gridworld

Optimal policy given a reward of -0.5 per step

30

RL Example - gridworld

Optimal policy given a reward of -0.5 per step

What would be the algorithm to find the optimal policy automatically?

30

Course Evaluation

Anonymous to instructors

14:29 N\ TR 76

HKUST
ILearn

| Canvas
& This will open the 'Canvas Student' app which
provides an easy access to the online content
of your courses at HKUST - watch videos, post

SFQ
Allows you to complete the Student Feedback
Questionnaire for all your courses at HKUST on

Or

Enytq kIy spond to questio
polls created by you tructor in class.

https://survey.ust.hk/hkust/

31

