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Announcement
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HW4	is	out,	it	is	fairly	easy,	mainly	a	reflec'on	of	all	the	COMP5212	contents	with	only	
mul'-choice	ques'ons

The	first	round	of	Kaggle	private	leaderboard	was	released	last	night	—	do	not	
overop'mize	the	public	leaderboard	too	much &

lit--
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qϕ(z |x)

It	is	not	part	of	
the	genera've	
model

Only	the	right	(black)	part	defines	the	
genera've	model,	and	the	distribu'on

:	genera've	network/decoderpθ(x |z)
:	inference	network/encoderqϕ(z |x)

VAE	is	a	name	to	represent	both	the	model	p(x)	
and	the	inference	network	that	is	used	to	train	
the	model,	but	do	not	confuse	them	together
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Training	VAEs
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E-Step:	

M-Step:	

argmaxϕ

argmaxθ

Intui'vely	we	hope	to	approximate	p(z|x)	with	q(z|x)	accurately	
in	the	E-step,	to	approximate	the	true	EM	algorithm
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Training	VAEs
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End-to-end,	because	the	objec'ves	are	the	same	(ELBO)

VAE	training	is	op'mizing	ELBO	with	gradient	descent
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Z

X

VAE:

AE: log pθ(x |q(x))

1. Can	we	generate	X	samples	from	an	autoencoder?	
2. Can	we	approximate	p(x)	given	x	with	an	autoencoder?	
3. What	is	the	difference	between	the	representa'on	

space	from	AE	and	VAE?
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Generative Adversarial Networks
MLE
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The	GAN	Model
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Z

X

p(z)

Neural	Networks

X = G(z)

The	same	as	the	VAE	model,	except	that	x	is	a	determinis'c	
func'on	of	z,	but	it	can	be	a	distribu'on	as	well

Can	VAE	use	a	determinis'c	x	=	G(z)?
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The	GAN	Model
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Z

X

p(z)

Neural	Networks

X = G(z)

The	same	as	the	VAE	model,	except	that	x	is	a	determinis'c	
func'on	of	z,	but	it	can	be	a	distribu'on	as	well

Can	VAE	use	a	determinis'c	x	=	G(z)?

Some'mes	we	call	GANs	implicit	genera've	models
You	can	draw	samples,	but	hard	to	evaluate	p(x)

gen--
VAEs#explicitx
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1. Generator	is	trained	to	produce	realis'c	examples	to	fool	the	discriminator	
2. Discriminator	is	trained	to	discriminate	real	and	fake	examples

The	two	objec'ves	are	against	each	other

Adversarial	Game

Classifica'on	loss

G(z)	is	trained	to	minimize	the	probability	of	G(z)	recognized	as	“fake”	by	D

D(x)	is	trained	with	a	standard	classifica'on	loss

↓ optimizatio

- -

- ~



Training	GANs
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1.	GAN	is	a	new	algorithm	to	train	a	common	genera've	model	(VAE	as	well)

2.	GAN	training	is	not	MLE
-

m
I
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Inner	loop	to	update	
discriminator	first
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1.	GAN	is	a	new	algorithm	to	train	a	common	genera've	model	(like	VAE)

2.	GAN	training	is	not	MLE
What	is	it	then?-
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Recall	that	MLE	is	equivalent	to	minimizing	KL(pdata(x) | |pg(x))

For	GANs,	the	generator	is	to	minimize	KL(pg(x; θ) | |
pdata + p*g (x)

2 )

KL	divergence	is	asymmetric,	and	GANs’	KL	divergence	is	in	the	opposite	
direc'on	with	respect	to	MLE

KL(p | |q) ∇ KL(q | |p)M-
-

-
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Brock	et	al.	LARGE	SCALE	GAN	TRAINING	FOR	HIGH	
FIDELITY	NATURAL	IMAGE	SYNTHESIS.	ICLR	2019.	
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GANs	are	widely	demonstrated	to	show	superiority	to	VAEs	on	genera'ng	
realis'c,	vivid	images.	In	contrast,	VAEs’	genera'on	is	more	blurred

Brock	et	al.	LARGE	SCALE	GAN	TRAINING	FOR	HIGH	
FIDELITY	NATURAL	IMAGE	SYNTHESIS.	ICLR	2019.	

GANs’	generated	images

GANs’	genera'on	can	“miss	mode”	of	the	data	distribu'on,	where	the	
generated	images	are	not	diverse	to	cover	all	the	data	distribu'ons	(VAEs	
do	not	have	this	issue)
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VAEs GANs	(approximately)
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pdata
pVAE
pGAN

Generate	blurred/unrealis'c	images

Generate	realis'c	images	but	lack	diversity
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Reinforcement	Learning
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In	many	cases,	we	cannot	precisely	define	what	the	correct	output	is	(think	
of	we	want	to	train	a	robot	to	walk)-

supervised imitation learning-
-
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RL	Setup
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In	many	cases,	we	cannot	precisely	define	what	the	correct	output	is	(think	
of	we	want	to	train	a	robot	to	walk)

Goal:	maximize	the	total	reward
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In	this	lecture,	we	assume	they	are	known
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Is	this	policy	op'mal?
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Op'mal	policy	given	a	reward	of	-2	per	step
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Op'mal	policy	given	a	reward	of	-2	per	step
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Op'mal	policy	given	a	reward	of	-0.5	per	step
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Op'mal	policy	given	a	reward	of	-0.5	per	step

What	would	be	the	algorithm	to	find	the	op'mal	policy	automa'cally?
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