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Classification

CAT

Labels are discrete



Logistic Regression

Given a training set {(x{), y()) for i =1,...,n} let y{) € {0,1}.
Want hy(x) € [0,1]. Let's pick a smooth function:

ho(x) = g(0"x) Link Function

There are many options of g....

g 1
g(z) = 1+ e-2 Sigmoid Function

Logistic Function

How do we interpret hg(x)?
0.5

P(y = 1| x;60) = hy(x)
Ply =0| x;0) =1 — hy(x)




Logistic Regression

Let's write the Likelihood function. Recall:

Py =1 x;0) =hg(x)
Py =0| x;0) =1 — hy(x)

Then,

L(6) =P(y | X:0) = [ [ p(y'” | x17:8)  \We want to express “if-then” logics, how?
=1

n
= [T A0y (1 = ()"
=1
Taking logs to compute the log likelihood ¢(6) we have:

0(0) =log L(6) = "y log hy(x) + (1 — y)log(1 — he(x'))  Maximum likelihood estimation

i=1
A



Derivative of Logistic Function
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Gradient Descent

0; =0, +« (y(i) — ho(z(i))) zgi)
Looks identical to LMS update rule in linear regression

Is this coincidence?



Multi-Label Classification

{Cat, dog, dragon, fish, pig}



Multi-Label Classification

Given a training set {(x(l),y(l)), cee (x(”),y(”))}, y(i) e{l,2,---,k},
we aim to model the distribution p(y | x; 0)

Categorical distribution, p(y = k|x;0) = ¢,

s.t. i ¢p. =1
i=1



Softmax Function

Softmax: R¥ — RX

exp(tl)
Z?:l exp(t;)

softmax(ti,...,t) =

exp.(t k)
Z§:1 exp(t;)

The denominator is a normalization constant



Multi-Label Classification

Let (t1,...,tx) = (0{z,---,0, x)

exp (6, )
P(y =1 ‘ I, 0) Z;’:l exp(HJTa:)
5 = softmax(ty,--- ,tx) = .
Ply=k|xz:6 exp (6, )
( ‘ ) Z?zl exp(BJTa:)
exp(t;) exp(6;' z)

Ply=1i|z;0) = ¢ = Z§:1 exp(¢;) ) 53?—1 exp(; z)
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Multi-Label Classification

k
Zj:l exp(t;) j=1 exp(HjTa:)

n T )
0(0) = Z —log ( exp(@y(i)x ) ) Negative log likelihood
i=1 Z§=1 eXP(QjTiU(i) )

Cross-entropy loss  fe. : RF x {1,...,k} = Ry

exD(t i | | |
lee((t1, ..., tk),y) = —log ( . b(t,) ) 00) =) Lee((6] 29, ..., 00 2D),y®)
S:j—l exp(¢;) ‘
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The Derivative

0o (t, y) = et
o ¢ — Hy =1} 2 > 7—1 exp(t;)
Chain rule
ce N y oy b ) ¢ ) 0 2 '
0l ((6, 51789‘ 0, %), y) _ 0 g;y) . 32, = (¢ — Hy=1i}) -z
000

= (¢ —1{y? =4})-29 |ntuitive explanation of the rule?

j=1

00;
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Another Optimization Method —
Newton’s Method
Given f : R — R find x s.t. f(x) =0. V,l(0) =0

» This is the update rule in 1d

f(x(1)

(t+1) _ (1)
X = X 71 (x(0)

J Solution to a linear equation

FEOWED 4 fx®) - 2O () = 0
View it as a equation of x"™D and x\¥ is a constant
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f(x)

Another Optimization Method —
Newton’s Method

14

f(x)

FOEDNx + fx®@) = xOf(x0) = y

(x, fx™))

/




Another Optimization Method —
Newton’s Method
Given f : R — R find x s.t. f(x) =0. V,l(6) =0

» This is the update rule in 1d

(t) !
1) _ (e _ FXY) g.—g_t ()

f/(x(1)) | 0'(6)

» |t may converge very fast (quadratic local convergence!) Requires fewer iterations

» For the likelihood, i.e., f(0) = Vyl(0) we need to generalize
to a vector-valued function which has:

g(t+1) — p(t) _ (H(g(t))>_1 Vol(61).

In which H,',j(@) — 89%9]5(9).
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Exponential Family
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Exponential Family

Exponential family unifies inference and learning for many
important models

17



Exponential Family

Rough ldea “/f P has a a special form, then inference and
learning come for free”

P(y;n) = b(y) exp {nTT(y) — 3(77)} -

17: natural parameter or canonical parameter

Here y, a(n), and b(y) are scalars. T(y) same dimension as 7.

holds all information the data provides with regard

a(n) is called the log partition function — does not depend

b(y) is called the base measure — does not depend on 7.
)
on y.

1=> P(yin)=e "> bly)exp {nTT(y)}
—> a(n) =log » b(y)exp {nT T(y)}
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Example: Bernoulli

Bernoulli random variable is an event (say flipping a coin) then:

py; ) = (1 =)'~

How do we put it in the required form?
P(yin) = b(y) exp {nTT(y) - a(n)} -

p(y;¢) = ¢¥(1—¢) "
= exp(ylog¢ + (1 —y)log(l — ¢))

= exp ((log (1ib¢>> y + log(1 —gb))
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Example: Bernoulli

¢'(1— )Y
exp(ylog ¢ + (1 —y) log(1 — ¢))

P(y:m) = b(y)exp {n T(y) — a(n) } 5
exp ((log (1 - ¢)> y + log(1 — gb))

So then:

p(y; @)

= log 17, T(¥) = v, a(n) = —log(1 - 9).

b(y) =1
%
I -9

We need to show a(#) is a function of log
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Example: Bernoulli

We first observe that:

n=log 2 — €'(1-0)=

1
N —(a" 11 _
(1) = =1
Now, we plug into log(1 — ¢) and we verify:
e 'l .
a(n) = log(1 — ¢) = log -——— = —log(1 + €").

We have verified Bernoulli distribution is in the exponential family
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Example: Gaussian with Fixed Variance o> =1

P(y; 1) = \/127 exp {—%(y — u)2} -

Can we put it in the exponential family form?

P(y:m) = b(y)exp {1 T(y) — a(n) }

Multiply out the square and group terms:

1 1
In all the exponential Plyin) = —=exp {~y*/2} exp {W— §M2}-
family distribution we .
work with in the n=umu, T(y)=y,a(n) = 5772.

course, T(y) =y
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An Observation

Notice that for a Gaussian with mean ;1 we had

1 5

n=u, T(y)=y,a(n) = 51

Opa(n) =n = p=E[y] and 8;a(n) =1 = o° = var(y)

s this true for general?
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Log Partition Function

Yes! Recall that

a(n) =log y_ bly)exp {n" T(y)}

Then, taking derivatives

>y T)b()exp{n"T(v)} =
Vnalin) = >, b(y)exp{(nTT(y)} AT )]
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Many Other Exponential Models

» There are many canonical exponential family models:

>

>
>
>
>
>

Binary +— Bernoulli

Multiple Classses — Multinomial
Real — Gaussian

Counts — Poisson

R, +— Gamma, Exponential
Distributions — Dirichlet
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Thank You!
Q& A
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