
Generalized	Linear	Models,	
Kernel	Methods

1

Junxian	He	
Sep	19,	2024

COMP	5212	
Machine	Learning	
Lecture	4



Announcement
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HW1	is	out,	due	on	Oct	2nd,	please	start	early



Recap:	Exponen0al		Family
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:	natural	parameter	or	canonical	parameterη

holds	all	informaJon	the	data	provides	with	regard	
to	the	unknown	parameter	values



Example:	Gaussian	with	Fixed	Variance	 	σ2 = 1
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In	all	the	exponenJal	
family	distribuJon	we	
work	with	in	the	
course,	T(y)	=	y



An	Observa0on
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Is	this	true	for	general?



Log	Par00on	Func0on
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Many	Other	Exponen0al	Models
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Recap
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Linear	Regression	hθ(x) = θTx

LogisJc	Regression	hθ(x) = g(θTx)

MulJ-class	ClassificaJon	Regression	hθ(x) = softmax(θT
1 x, ⋯, θT

k x)

θk := θk + α
n

∑
i=1

(1{y(i) = k} − hθ(x)k)x(i)

Is	this	coincidence?



Generalized	Linear	Models
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Generalized	Linear	Models
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Generalized	Linear	Models
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	for	most	of	the	examples	you	will	see	in	this	course	T(y) = y



Generalized	Linear	Models
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Construc0ng	GLMs
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Pick	an	exponenJal	family	distribuJon	given	the	type	of	 	(Possion,	
MulJnomial,	Gaussian…)

y

or	 	η = θTx, ηi = θT
i x

Training	with	maximum	likelihood	esJmaJon	

Inference:	h(x) = E[y |x]

Enjoy	closed-form	soluJon	for	various	staJsJcs



Generalized	Linear	Models
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GLMs

Linear	Regression

LogisJc	Regression

MulJ-Label	
ClassificaJon

“Linear”	Models



Kernel	Methods
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Feature	Map
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y = θx

y = θTϕ(x)Feature	map
ϕ : Rd → Rp



LMS	Update	Rule	with	Features
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Linear	Regression:

With	Features:

How	about	Generalized	Linear	Models	with	Features?



New	Feature	Vector	Can	Be	Very	High-Dimensional
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ComputaJonally	expensive

Is	the	computaJon	evitable	given	 ?	θ ∈ Rp



Kernel	Trick

19

If	 	is	iniJalized	as	0,	then	at	any	step	of	the	gradient	descent:θ

βi ∈ R



Kernel	Trick
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Rewrite	ϕ(x( j))Tϕ(x(i)) = < ϕ(x( j)), ϕ(x(i)) >

We	can	precompute	all	pairwise	
beforehand,	and	reuse	it	for	every	gradient	descent	update

< ϕ(x( j)), ϕ(x(i)) >



Kernel	Trick
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Kernel	K(x, z)



The	Algorithm
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Compute	 for	all	K(ϕ(x(i)), ϕ(x( j))) = < ϕ(x(i)), ϕ(x( j)) > i, j

Loop

Recall	that	 	is	the	
number	of	data	samples

n



Inference
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We	do	not	need	to	explicitly	compute	 	!θ

The	Kernel	funcJon	is	all	we	need	for	training	and	inference!



Implicit	Feature	Map
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Do	we	sJll	need	to	define	feature	maps?

What	kinds	of	kernel	funcJons	K()	can	correspond	to	some	feature	map	ϕ



Example
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What	is	the	feature	map	to	make	K	a	valid	kernel	funcJon?	

Requires	O(d^2)	compute	
for	feature	mapping

Requires	O(d)	compute	for	
Kernel	funcJon
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What	kinds	of	funcJons	would	make	a	kernel	funcJon?	

Infinite	dimensions	of	feature	mapping?	

Support	Vector	Machines

Next	Lecture



Thank	You!	
Q	&	A
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