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Announcement

HW1 is out, due on Oct 2nd, please start early



Recap: Exponential Family

Rough ldea “/f P has a a special form, then inference and
learning come for free”

P(y;n) = b(y) exp {nTT(y) — 8(77)} -

1: natural parameter or canonical parameter

Here y, a(n), and b(y) are scalars. T(y) same dimension as 7.

holds all information the data provides with regard

b(y) is called the base measure — does not depend on 7.

a(n) is called the log partition function — does not depend

on y. 1= P(yin) = e D> b(y)exp {n" T(y)]

—> a(n) =log » b(y)exp {nT T(y)}
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Example: Gaussian with Fixed Variance o> =1

P(y; 1) = \/127 exp {—%(y — u)2} -

Can we put it in the exponential family form?

P(y:m) = b(y)exp {1 T(y) — a(n) }

Multiply out the square and group terms:

1 1
In all the exponential Plyin) = —=exp {~y*/2} exp {W— §M2}-
family distribution we .
work with in the n=umu, T(y)=y,a(n) = 5772.

course, T(y) =y
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An Observation

Notice that for a Gaussian with mean ;1 we had

1 5

n=u, T(y)=y,a(n) = 51

Opa(n) =n = p=E[y] and 8;a(n) =1 = o° = var(y)

s this true for general?



Log Partition Function

Yes! Recall that

a(n) =log y_ bly)exp {n" T(y)}

Then, taking derivatives

>y T)b()exp{n"T(v)} =
Vnalin) = >, b(y)exp{(nTT(y)} AT )]




Many Other Exponential Models

» There are many canonical exponential family models:

>

>
>
>
>
>

Binary +— Bernoulli

Multiple Classses — Multinomial
Real — Gaussian

Counts — Poisson

R, +— Gamma, Exponential
Distributions — Dirichlet



Recap

n

Linear Regression /iy(x) = 0! x 0,:=0; +a (49 — he(z?)) 2
1=1

Logistic Regression /iy(x) = g(0Tx) 0;:=10;+ @Y (YD — hy(z)) e
1=1

Multi-class Classification Regression hy(x) = Softmax(é’lTx, voe Hka)

O = O+ a Y, 1y = k) = g0 )x®
=1

Is this coincidence?



Generalized Linear Models

We're given features x € R9t! and a target y. We want a model.
We first we pick a distribution based on y's type.

» We assume y | x; 0 distributed as an exponential family.

Binary — Bernoulli

Multiple Classses — Multinomial
Real — Gaussian

Counts — Poisson

R, — Gamma, Exponential
Distributions — Dirichlet

vVvVvVyVvyYVvyy



Generalized Linear Models

We're given features x € R9t1 and a target y. We want a model.
We first we pick a distribution based on y's type.

» We assume y | x; 0 distributed as an exponential family.

Binary — Bernoulli

Multiple Classses — Multinomial
Real — Gaussian

Counts — Poisson

R, — Gamma, Exponential
Distributions +— Dirichlet

vVvVvVyVvyYVvyy

» Our model is linear beacuse we make the natural parameter
n=60"xin which ,x € R+
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Generalized Linear Models

inference hg(x) = Ely | x; 0] is the output.

learn max log p(y | x;6) by maximum likelihood.

P(y:m) = b(y)exp {n T(y) — a(n) }

a(n) = log » _b(y)exp {nT T(y)}

Then, taking derivatives

>y Tb(y)exp {n" T(y)} =
Vnaln) = S, b(y)exp {nTT(y)} AT

I(y) = y for most of the examples you will see in this course
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Generalized Linear Models

inference hg(x) = Ely | x; 6] is the output.

learn meaxlog p(y | x;0) by maximum likelihood.

algorithm: SGD 0+ = 99 1 o (y() — iy (x) ) x0
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Constructing GLMs

Pick an exponential family distribution given the type of y (Possion,
Multinomial, Gaussian...)

n=20"xorn=0;x
Training with maximum likelihood estimation

Inference: h(x) = E[y| x]

Enjoy closed-form solution for various statistics
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Generalized Linear Models

Logistic Regression

Multi-Label
Classification o ”
Linear” Models
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Kernel Methods
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Feature Map

] y = Ox
X >< 1\ Y = 93CB3—|-02£B2—|—01£B-|-00
« % 15th sample
X : X)O( (x(15)’y(15))
’ 1
70 500 ‘10'00 1500 2000 2500 3000 T A
8;8uare feet ¢($) — $2 c R*.
X =
Feature map T
qb:Rd_>Rp y=9¢()€)
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LMS Update Rule with Features

Linear Regression:
0:=0+a) (y —ho(z®))zt
1=1
=0+ « Z (y(i) — HT:c(i)) ).
1=1
With Features:
0:=0+ay (y9—0"¢("))¢(x?)
1=1

How about Generalized Linear Models with Features?
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New Feature Vector Can Be Very High-Dimensional

Computationally expensive

T2T1 Is the computation evitable given 8 € RP?
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Kernel Trick

If @ is initialized as 0, then at any step of the gradient descent:

9—2@ z) B ER

f:=0 az @ — 9T p(z)) p(z)

— Zﬁ@ (zD) + a Z (v — 07 p(zD)) p(z?)

—Z Bi+ o (y? — 07¢(x?))) p(z?)

new [3;

Bi = B + ( 0 9T¢($(i)))
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Kernel Trick

Rewrite d(x) p(xV) = < p(x), p(xV) >

We can precompute all pairwise < ¢(x"), p(xV) >
beforehand, and reuse it for every gradient descent update
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Kernel Trick

Kernel K(x,z7) X xX — R X is the space of the input

K(z,z) = (¢(z), ¢(2))
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The Algorithm

Compute K(qb(x(i)), gb(x(j))) = < qb(x(i)), gb(x(j)) > foralli,j

Loop 52 L= ﬁz 8 (y(Z) o ZﬁJK(x(Z)7 x(J))) Vi € {1, . ,Tl}
=1

Recall that 7 is the
number of data samples

Or in vector notation, letting K be the n X n matrix with K;; =
K(z®, 2U)), we have

B:=B+aly— KpB)
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Inference

We do not need to explicitly compute 0 |

Zﬂz (z0)” Zﬂz (29,2

The Kernel function is all we need for training and inference!
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Implicit Feature Map

Do we still need to define feature maps?

K(z,z) = (8(z), $(2))

What kinds of kernel functions K() can correspond to some feature map @
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K(x, z)

Example

K(z,2) = (2" 2)°

r,z € R®

What is the feature map to make K a valid kernel function?

(3e) ()

d d
N
2 2 Lid j<i%;

1=1 j7=1
d

> (ziz;)(zi%))

1,7=1
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L1d1

L1L2
L1X3
L1
L2
L2d3
L3d1
L3L2

L33

Requires O(d”*2) compute
for feature mapping

Requires O(d) compute for
Kernel function



Next Lecture

What kinds of functions would make a kernel function?
Infinite dimensions of feature mapping?

Support Vector Machines
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Thank You!
Q& A
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