

Generalized Linear Models, Kernel Methods

COMP 5212 Machine Learning Lecture 4

Junxian He Sep 19, 2024

HW1 is out, due on Oct 2nd, please start early

Announcement

Recap: Exponential Family

3

Rough Idea "If P has a a special form, then inference and learning come for free"

 $P(y;\eta) = b(y) ex$

b(y) is called the **base measure** – does *not* depend on η . $a(\eta)$ is called the **log partition function** – does *not* depend on y.

$$\operatorname{\mathsf{xp}}\left\{\eta^{\mathsf{T}}\mathsf{T}(\mathsf{y})-\mathsf{a}(\eta)
ight\}.$$

 η : natural parameter or canonical parameter Here y, $a(\eta)$, and b(y) are scalars. T(y) same dimension as η .

holds all information the data provides with regard T(y) is called the sufficient statistic. to the unknown parameter values

$$1 = \sum_{y} P(y; \eta) = e^{-a(\eta)} \sum_{y} b(y) \exp\left\{\eta^{T} T(y)\right\}$$
$$\implies a(\eta) = \log\sum_{y} b(y) \exp\left\{\eta^{T} T(y)\right\}$$

(y)

Example: Gaussian with Fixed Variance $\sigma^2 = 1$

 $P(y;\mu) =$

Can we put it in the exponential family form?

 $P(y;\eta) =$

Multiply out the square and group terms:

In all the exponential family distribution we work with in the course, T(y) = y

$$P(y;\mu) = rac{1}{\sqrt{2\pi}} \exp\left\{-y^2/2
ight\} \exp\left\{\mu y - rac{1}{2}\mu^2
ight\},$$

 $\eta = \mu, T(y) = y, a(\eta) = rac{1}{2}\eta^2.$

$$P(y;\mu) = \frac{1}{\sqrt{2\pi}} \exp\{-y^2/2\} \exp\{\mu y - \frac{1}{2}\mu^2\}$$
$$\eta = \mu, T(y) = y, a(\eta) = \frac{1}{2}\eta^2.$$

$$=\frac{1}{\sqrt{2\pi}}\exp\left\{-\frac{1}{2}(y-\mu)^2\right\}.$$

$$= b(y) \exp\left\{\eta^T T(y) - a(\eta)\right\}.$$

٠

An Observation

 $\eta = \mu$

$\partial_\eta a(\eta) = \eta = \mu = \mathbb{E}[y]$ a

Is this true for general?

Notice that for a Gaussian with mean μ we had

$$u, T(y) = y, a(\eta) = \frac{1}{2}\eta^2.$$

and
$$\partial_\eta^2 a(\eta) = 1 = \sigma^2 = \operatorname{var}(y)$$

Log Partition Function

Yes! Recall that

Then, taking derivatives

 $\nabla_{\eta} a(\eta) = \frac{\sum_{y} T(y) b(y) \exp\left\{\eta^{T} T(y)\right\}}{\sum_{y} b(y) \exp\left\{\eta^{T} T(y)\right\}} = \mathbb{E}[T(y);\eta]$

 $a(\eta) = \log \sum_{y} b(y) \exp \left\{ \eta^T T(y) \right\}$

Many Other Exponential Models

- \blacktriangleright Binary \mapsto Bernoulli
- \blacktriangleright Multiple Classses \mapsto Multinomial
- \blacktriangleright Real \mapsto Gaussian
- \blacktriangleright Counts \mapsto Poisson
- \triangleright $\mathbb{R}_+ \mapsto$ Gamma, Exponential
- \blacktriangleright Distributions \mapsto Dirichlet

- There are many canonical exponential family models:

Linear Regression $h_{\theta}(x) = \theta^T x$ \bigcirc

Logistic Regression $h_{\theta}(x) = g(\theta^T x)$

Multi-class Classification Regression \bigcirc

Recap

$$egin{aligned} & heta_j := heta_j + lpha \sum_{i=1}^n \left(y^{(i)} - h_ heta(x^{(i)})
ight) x_j^{(i)} \ & heta_j := heta_j + lpha \sum_{i=1}^n \left(y^{(i)} - h_ heta(x^{(i)})
ight) x_j^{(i)} \end{aligned}$$

$$\mathsf{n} \ h_{\theta}(x) = softmax(\theta_1^T x, \cdots, \theta_k^T x)$$

$$\theta_k := \theta_k + \alpha \sum_{i=1}^n (1\{y^{(i)} = k\} - h_{\theta}(x)_k) x^{(i)}$$

Is this coincidence?

We're given features $x \in \mathbb{R}^{d+1}$ and a target y. We want a model. We first we pick a distribution based on y's type.

We assume $y \mid x; \theta$ distributed as an exponential family.

- \blacktriangleright Binary \mapsto Bernoulli
- ► Multiple Classses → Multinomial
- \blacktriangleright Real \mapsto Gaussian
- \blacktriangleright Counts \mapsto Poisson
- \triangleright $\mathbb{R}_+ \mapsto$ Gamma, Exponential
- \blacktriangleright Distributions \mapsto Dirichlet

We're given features $x \in \mathbb{R}^{d+1}$ and a target y. We want a model. We first we pick a distribution based on y's type.

We assume $y \mid x; \theta$ distributed as an exponential family.

- \blacktriangleright Binary \mapsto Bernoulli
- \blacktriangleright Multiple Classses \mapsto Multinomial
- \blacktriangleright Real \mapsto Gaussian
- \blacktriangleright Counts \mapsto Poisson
- \triangleright $\mathbb{R}_+ \mapsto$ Gamma, Exponential
- \blacktriangleright Distributions \mapsto Dirichlet

Our model is *linear* beacuse we make the natural parameter $\eta = \theta^T x$ in which $\theta, x \in \mathbb{R}^{d+1}$.

inference learn

 $P(y;\eta) = b(y) \exp \left(\frac{1}{2} \right)$

 $a(\eta) = \log$

Then, taking derivatives

$$\nabla_{\eta} a(\eta) = \frac{\sum_{y} T(y) b(y) \exp\left\{\eta^{T} T(y)\right\}}{\sum_{y} b(y) \exp\left\{\eta^{T} T(y)\right\}} = \mathbb{E}[T(y); \eta]$$

 $h_{\theta}(x) = \mathbb{E}[y \mid x; \theta]$ is the **output**. $\max_{\theta} \log p(y \mid x; \theta) \text{ by maximum likelihood.}$

$$\left\{ \eta^T T(y) - a(\eta) \right\}.$$

$$\sum_{y} b(y) \exp\left\{ \eta^T T(y) \right\}$$

T(y) = y for most of the examples you will see in this course

inference	$h_ heta$
learn	$\max_{\theta} \log p(y)$
algorithm: SGD	$\theta^{(t+1)} = \theta^{(t+1)}$

 $n_{\theta}(x) = \mathbb{E}[y \mid x; \theta]$ is the **output**. $(y \mid x; \theta)$ by maximum likelihood.

$$(x^{(i)}) + \alpha \left(y^{(i)} - h_{\theta^{(t)}}(x^{(i)}) \right) x^{(i)}$$

Multinomial, Gaussian...)

•
$$\eta = \theta^T x$$
, or $\eta_i = \theta_i^T x$

- Training with maximum likelihood estimation
- Inference: h(x) = E[y | x]

Pick an exponential family distribution given the type of y (Possion,

Enjoy closed-form solution for various statistics

Linear Regression

Logistic Regression

Multi-Label Classification

Generalized Linear Models

"Linear" Models

Feature Map

LMS Update Rule with Features

Linear Regression:

$$egin{aligned} & heta := heta + lpha \sum_{i=1}^n \left(y^{(i)} - h_ heta(x^{(i)})
ight) x^{(i)} \ & ext{ := } heta + lpha \sum_{i=1}^n \left(y^{(i)} - heta^T x^{(i)}
ight) x^{(i)}. \end{aligned}$$

With Features:

$$heta := heta + lpha \sum_{i=1}^n \left(y^{(i)} - heta^T \phi(x^{(i)}) \right) \phi(x^{(i)})$$

How about Generalized Linear Models with Features?

New Feature Vector Can Be Very High-Dimensional

Computationally expensive

Is the computation evitable given $\theta \in R^p$?

Kernel Trick

$$\beta_i := \beta_i + \alpha \left(y^{(i)} - \theta^T \phi(x^{(i)}) \right)$$

- If θ is initialized as 0, then at any step of the gradient descent:

$$+ heta^T \phi(x^{(i)}) \phi(x^{(i)})$$

$$\sum_{i=1}^{n} \left(y^{(i)} - \theta^T \phi(x^{(i)}) \right) \phi(x^{(i)})$$

$$-\theta^T \phi(x^{(i)})) \phi(x^{(i)})$$

$$eta_i := eta_i + lpha \left(y^{(i)} - \sum_{j=1}^n eta_j \phi(x^{(j)})^T \phi(x^{(i)})
ight)$$

Kernel Trick

$$eta_i := eta_i + lpha \left(y^{(i)} - \sum_{j=1}^n eta_j \phi(x^{(j)})^T \phi(x^{(i)})
ight)$$

Rewrite
$$\phi(x^{(j)})^T \phi(x^{(i)}) = \langle \phi(x^{(j)}), \phi(x^{(i)}) \rangle$$

We can precompute all pairw beforehand, and reuse it for every gradient descent update

vise
$$< \phi(x^{(j)}), \phi(x^{(i)}) >$$

$$\beta_i := \beta_i + \alpha \left(y^{(i)} \right)$$

Kernel K(x, z) $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$ \mathcal{X} is the space of the input

 $K(x,z) \triangleq \langle \phi(x), \phi(z) \rangle$

 $^{(i)} - \sum_{j=1}^{n} \beta_j \phi(x^{(j)})^T \phi(x^{(i)})$

The Algorithm

• Compute
$$K(\phi(x^{(i)}), \phi(x^{(j)}))$$

• Loop $\beta_i := \beta_i + \alpha \left(y^{(i)} - y^{(i)} \right)$

$K(x^{(i)}, x^{(j)})$, we have

 $= \langle \phi(x^{(i)}), \phi(x^{(j)}) \rangle$ for all *i*, *j*

$$\left(\sum_{j=1}^{n} \beta_j K(x^{(i)}, x^{(j)})\right)$$

$$\forall i \in \{1, \dots, n\}$$

Recall that *n* is the number of data samples

Or in vector notation, letting K be the $n \times n$ matrix with $K_{ij} =$

 $\beta := \beta + \alpha(\vec{y} - K\beta)$

We do not need to explicitly compute θ !

$$\theta^T \phi(x) = \sum_{i=1}^n \beta_i \phi(x^{(i)})^T \phi(x) = \sum_{i=1}^n \beta_i K(x^{(i)}, x)$$

Inference

The Kernel function is all we need for training and inference!

Implicit Feature Map

Do we still need to define feature maps?

K(x, z

What kinds of kernel functions K() can correspond to some feature map ϕ

$$z) \triangleq \langle \phi(x), \phi(z) \rangle$$

$K(x, z) = (x^T z)^2$

What is the feature map to make K a valid kernel function?

$$K(x,z) = \left(\sum_{i=1}^{d} x_i z_i\right) \left(\sum_{j=1}^{d} x_j z_j\right)$$
$$= \sum_{i=1}^{d} \sum_{j=1}^{d} x_i x_j z_i z_j$$
$$= \sum_{i,j=1}^{d} (x_i x_j) (z_i z_j)$$

$x, z \in \mathbb{R}^d$

$$egin{array}{ccccc} x_1 x_1 & & & & x_1 x_2 \ x_1 x_3 & & & & x_2 x_1 \ x_2 x_1 & & & & x_2 x_2 \ x_2 x_3 & & & & x_3 x_1 \ x_3 x_2 & & & & x_3 x_2 \ x_3 x_3 & & & & x_3 x_3 \end{array}$$

Requires O(d^2) compute for feature mapping

Requires O(d) compute for **Kernel function**

 $\phi($

What kinds of functions would make a kernel function?

Infinite dimensions of feature mapping?

Support Vector Machines

Thank You! Q&A