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Recap: Kernel Trick

Kernel K(x,7) X x X — R X is the space of the input

K(z,z) = (¢(z), 6(2))
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Recap: Kernel Trick
Compute K(gb(x(i)), gb(x(j))) = < qb(x(i)), ¢(x(j)) > foralli,j

Loop 52 L= ,Bz ( () _ Zﬁj (Z) (J) ) Vi € {1, - ,n}

Recall that 7 is the
number of data samples

Inference: Z Bid( (Z) Z B.K (z)

The Kernel function is all we need for training and inference!
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Recap: Implicit Feature Map

Explicit Feature Map: first define feature map ¢(x), then compute
the Kernel according to ¢(x)

Implicit Feature Map: first define the Kernel Function K(), without
knowing what the feature map is



Recap: Implicit Feature Map (Example)

K(x,2) = (z' 2)* r,z € R
What is the feature map to make K a valid kernel function?

K(x, z)

d d | L1d1 )
(Z“) (Zf’/’ﬂj) 172 1 Requires O(d”2) compute
i=1 j=1

L1L3 :
vz, | for feature mapping

d d
Z Z L3 jRiRj ¢($) — L2L2

i=1 j=1 L2d3
d zsz; | Requires O(d) compute for

Z(“"i”;j)(zﬂj) L3T2 Kernel function
1,)=1 i XL3L3 _




Recap: What Makes a Valid Kernel

Function: Necessary Condition
Kernel Matrix K;; = K(xW, xV) = p(x N p(xW)

2Kz = ZZZiKijzj
LLZgb () (J)
. LL 2 ) ez gr(z)z;
i k
_ Zzzzszk(ﬂ?(i))%(xm)zj
ki

> (Z zic/)k(w(i)))

k
0.

K is symmetric

K is positive semidefinite
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What Makes a Valid Kernel Function:
Necessary and Sufficient Condition

Theorem (Mercer). Let K : R? x R® — R be given. Then for K
to be a valid (Mercer) kernel, it is necessary and sufficient that for any
{20 .. 2™} (n < 00), the corresponding kernel matrix is symmetric pos-
itive semi-definite.



Recap: Application of Kernel Methods

In generalized linear models (which we have shown)

In support vector machines (which we will show next)

Any learning algorithm that you can write in terms of only <x, z>

Just replace <x, z> with K(x, z), you magically transform the algorithm
to work efficiently in the implicit high dimensional feature space



Support Vector Machines



Confidence in Logistic Regression

A

Separating hyperplane/ Ao p(y) —

decision boglndary % ] + 0"
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New Notations

Consider a binary classification problem, with the input feature x and
y € {—1,1} (instead of {0,1}), the classifier is:

hoo(z) = g(w' = +b).

g(z) =1if 2z > 0, and g(z) = —1
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Functional Margin

Given a training example (x(i),y(i))

Given a training set § = {(x(i),y(i));i =1,....,n}

§= min 40

1=1,....,n

Functional margin changes when rescaling parameters, making it a
bad objective, e.g. when w->2w, b->2b, the functional margin
changes while the separating plane does not really change
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Geometric Margin

What is the geometric margin?
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Geometric Margin

T,.(% T
VORI x()+b:(L> NOB

Generally
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Geometric Margin

Given a training set S = {(x¥, y");i = 1,...,n)

Y = min y(i)

1=1,...,n
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The Optimization Problem

max,,,  1min y(i)

1=1,...,n

st. yQ(wlz® +b) >4, i=1,...,n

Infinite solutions, as ¥ can be at any scale without
changing the classifier

| lw| | is not easy to deal with, non-convex objective
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The Optimization Problem

@ Add constrainty = 1
1

min,, p §H’WHQ

s.t. yP(wlz® +b0)>1, i=1,...,n

Assumption: the training dataset is linearly separable
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Lagrange Duality — Lagrange Multiplier

min, f(w)
S.t. hz('IU) — O, ] = ].,...,l.

Solve w, b
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Lagrange Multiplier: Example

min ox — 3Y
z,Y

s.t. x° 4+ vy = 136
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Generalized Lagrangian

Primal optimization problem
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Generalized Lagrangian

[
‘C’(w a, B _l_ Z azgz _|_ Z 6zhz(w)

Op(w) = max f(w)+ Z a;gi(w) + Z Bihi(w)

Oé,,B - Oy ZO

Op (1) = (w) if w satisfies primal constraints
P77 1 oo otherwise.
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Generalized Lagrangian

Consider this optimization problem

min fp(w) = min max L(w,a,f)
W w o,B:0;>0

It has exactly the same solution as our original problem

p* = min,, Op(w)
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The Dual Problem in Optimization

In optimization, sometimes the primal optimization is hard to
solve, then we may find a related alternative optimization
problem that can be solved more easily, to solve the orignal
problem in an indirect way
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The Dual Problem

Op(a, B) = mmﬁ(w a, [3)

The dual optimization problem

a,g}gfcz()e pl@,f) = agngxwmu}nﬁ(w @, B)

The primal optimization problem

minfp(w) =min max L(w,a )

What is the relation of the two problems?
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The Dual Problem

a,g:laiczomlgnﬁ(w, ,B) < o X (w,a, ) =p

max min f(x,y) < minmax f(z,y)
xT Y Yy L

Under certain conditions: d* =p"  Zero-duality Gap

What are the conditions?
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Slater’s Condition

f(w) and g(w) are convex
h(w) is affine (i.e. linear)

g:(w) are strictly feasible for all i, which means there
exists some w so that g.(w) < O for all i

If slater’s condition holds, then d* = p*

The primal optimization problem of SVM satisfies the slater’s condition
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KKT Conditions

Zero duality gap is sufficient and necessary (i.e. equivalent) to
satisfy KKT Conditions:

[
L(w, o, f) = f(w) + Z cigi(w) + ) _ Biki(w)
1=1

Normal Lagrange
multiplier equations

The original constraints




KKT Conditions

Zero duality gap is sufficient and necessary (i.e. equivalent) to
satisfy KKT Conditions:

[
L(w, o, f) = f(w) + Z cigi(w) + ) _ Biki(w)
1=1

) 0
If al.* > (), then ) 0 Lk
g (w¥) = 0, the inequality ~ gi(w™) < 0, i=1,...,k
is actually equality a" > 0, i1=1,...,k



Thank You!
Q& A
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