

COMP 5212

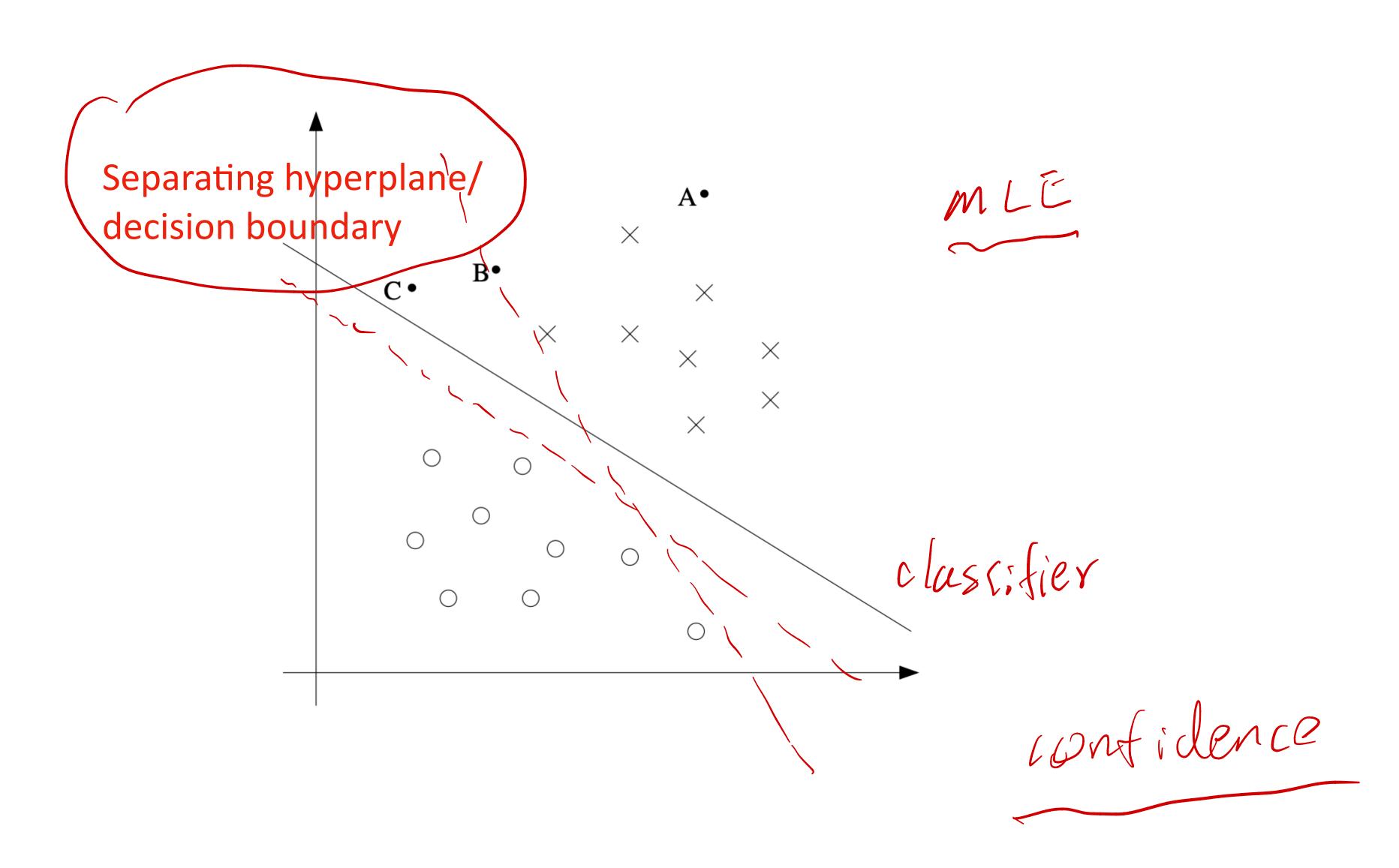
Machine Learning

Lecture 6

Support Vector Machines

Junxian He Sep 24, 2024

Recap: Support Vector Machines



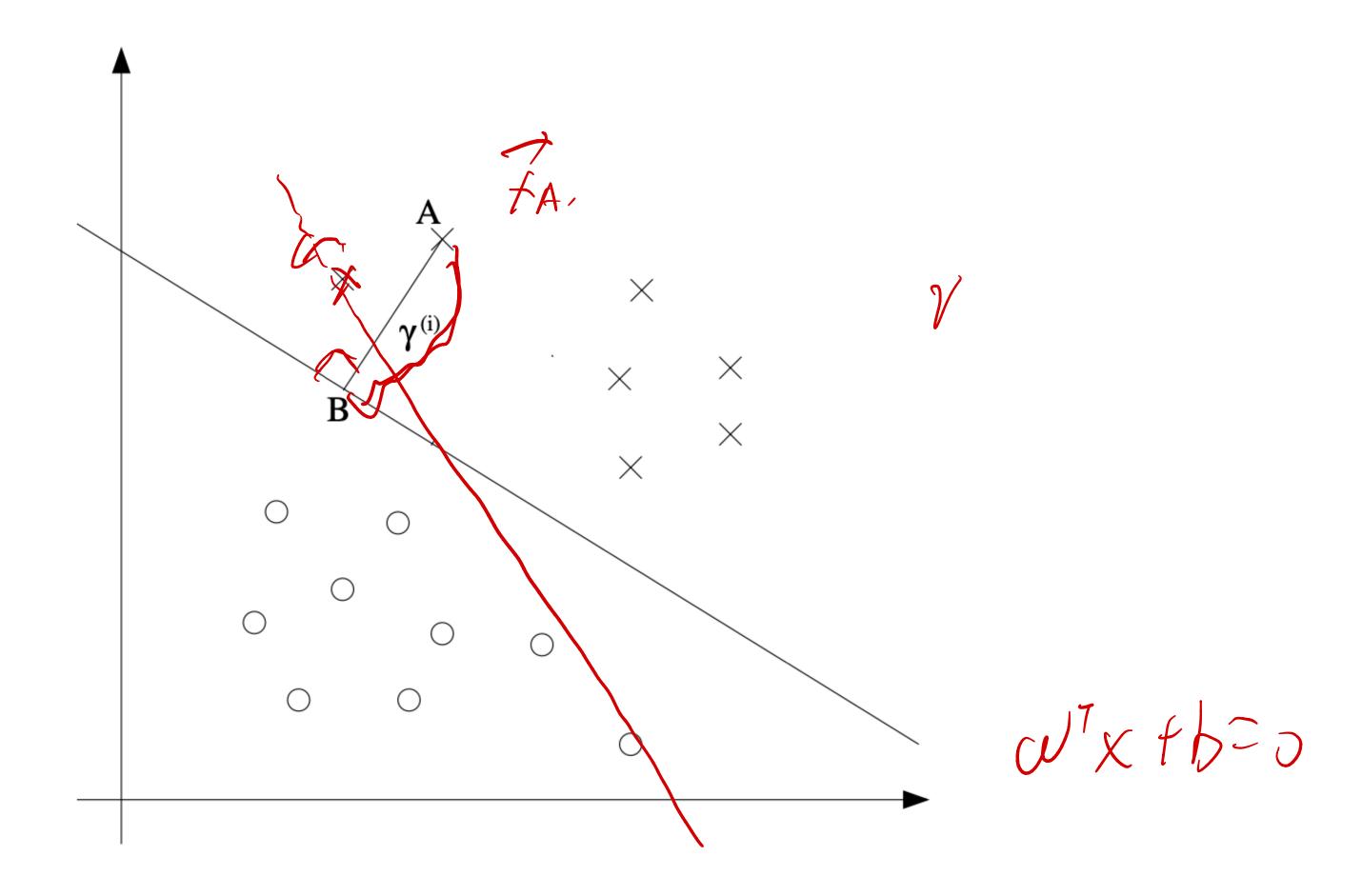
Recap: Notations

Consider a binary classification problem, with the input feature x and $y \in \{-1,1\}$ (instead of $\{0,1\}$), the classifier is:

$$h_{w,b}(x) = g(w^{T}x + b)$$

$$g(z) = 1 \text{ if } z \ge 0, \text{ and } g(z) = -1$$

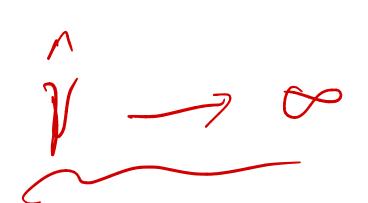
$$f(z) = \int_{-\infty}^{\infty} \int_{-\infty$$

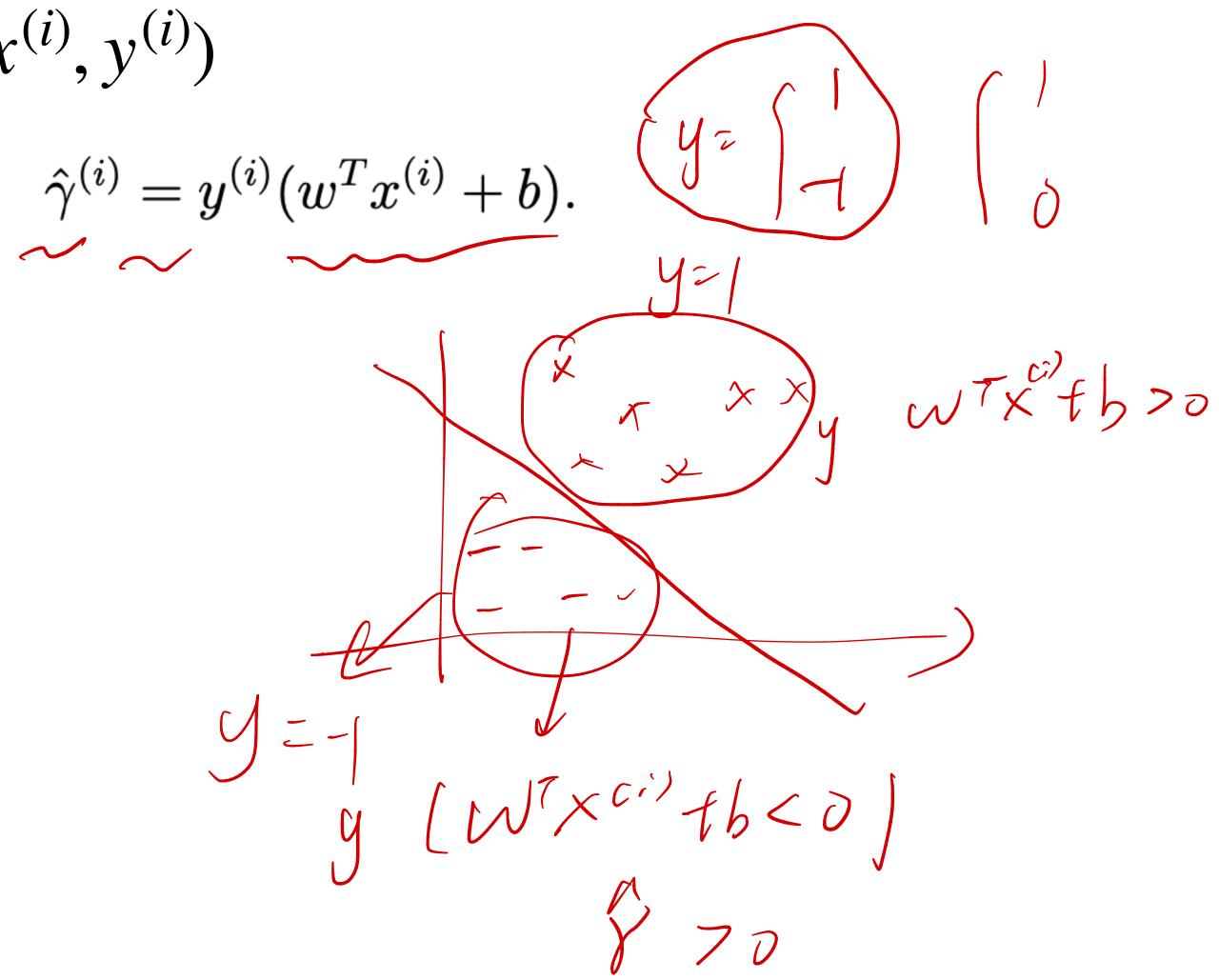


What is the geometric margin?

Recap: Functional Margin

Given a training example $(x^{(i)}, y^{(i)})$





Recap: Functional Margin

Given a training example $(x^{(i)}, y^{(i)})$

$$\hat{\gamma}^{(i)} = y^{(i)}(w^T x^{(i)} + b).$$

Given a training set $S = \{(x^{(i)}, y^{(i)}); i = 1,...,n\}$

$$\hat{\gamma} = \min_{i=1,\dots,n} \hat{\gamma}^{(i)}$$

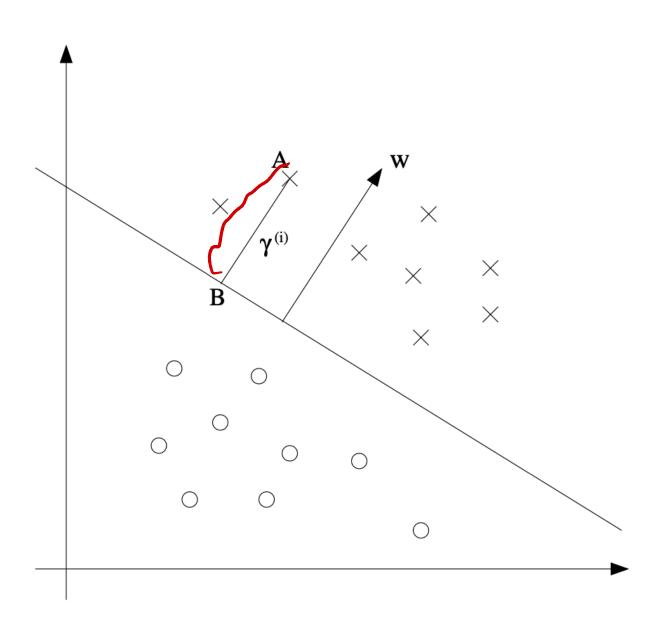
Recap: Functional Margin

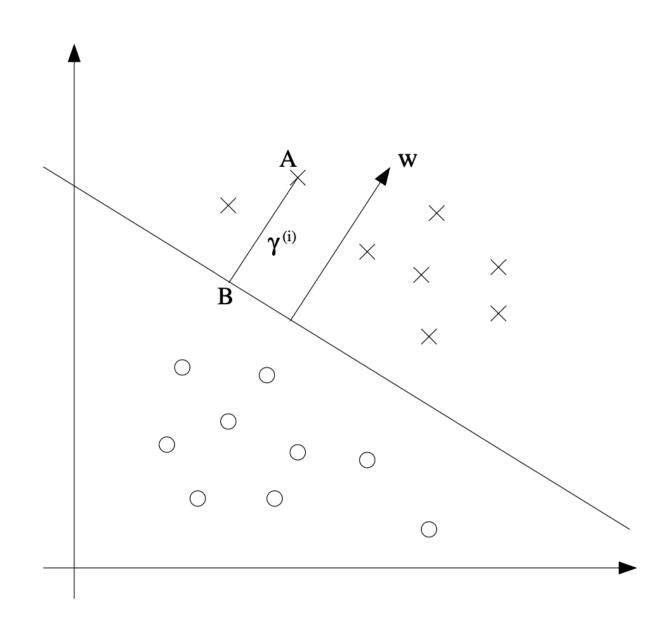
Given a training example $(x^{(i)}, y^{(i)})$

$$\hat{\gamma}^{(i)} = y^{(i)}(w^Tx^{(i)} + b). \quad \text{which is } 0$$
 Given a training set $S = \{(x^{(i)}, y^{(i)}); i = 1, ..., n\}$
$$\hat{\gamma} = \min_{i=1,...,n} \hat{\gamma}^{(i)}$$

$$\hat{\gamma} = \min_{i=1,...,n} \hat{\gamma}^{(i)}$$

Functional margin changes rescaling parameters, making it a bad objective, e.g. when w->2w, b->2b, the functional margin changes while the separating plane does not really change





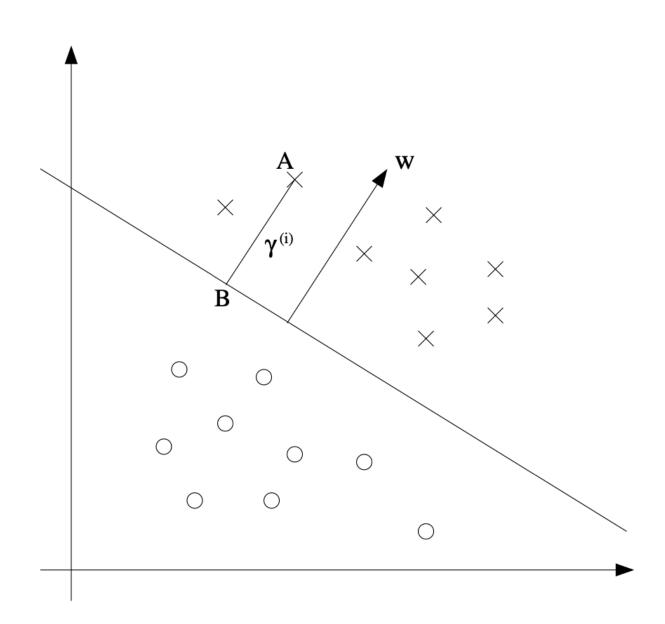
$$w^{T}\left(x^{(i)} - \gamma^{(i)}\frac{w}{||w||}\right) + b = 0.$$



$$w^{T}\left(x^{(i)} - \gamma^{(i)}\frac{w}{||w||}\right) + b = 0.$$

$$\gamma^{(i)} = \frac{w^T x^{(i)} + b}{||w||} = \left(\frac{w}{||w||}\right)^T x^{(i)} + \frac{b}{||w||}$$

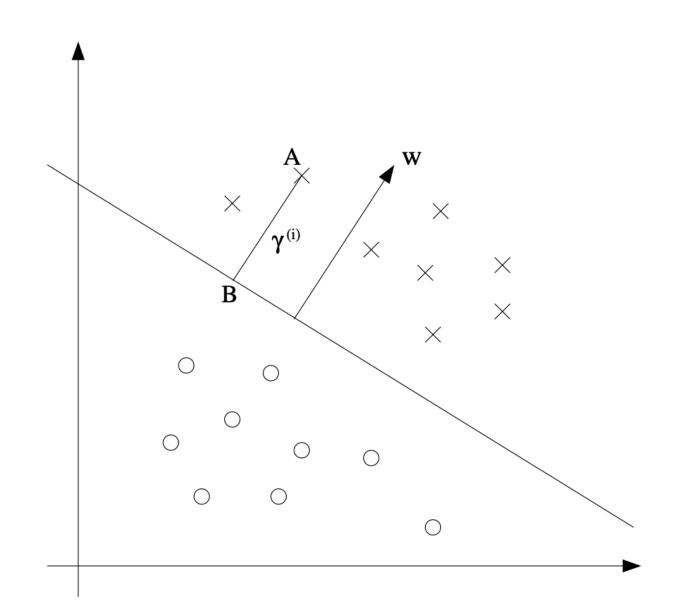
WTX Th II WI



$$w^{T}\left(x^{(i)} - \gamma^{(i)}\frac{w}{||w||}\right) + b = 0.$$

$$\gamma^{(i)} = \frac{w^T x^{(i)} + b}{||w||} = \left(\frac{w}{||w||}\right)^T x^{(i)} + \frac{b}{||w||}$$

Generally



$$w^{T}\left(x^{(i)} - \gamma^{(i)}\frac{w}{||w||}\right) + b = 0.$$

$$\gamma^{(i)} = \frac{w^T x^{(i)} + b}{||w||} = \left(\frac{w}{||w||}\right)^T x^{(i)} + \frac{b}{||w||}$$

Generally

$$\gamma^{(i)} = y^{(i)} \left(\left(\frac{w}{||w||} \right)^T x^{(i)} + \frac{b}{||w||} \right)$$

$$= \frac{\gamma^{(i)}}{||w||}$$

$$= \frac{1}{||w||}$$

Given a training set $S = \{(x^{(i)}, y^{(i)}); i = 1,...,n\}$

$$\gamma = \min_{i=1,\dots,n} \gamma^{(i)}$$

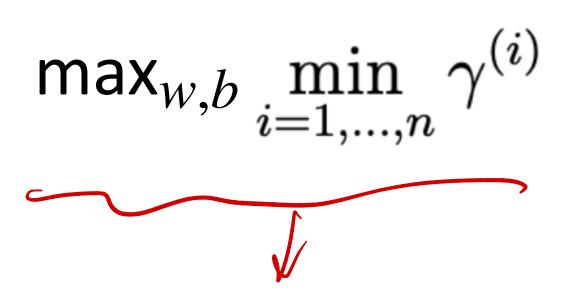
$$\gamma = \min_{i=1,\dots,n} \gamma^{(i)}$$

$$\gamma = \max_{i=1,\dots,n} \gamma^{(i)}$$

$$\gamma = \min_{i=1,\dots,n} \gamma^{(i)}$$

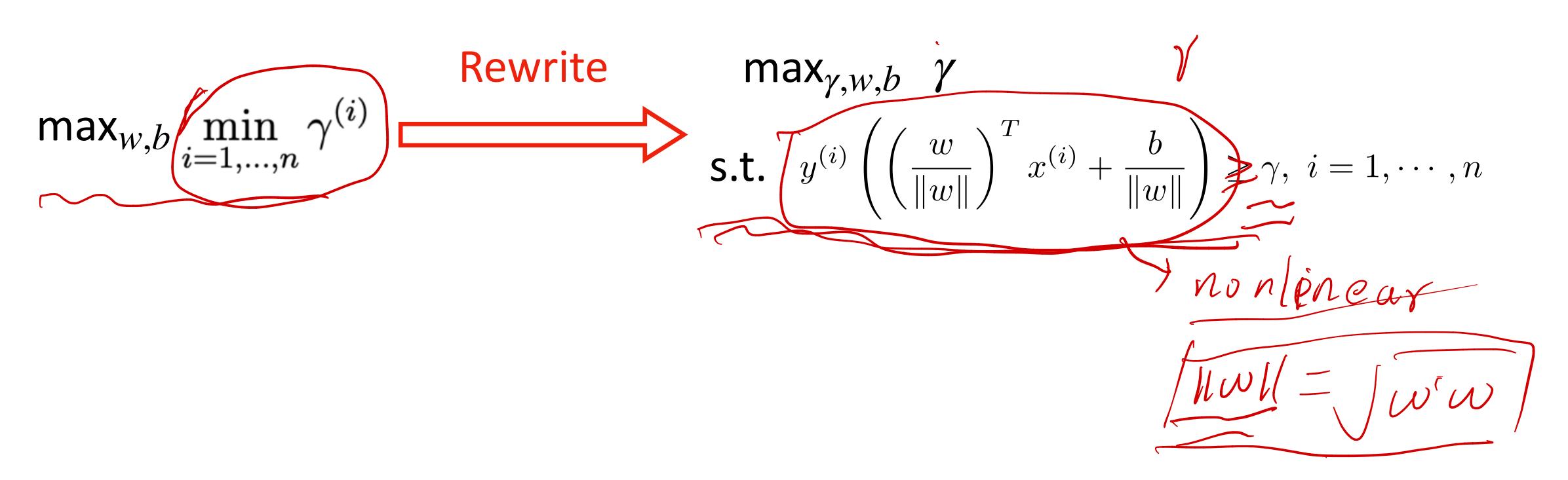
Infinite solutions, as $\hat{\gamma}$ can be at any scale without changing the classifier

Infinite solutions, as $\hat{\gamma}$ can be at any scale without changing the classifier ||w|| is not easy to deal with, non-convex objective



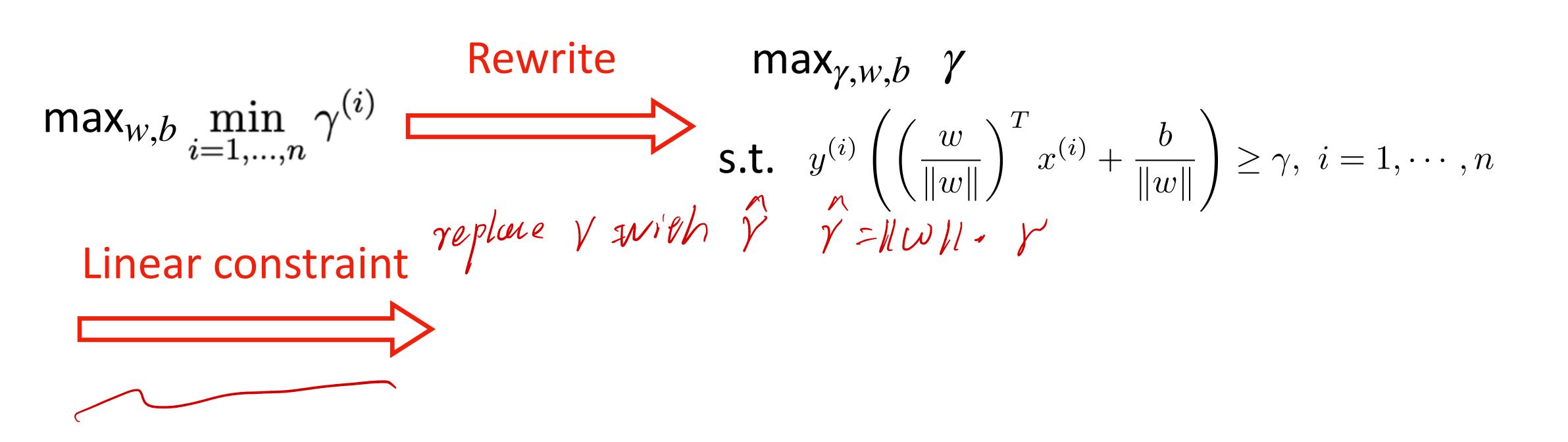
Infinite solutions, as $\hat{\gamma}$ can be at any scale without changing the classifier

| | w | | is not easy to deal with, non-convex objective



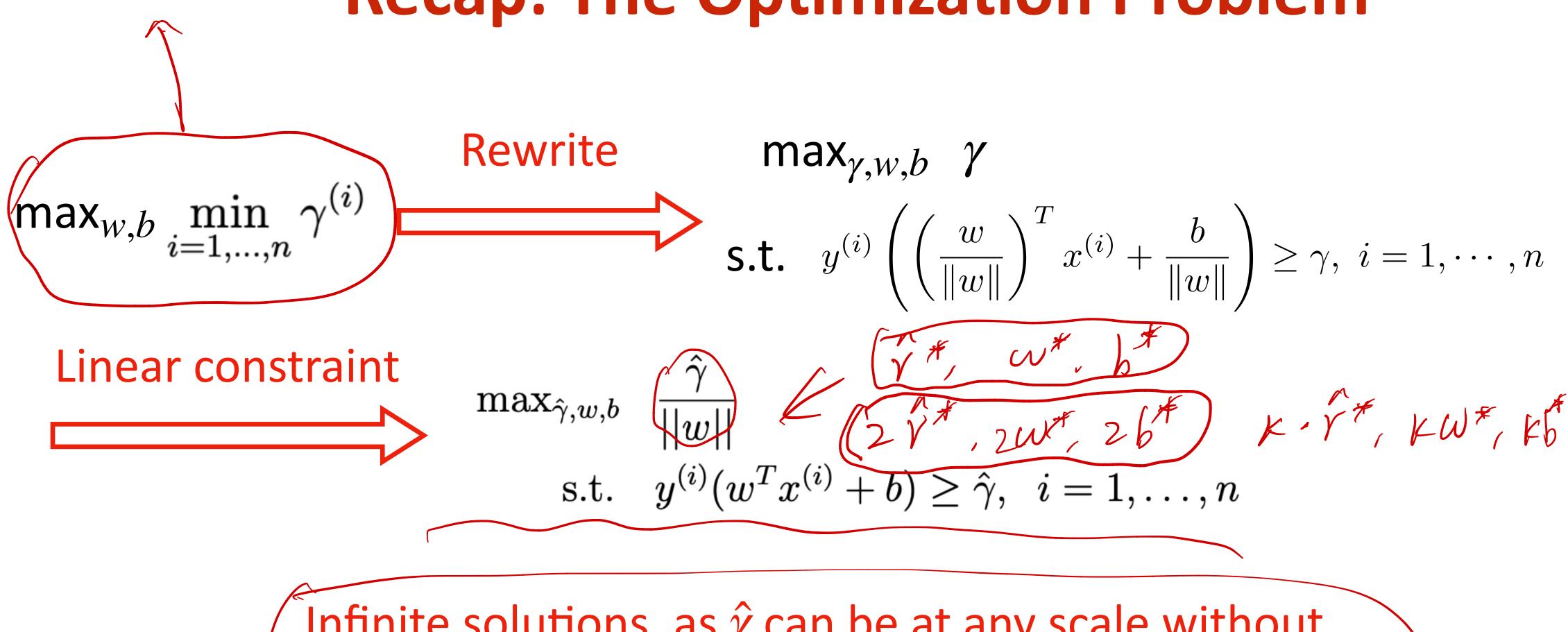
Infinite solutions, as $\hat{\gamma}$ can be at any scale without changing the classifier

| | w | | is not easy to deal with, non-convex objective



Infinite solutions, as $\hat{\gamma}$ can be at any scale without changing the classifier

| | w | is not easy to deal with, non-convex objective



Infinite solutions, as $\hat{\gamma}$ can be at any scale without changing the classifier

([w]) is not easy to deal with, non-convex objective

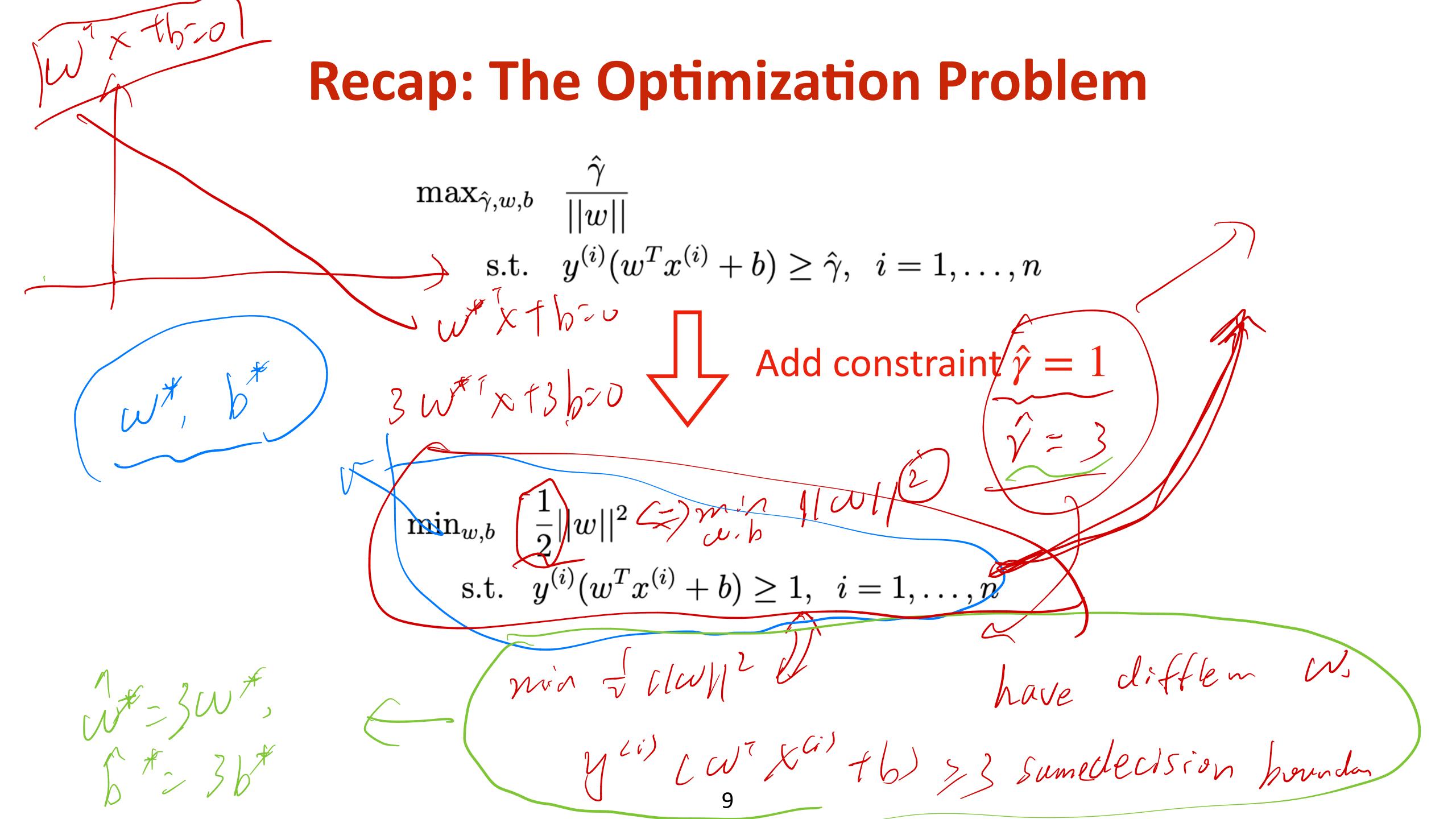
$$\max_{\hat{\gamma},w,b} \frac{\hat{\gamma}}{||w||}$$
s.t. $y^{(i)}(w^Tx^{(i)}+b) \geq \hat{\gamma}$, $i=1,\ldots,n$

$$y^{(i)}(w^Tx^{(i)}+b) \geq \hat{\gamma}$$

$$\max_{\hat{\gamma},w,b} \frac{\hat{\gamma}}{||w||}$$
s.t. $y^{(i)}(w^Tx^{(i)}+b) \geq \hat{\gamma}, i=1,\ldots,n$

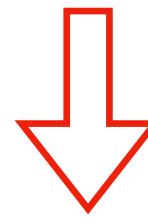
$$\text{Add constraint } \hat{\gamma} = 1$$

$$\text{w.b. } \text{itwil}, \text{itwil} \text{i$$



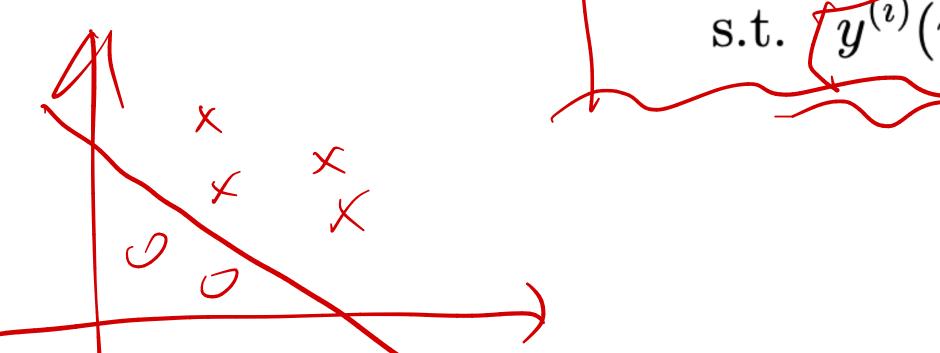
$$\max_{\hat{\gamma}, w, b} \frac{\hat{\gamma}}{||w||}$$
s.t. $y^{(i)}(w^T x^{(i)} + b) \ge \hat{\gamma}, \quad i = 1, \dots, n$

assumption: dataset is lineary se parable

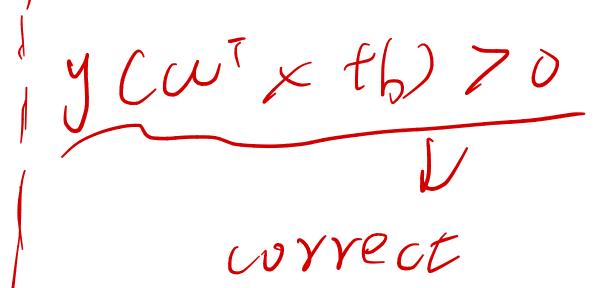


Add constraint $\hat{\gamma} = 1$

This is a standard quadratic program problem that can be directly solved with quadratic problem solvers



11 near



1. Objective Support rector machines 2. Tearning methods Variational AE) same model
4ANS model + learn in olyonithm

Recap: The Optimization Problem
$$(x, x^{(i)}, x^{(i)})$$
 $\max_{\hat{\gamma}, w, b} \frac{\hat{\gamma}}{||w||}$ $\text{s.t.} \quad y^{(i)}(w^Tx^{(i)} + b) \geq \hat{\gamma}, \quad i = 1, \dots, n$

Add constraint $\hat{\gamma}=1$ This is a standard quadratic problem that can be directly so with quadratic problem solvers s.t. $y^{(i)}(w^Tx^{(i)}+b) \geq 1, \ i=1,\ldots,n$

problem that can be directly solved

Assumption: the training dataset is linearly separable

The Dual Problem in Optimization

In optimization, sometimes the primal optimization is hard to solve, then we may find a related alternative optimization problem that can be solved more easily, to solve the orignal problem in an indirect way

Quadratic Program

Quadratic Program

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1, i = 1, \dots, n$

Quadratic Program

$$\min_{w,b} \quad \frac{1}{2} ||w||^2$$

s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1, \quad i = 1, \dots, n$

This is already a standard convex opt problem that is ready to be solved, why are we doing all the rest of things?

$$\min_{w} f(w)$$
s.t. $h_i(w) = 0, i = 1, \dots, l.$

$$\min_{w} f(w)$$
 $\text{s.t.} \ h_i(w) = 0, \ i = 1, \dots, l.$

$$\mathcal{L}(w, \beta) = f(w) + \sum_{i=1}^{l} \beta_i h_i(w) \qquad \text{w. } \beta,$$

$$\text{dual}$$

$$\min_{w} f(w)$$
 $\mathrm{s.t.} \ \ h_i(w) = 0, \ \ i = 1, \ldots, l.$
 $\mathcal{L}(w, \beta) = f(w) + \sum_{i=1}^{l} \beta_i h_i(w)$

Solve w, β

$$rac{\partial \mathcal{L}}{\partial w_i} = 0; \left(rac{\partial \mathcal{L}}{\partial eta_i} = 0,
ight)$$

Lagrange Multiplier: Example

$$\min_{x,y} \underbrace{5x - 3y}_{x,y}$$

s.t.
$$x^2 + y^2 = 136$$

$$\frac{\partial L}{\partial x} = 5 + 2x\beta = 0$$

$$\frac{\partial L}{\partial \beta} = x^4 y^2 - 130$$

Primal optimization problem

$$\min_{w} f(w) > S \text{ (w) } f(w) + f(w) = 1, \dots, k$$

$$\text{S.t. } f(w) = 0, i = 1, \dots, k$$



Primal optimization problem

$$\min_{w} f(w)$$

s.t. $g_i(w) \leq 0, i = 1, ..., k$
 $h_i(w) = 0, i = 1, ..., l.$

$$\mathcal{L}(w, \alpha, \beta) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

$$\mathcal{L}(w,\alpha,\beta) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

$$\mathcal{L}(w, \alpha, \beta) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

$$\theta_{\mathcal{P}}(w) = \max_{\alpha, \beta : \alpha_i \ge 0} f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

$$\mathcal{L}(w, \alpha, \beta) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

h; (w) 70

$$\mathcal{L}(w,\alpha,\beta) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w) / \sum_{i=1}^{l} \beta_i h_i(w)$$

$$heta_{\mathcal{P}}(w) = \max_{\alpha,\beta: \alpha_i \geq 0} f(w) + \sum_{i=1}^k \alpha_i g_i(w) + \sum_{i=1}^l \beta_i h_i(w)$$

$$g(\omega) \leq 0$$

$$h(\omega) = 0$$

$$\theta_{\mathcal{P}}(w) = \begin{cases} f(w) & \text{if } w \text{ satisfies primal constraints} \\ \infty & \text{otherwise.} \end{cases}$$

Consider this optimization problem

$$\min_{w} \theta_{\mathcal{P}}(w) = \min_{w} \max_{\alpha, \beta : \alpha_i \geq 0} \mathcal{L}(w, \alpha, \beta)$$

Consider this optimization problem

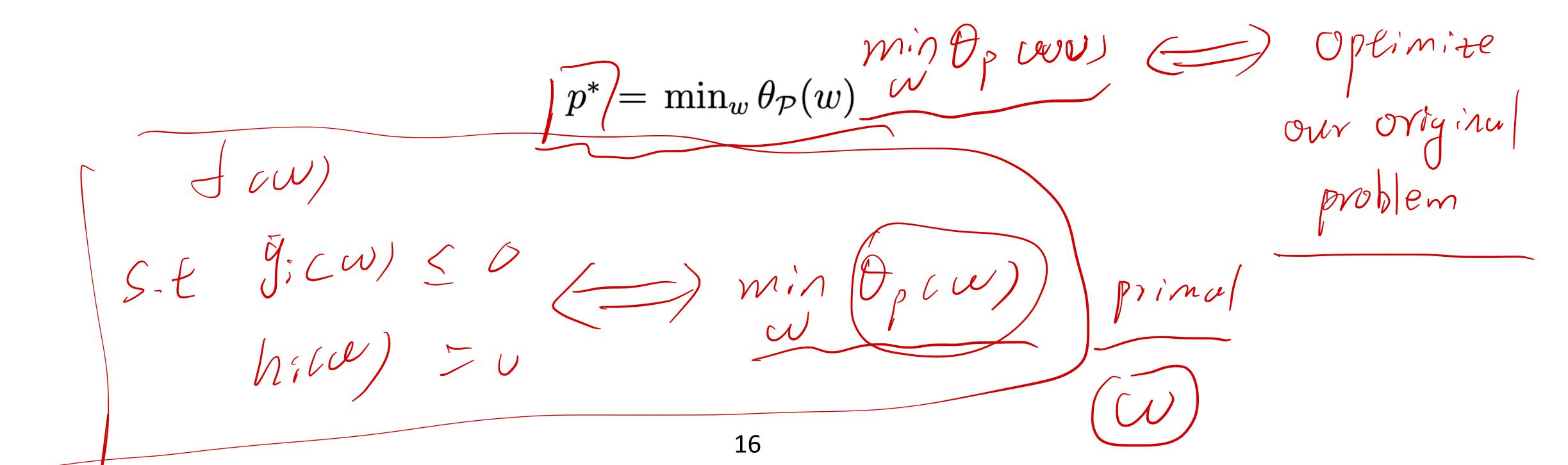
$$\lim_{w} \theta_{\mathcal{P}}(w) = \lim_{w} \max_{\alpha,\beta \ : \ \alpha_{i} \ge 0} \mathcal{L}(w,\alpha,\beta)$$

It has exactly the same solution as our original problem

Consider this optimization problem

$$\min_{w} \theta_{\mathcal{P}}(w) = \min_{w} \max_{\alpha,\beta: \alpha_i \geq 0} \mathcal{L}(w, \alpha, \beta)$$

It has exactly the same solution as our original problem



The Dual Problem in Optimization

In optimization, sometimes the primal optimization is hard to solve, then we may find a related alternative optimization problem that can be solved more easily, to solve the original problem in an indirect way

$$\theta_{\mathcal{D}}(\alpha,\beta) = \overline{\min_{w} \mathcal{L}(w,\alpha,\beta)}$$

$$\theta_{\mathcal{D}}(\alpha, \beta) = \min_{w} \mathcal{L}(w, \alpha, \beta)$$

$$\max_{\alpha,\beta:\alpha_i\geq 0}\theta_{\mathcal{D}}(\alpha,\beta) = \max_{\alpha,\beta:\alpha_i\geq 0} \min_{w} \mathcal{L}(w,\alpha,\beta)$$

$$\theta_{\mathcal{D}}(\alpha, \beta) = \min_{w} \mathcal{L}(w, \alpha, \beta)$$

The dual optimization problem
$$\max_{\alpha,\beta:\alpha_i\geq 0}\theta_{\mathcal{D}}(\alpha,\beta) = \max_{\alpha,\beta:\alpha_i\geq 0}\min_{w}\mathcal{L}(w,\alpha,\beta)$$
 The primal optimization problem
$$\min_{w}\theta_{\mathcal{P}}(w) = \min_{w}\max_{\alpha,\beta:\alpha_i\geq 0}\mathcal{L}(w,\alpha,\beta)$$

$$\min_{w}\theta_{\mathcal{P}}(w) = \min_{w}\max_{\alpha,\beta:\alpha_i\geq 0}\mathcal{L}(w,\alpha,\beta)$$

$$\min_{w}\theta_{\mathcal{P}}(w) = \min_{w}\max_{\alpha,\beta:\alpha_i\geq 0}\mathcal{L}(w,\alpha,\beta)$$

$$\theta_{\mathcal{D}}(\alpha, \beta) = \min_{w} \mathcal{L}(w, \alpha, \beta)$$

The dual optimization problem

$$\max_{\alpha,\beta:\alpha_i\geq 0}\theta_{\mathcal{D}}(\alpha,\beta) = \max_{\alpha,\beta:\alpha_i\geq 0}\min_{w}\mathcal{L}(w,\alpha,\beta)$$

The primal optimization problem

$$\min_{w} \theta_{\mathcal{P}}(w) = \min_{w} \max_{\alpha, \beta : \alpha_i \geq 0} \mathcal{L}(w, \alpha, \beta)$$

=) 5.t. ____

What is the relation of the two problems?

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \alpha_i \left[y^{(i)}(w^T x^{(i)} + b) - 1 \right]$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \alpha_i \left[y^{(i)}(w^T x^{(i)} + b) - 1 \right]$$

$$\max_{\alpha,\beta:\,\alpha_i\geq 0}\theta_{\mathcal{D}}(\alpha,\beta) = \max_{\alpha,\beta:\,\alpha_i\geq 0}\min_{w}\mathcal{L}(w,\alpha,\beta)$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \alpha_i \left[y^{(i)}(w^T x^{(i)} + b) - 1 \right]$$

$$\max_{\alpha,\beta:\alpha_i\geq 0} \theta_{\mathcal{D}}(\alpha,\beta) = \max_{\alpha,\beta:\alpha_i\geq 0} \min_{w} \mathcal{L}(w,\alpha,\beta)$$

$$\nabla_w \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)} = 0$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \alpha_i \left[y^{(i)}(w^T x^{(i)} + b) - 1 \right]$$

$$\max_{\alpha,\beta:\,\alpha_i\geq 0}\theta_{\mathcal{D}}(\alpha,\beta) = \max_{\alpha,\beta:\,\alpha_i\geq 0} \min_{w} \mathcal{L}(w,\alpha,\beta)$$

$$\nabla_w \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)} = 0$$
 $w = \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)}$

 $\mathcal{L}(w,b,lpha)=rac{1}{2}||w||^2-\sum_{i=1}^nlpha_i\left[y^{(i)}(w^Tx^{(i)}+b)
ight.$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^n \alpha_i \left[y^{(i)}(w^T x^{(i)} + b) - \frac{1}{2} \right]$$

$$\max_{\alpha,\beta:\,\alpha_i\geq 0}\theta_{\mathcal{D}}(\alpha,\beta) = \max_{\alpha,\beta:\,\alpha_i\geq 0}\min_{w}\mathcal{L}(w,\alpha,\beta)$$

$$abla_w \mathcal{L}(w,b,lpha) = w - \sum_{i=1}^n lpha_i y^{(i)} x^{(i)} = 0$$

$$\qquad \qquad w = \sum_{i=1}^n lpha_i y^{(i)} x^{(i)}$$

$$w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$$

$$\frac{\partial}{\partial b} \mathcal{L}(w, b, \alpha) = \sum_{i=1}^{n} \alpha_i y^{(i)} = 0$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^{n} \alpha_i \left[y^{(i)}(w^T x^{(i)} + b) - 1 \right]$$

$$\max_{\alpha,\beta:\,\alpha_i\geq 0}\theta_{\mathcal{D}}(\alpha,\beta) = \max_{\alpha,\beta:\,\alpha_i\geq 0}\min_{w}\mathcal{L}(w,\alpha,\beta)$$

$$\nabla_w \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)} = 0 \qquad w = \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)} \qquad \frac{\partial}{\partial b} \mathcal{L}(w, b, \alpha) = \sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$\theta(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y^{(i)} y^{(j)} \alpha_i \alpha_j (x^{(i)})^T x^{(j)}$$

$$\eta \alpha \gamma \qquad \theta(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y^{(i)} y^{(j)} \alpha_i \alpha_j (x^{(i)})^T x^{(j)}$$
s.t. $\alpha_i \ge 0, \quad i = 1, \dots, n$

$$\theta(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y^{(i)} y^{(j)} \alpha_i \alpha_j (x^{(i)})^T x^{(j)}$$

s.t.
$$\alpha_i \ge 0, i = 1, ..., n$$

$$\nabla_w \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)} = 0$$

$$\theta(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y^{(i)} y^{(j)} \alpha_i \alpha_j (x^{(i)})^T x^{(j)}$$

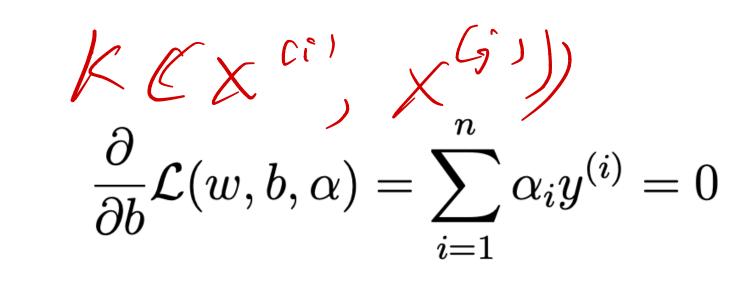
s.t.
$$\alpha_i \ge 0, i = 1, ..., n$$

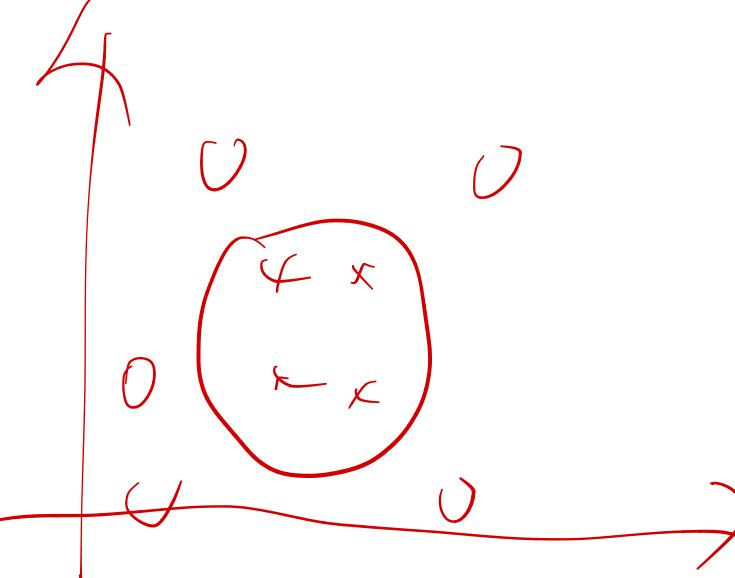
$$\nabla_w \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)} = 0$$
 $w = \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)}$

$$\theta(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y^{(i)} y^{(j)} \alpha_i \alpha_j (x^{(i)})^T x^{(j)}$$

s.t.
$$\alpha_i \ge 0, i = 1, ..., n$$

$$\nabla_{w}\mathcal{L}(w,b,\alpha) = w - \sum_{i=1}^{n} \alpha_{i} y^{(i)} x^{(i)} = 0 \qquad w = \sum_{i=1}^{n} \alpha_{i} y^{(i)} x^{(i)} \qquad \frac{\partial}{\partial b} \mathcal{L}(w,b,\alpha) = \sum_{i=1}^{n} \alpha_{i} y^{(i)} = 0$$





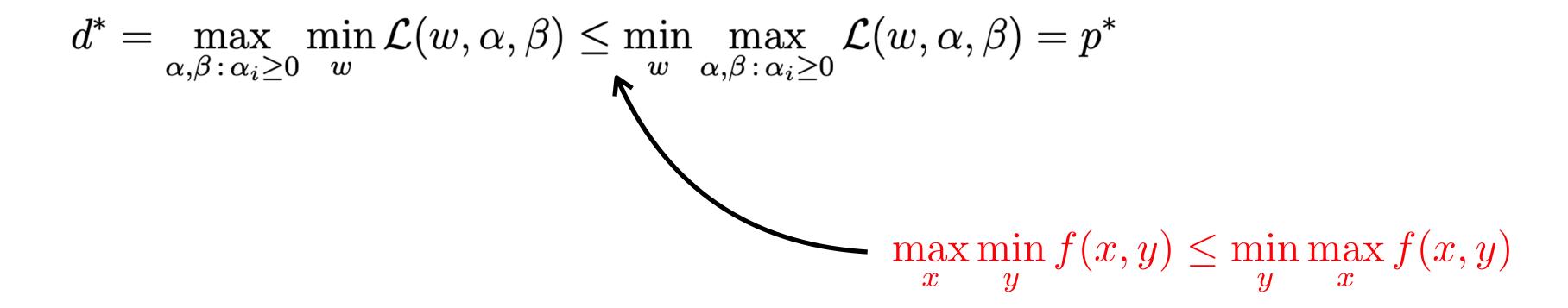
$$\theta(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y^{(i)} y^{(j)} \alpha_i \alpha_j (x^{(i)})^T x^{(j)}$$

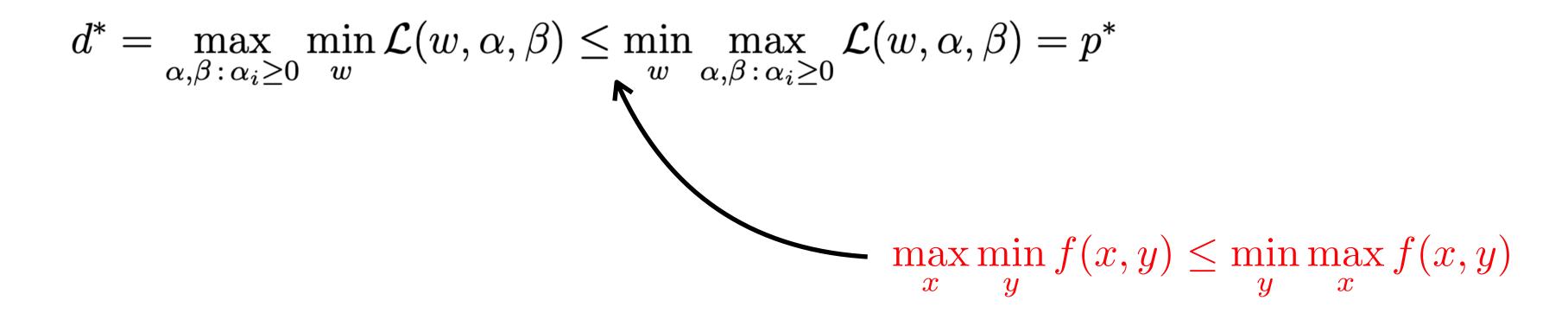
s.t.
$$\alpha_i \ge 0, i = 1, ..., n$$

$$\nabla_{w} \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^{n} \alpha_{i} y^{(i)} x^{(i)} = 0 \qquad w = \sum_{i=1}^{n} \alpha_{i} y^{(i)} x^{(i)} \qquad \frac{\partial}{\partial b} \mathcal{L}(w, b, \alpha) = \sum_{i=1}^{n} \alpha_{i} y^{(i)} = 0$$

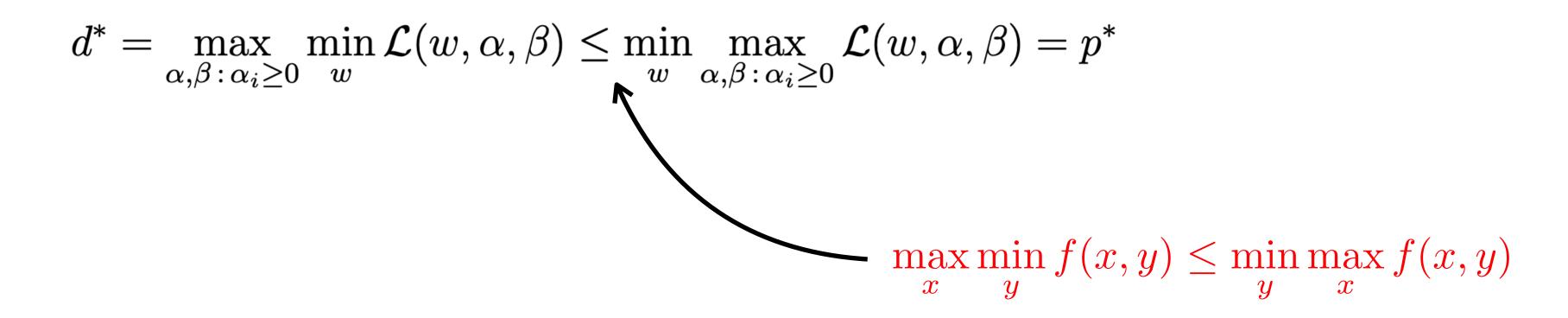
What is the relation between solving this dual problem and solving the original problem

$$d^* = \max_{\alpha,\beta: \alpha_i \ge 0} \min_{w} \mathcal{L}(w, \alpha, \beta) \le \min_{w} \max_{\alpha,\beta: \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta) = p^*$$

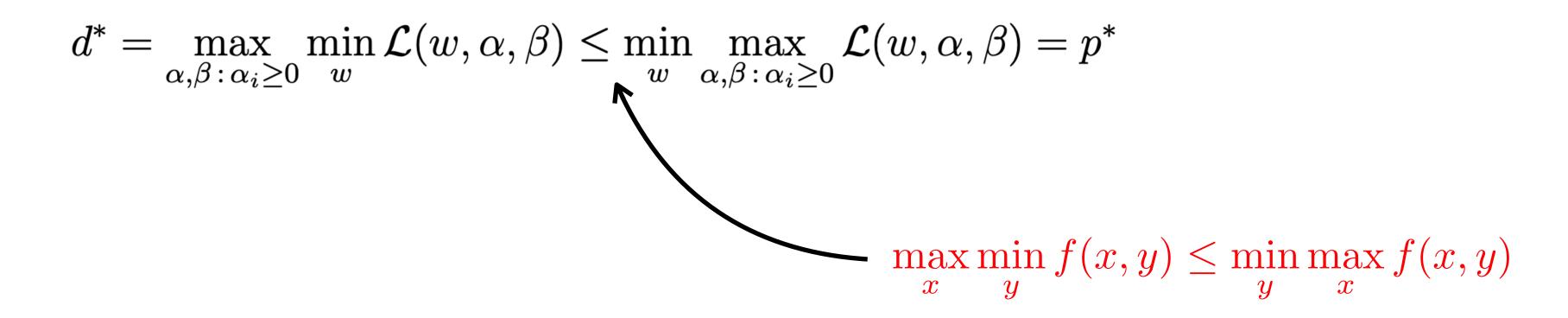




Under certain conditions: $d^* = p^*$



Under certain conditions: $d^* = p^*$ Zero-duality Gap



Under certain conditions: $d^* = p^*$ Zero-duality Gap

What are the conditions?

$$\min_{w} f(w)$$

s.t. $g_{i}(w) \leq 0, i = 1, ..., k$
 $h_{i}(w) = 0, i = 1, ..., l.$

$$\min_{w} f(w)$$

s.t. $g_i(w) \leq 0, i = 1, ..., k$
 $h_i(w) = 0, i = 1, ..., l.$

- f(w) and g(w) are convex
- $h_i(w)$ is affine (i.e. linear)
- $g_i(w)$ are strictly feasible for all i, which means there exists some w so that $g_i(w) < 0$ for all i

$$\min_{w} f(w)$$

s.t. $g_{i}(w) \leq 0, i = 1, ..., k$
 $h_{i}(w) = 0, i = 1, ..., l.$

- f(w) and g(w) are convex
- $h_i(w)$ is affine (i.e. linear)
- $g_i(w)$ are strictly feasible for all i, which means there exists some w so that $g_i(w) < 0$ for all i

If slater's condition holds, then $d^* = p^*$

$$\min_{w} f(w)$$

s.t. $g_{i}(w) \leq 0, i = 1, ..., k$
 $h_{i}(w) = 0, i = 1, ..., l.$

- f(w) and g(w) are convex
- $h_i(w)$ is affine (i.e. linear)
- $g_i(w)$ are strictly feasible for all i, which means there exists some w so that $g_i(w) < 0$ for all i

If slater's condition holds, then $d^* = p^*$

The primal optimization problem of SVM satisfies the slater's condition

$$\mathcal{L}(w,\alpha,\beta) = f(w) + \sum_{i=1}^{\infty} \alpha_i g_i(w) + \sum_{i=1}^{\infty} \beta_i h_i(w)$$

$$\mathcal{L}(w, \alpha, \beta) = f(w) + \sum_{i=1} \alpha_i g_i(w) + \sum_{i=1} \beta_i h_i(w)$$

$$\frac{\partial}{\partial w_i} \mathcal{L}(w^*, \alpha^*, \beta^*) = 0, \quad i = 1, \dots, d$$

$$\frac{\partial}{\partial \beta_i} \mathcal{L}(w^*, \alpha^*, \beta^*) = 0, \quad i = 1, \dots, l$$

$$\alpha_i^* g_i(w^*) = 0, \quad i = 1, \dots, k$$

$$g_i(w^*) \leq 0, \quad i = 1, \dots, k$$

$$\alpha^* \geq 0, \quad i = 1, \dots, k$$

Denote the solution to the primal problem as w^* , the solution to the dual problem as α^*, β^* , then zero duality gap is sufficient and necessary (i.e. equivalent) to satisfy KKT Conditions:

$$\mathcal{L}(w,\alpha,\beta) = f(w) + \sum_{i=1}^{\infty} \alpha_i g_i(w) + \sum_{i=1}^{\infty} \beta_i h_i(w)$$

$$\frac{\partial}{\partial w_i} \mathcal{L}(w^*, \alpha^*, \beta^*) = 0, \quad i = 1, \dots, d$$

$$\frac{\partial}{\partial \beta_i} \mathcal{L}(w^*, \alpha^*, \beta^*) = 0, \quad i = 1, \dots, l$$

$$\alpha_i^* g_i(w^*) = 0, \quad i = 1, \dots, k$$

Normal Lagrange multiplier equations

$$\alpha^* \geq 0, i = 1, \dots, k$$

 $g_i(w^*) \leq 0, i = 1, \ldots, k$

Denote the solution to the primal problem as w^* , the solution to the dual problem as α^* , β^* , then zero duality gap is sufficient and necessary (i.e. equivalent) to satisfy KKT Conditions:

$$\mathcal{L}(w,\alpha,\beta) = f(w) + \sum_{i=1}^{\infty} \alpha_i g_i(w) + \sum_{i=1}^{\infty} \beta_i h_i(w)$$

$$\frac{\partial}{\partial w_i} \mathcal{L}(w^*, \alpha^*, \beta^*) = 0, \quad i = 1, \dots, d
\frac{\partial}{\partial \beta_i} \mathcal{L}(w^*, \alpha^*, \beta^*) = 0, \quad i = 1, \dots, l$$

Normal Lagrange multiplier equations

$$\alpha_i^* g_i(w^*) = 0, \quad i=1,\ldots,k$$
 $g_i(w^*) \leq 0, \quad i=1,\ldots,k$ The original constraints $\alpha^* \geq 0, \quad i=1,\ldots,k$

$$\mathcal{L}(w, \alpha, \beta) = f(w) + \sum_{i=1}^{\infty} \alpha_i g_i(w) + \sum_{i=1}^{\infty} \beta_i h_i(w)$$

$$\frac{\partial}{\partial w_i} \mathcal{L}(w^*, \alpha^*, \beta^*) = 0, \quad i = 1, \dots, d$$

$$\frac{\partial}{\partial \beta_i} \mathcal{L}(w^*, \alpha^*, \beta^*) = 0, \quad i = 1, \dots, l$$

$$\alpha_i^* g_i(w^*) = 0, \quad i = 1, \dots, k$$

$$g_i(w^*) \leq 0, \quad i = 1, \dots, k$$

$$\alpha^* \geq 0, \quad i = 1, \dots, k$$

Denote the solution to the primal problem as w^* , the solution to the dual problem as α^*, β^* , then zero duality gap is sufficient and necessary (i.e. equivalent) to satisfy KKT Conditions:

$$\mathcal{L}(w,\alpha,\beta) = f(w) + \sum_{i=1}^{\infty} \alpha_i g_i(w) + \sum_{i=1}^{\infty} \beta_i h_i(w)$$

$$\frac{\partial}{\partial w_i} \mathcal{L}(w^*, \alpha^*, \beta^*) = 0, \quad i = 1, \dots, d$$

$$\frac{\partial}{\partial \beta_i} \mathcal{L}(w^*, \alpha^*, \beta^*) = 0, \quad i = 1, \dots, l$$
 If $\alpha_i^* > 0$, then
$$\alpha_i^* g_i(w^*) = 0, \quad i = 1, \dots, k$$
 $g_i(w^*) = 0$, the inequality $g_i(w^*) \leq 0, \quad i = 1, \dots, k$

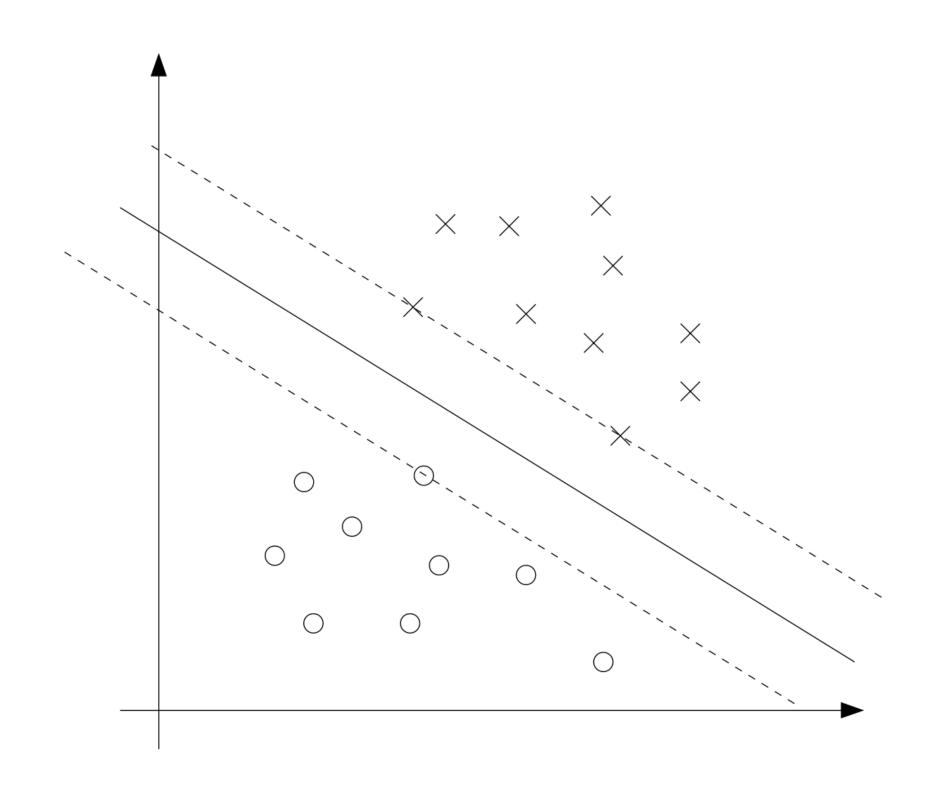
$$\alpha_i^* g_i(w^*) = 0, \quad i = 1, \dots, k$$

is actually equality

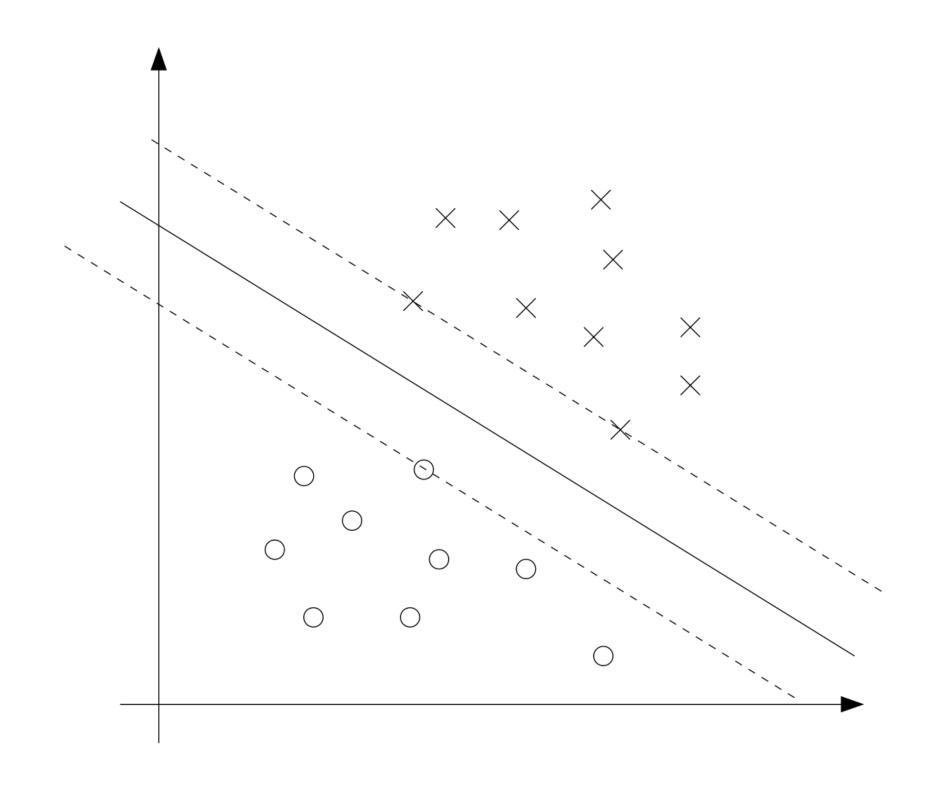
$$\alpha^* \geq 0, i = 1, \dots, k$$

$$\alpha_i^* g_i(w^*) = 0, \quad i = 1, \dots, k$$

$$\alpha_i^* g_i(w^*) = 0, \quad i = 1, \dots, k$$



$$\alpha_i^* g_i(w^*) = 0, \quad i = 1, \dots, k$$



Only the 3 points have non-zero α_i , and they are called supporting vectors

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^{n} \alpha_i \left[y^{(i)}(w^T x^{(i)} + b) - 1 \right]$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \alpha_i \left[y^{(i)}(w^T x^{(i)} + b) - 1 \right]$$

$$\max_{\alpha,\beta:\alpha_i\geq 0}\theta_{\mathcal{D}}(\alpha,\beta) = \max_{\alpha,\beta:\alpha_i\geq 0}\min_{w}\mathcal{L}(w,\alpha,\beta)$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^{n} \alpha_i \left[y^{(i)}(w^T x^{(i)} + b) - 1 \right]$$

$$\max_{\alpha,\beta:\alpha_i\geq 0} \theta_{\mathcal{D}}(\alpha,\beta) = \max_{\alpha,\beta:\alpha_i\geq 0} \min_{w} \mathcal{L}(w,\alpha,\beta)$$

$$\nabla_w \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)} = 0$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \alpha_i \left[y^{(i)}(w^T x^{(i)} + b) - 1 \right]$$

$$\max_{\alpha,\beta:\alpha_i\geq 0} \theta_{\mathcal{D}}(\alpha,\beta) = \max_{\alpha,\beta:\alpha_i\geq 0} \min_{w} \mathcal{L}(w,\alpha,\beta)$$

$$\nabla_w \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)} = 0$$
 $w = \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)}$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^{n} \alpha_i \left[y^{(i)}(w^T x^{(i)} + b) - 1 \right]$$

$$\max_{\alpha,\beta:\,\alpha_i\geq 0}\theta_{\mathcal{D}}(\alpha,\beta) = \max_{\alpha,\beta:\,\alpha_i\geq 0}\min_{w}\mathcal{L}(w,\alpha,\beta)$$

$$\nabla_w \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)} = 0 \qquad w = \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)} \qquad \frac{\partial}{\partial b} \mathcal{L}(w, b, \alpha) = \sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^{n} \alpha_i \left[y^{(i)}(w^T x^{(i)} + b) - 1 \right]$$

$$\max_{\alpha,\beta:\,\alpha_i\geq 0}\theta_{\mathcal{D}}(\alpha,\beta) = \max_{\alpha,\beta:\,\alpha_i\geq 0}\min_{w}\mathcal{L}(w,\alpha,\beta)$$

$$\nabla_w \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)} = 0 \qquad w = \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)} \qquad \frac{\partial}{\partial b} \mathcal{L}(w, b, \alpha) = \sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$\theta(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y^{(i)} y^{(j)} \alpha_i \alpha_j (x^{(i)})^T x^{(j)}$$

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle$$
s.t. $\alpha_i \ge 0, \quad i = 1, \dots, n$

$$\sum_{i=1}^{n} \alpha_i y^{(i)} = 0,$$

$$\begin{aligned} \max_{\alpha} & W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle \\ \text{s.t.} & \alpha_i \geq 0, \quad i = 1, \dots, n \\ & \sum_{i=1}^n \alpha_i y^{(i)} = 0, \end{aligned}$$
 Kernel is all we need!

$$\max_{\alpha} \quad W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle$$
 s.t. $\alpha_i \geq 0, \quad i = 1, \dots, n$ Kernel is all we need!
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0,$$

After solving α (we'll talk about how later)

$$\max_{\alpha} \quad W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle$$
 s.t. $\alpha_i \geq 0, \quad i = 1, \dots, n$ Kernel is all we need!
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0,$$

After solving α (we'll talk about how later)

$$w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$$

$$\max_{\alpha} \quad W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle$$
 s.t. $\alpha_i \geq 0, \quad i = 1, \dots, n$ Kernel is all we need!
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0,$$

After solving α (we'll talk about how later)

$$w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$$

From KKT Conditions

$$\begin{aligned} \max_{\alpha} & W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle \\ \text{s.t.} & \alpha_i \geq 0, \quad i = 1, \dots, n \\ & \sum_{i=1}^n \alpha_i y^{(i)} = 0, \end{aligned}$$
 Kernel is all we need!

After solving α (we'll talk about how later)

$$w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)} \qquad b^* = -\frac{\max_{i:y^{(i)}=-1} w^{*T} x^{(i)} + \min_{i:y^{(i)}=1} w^{*T} x^{(i)}}{2}$$

From KKT Conditions

$$\begin{aligned} \max_{\alpha} & W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle \\ \text{s.t.} & \alpha_i \geq 0, \quad i = 1, \dots, n \\ & \sum_{i=1}^n \alpha_i y^{(i)} = 0, \end{aligned}$$
 Kernel is all we need!

After solving α (we'll talk about how later)

$$w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$$

$$b^* = -\frac{\max_{i:y^{(i)}=-1} w^{*T} x^{(i)} + \min_{i:y^{(i)}=1} w^{*T} x^{(i)}}{2}$$

From KKT Conditions

From the original constraints

$$w^{T}x + b = \left(\sum_{i=1}^{n} \alpha_{i} y^{(i)} x^{(i)}\right)^{T} x + b$$
$$= \sum_{i=1}^{n} \alpha_{i} y^{(i)} \langle x^{(i)}, x \rangle + b.$$

$$w^{T}x + b = \left(\sum_{i=1}^{n} \alpha_{i} y^{(i)} x^{(i)}\right)^{T} x + b$$
$$= \sum_{i=1}^{n} \alpha_{i} y^{(i)} \langle x^{(i)}, x \rangle + b.$$

We never need to really compute w

$$w^{T}x + b = \left(\sum_{i=1}^{n} \alpha_{i} y^{(i)} x^{(i)}\right)^{T} x + b$$
$$= \sum_{i=1}^{n} \alpha_{i} y^{(i)} \langle x^{(i)}, x \rangle + b.$$

We never need to really compute w

$$\alpha_i^* g_i(w^*) = 0, i = 1, \dots, k$$

$$w^{T}x + b = \left(\sum_{i=1}^{n} \alpha_{i} y^{(i)} x^{(i)}\right)^{T} x + b$$
$$= \sum_{i=1}^{n} \alpha_{i} y^{(i)} \langle x^{(i)}, x \rangle + b.$$

We never need to really compute w

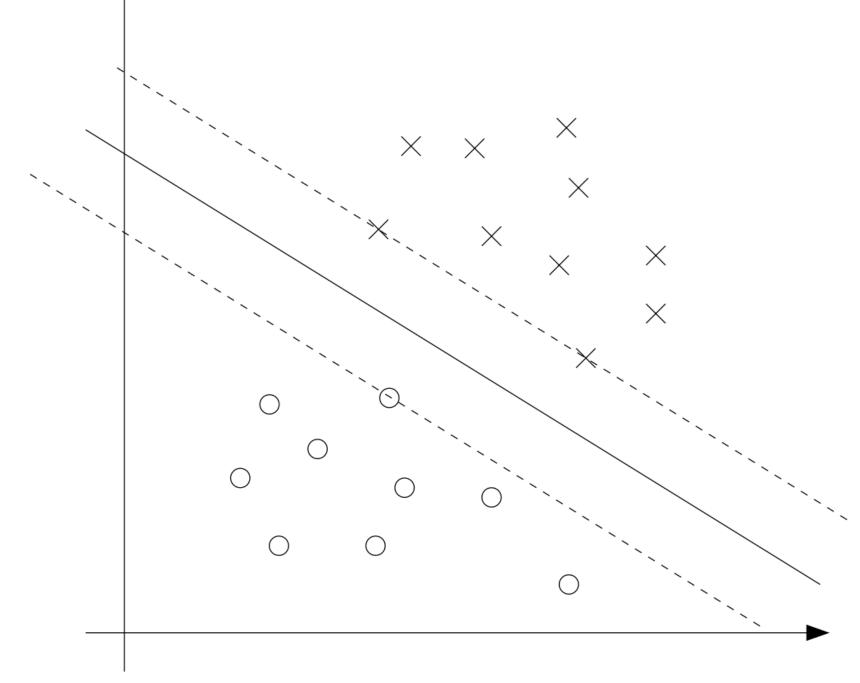
$$\alpha_i^* g_i(w^*) = 0, i = 1, \dots, k$$

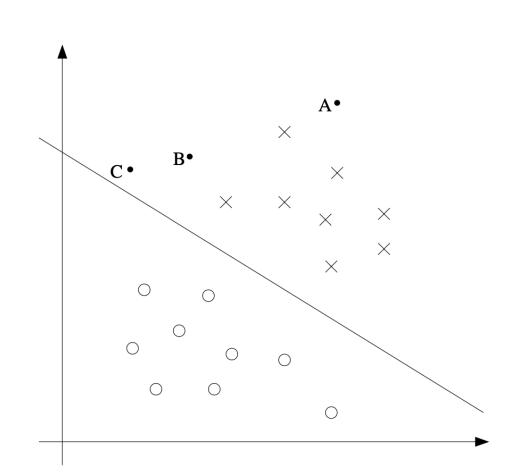
Most α_i are 0, only the supporting examples will influence the final prediction

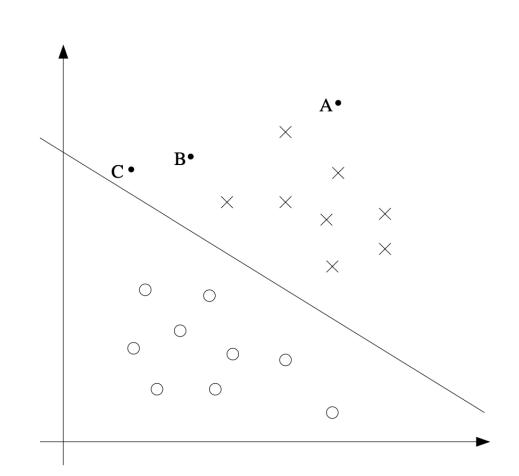
$$w^{T}x + b = \left(\sum_{i=1}^{n} \alpha_{i} y^{(i)} x^{(i)}\right)^{T} x + b$$
$$= \sum_{i=1}^{n} \alpha_{i} y^{(i)} \langle x^{(i)}, x \rangle + b.$$

$$\alpha_i^* g_i(w^*) = 0, i = 1, \dots, k$$

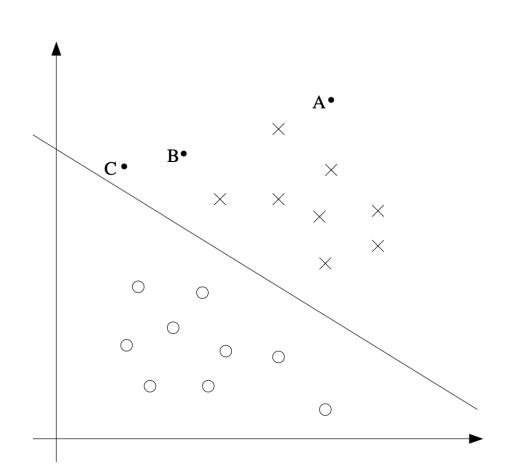
Most α_i are 0, only the supporting examples will influence the final prediction







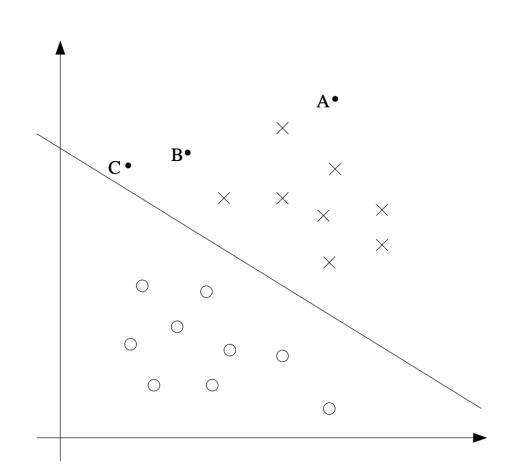
$$h_{w,b}(x) = g(w^T x + b).$$



$$h_{w,b}(x) = g(w^T x + b).$$

Maximize geometric margin

$$\gamma^{(i)} = y^{(i)} \left(\left(\frac{w}{||w||} \right)^T x^{(i)} + \frac{b}{||w||} \right)$$

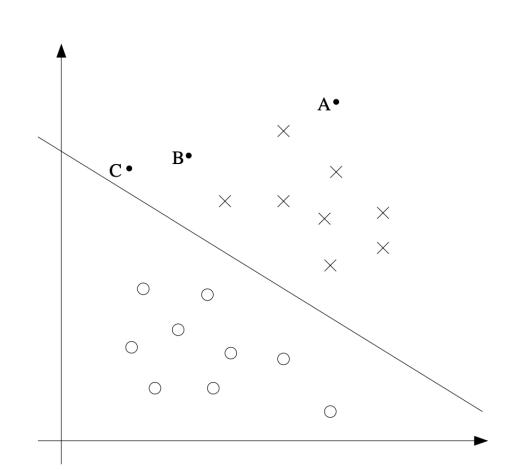


$$h_{w,b}(x) = g(w^T x + b).$$

Maximize geometric margin

Problem rewriting

$$\gamma^{(i)} = y^{(i)} \left(\left(\frac{w}{||w||} \right)^T x^{(i)} + \frac{b}{||w||} \right)$$



$$h_{w,b}(x) = g(w^T x + b).$$

Maximize geometric margin

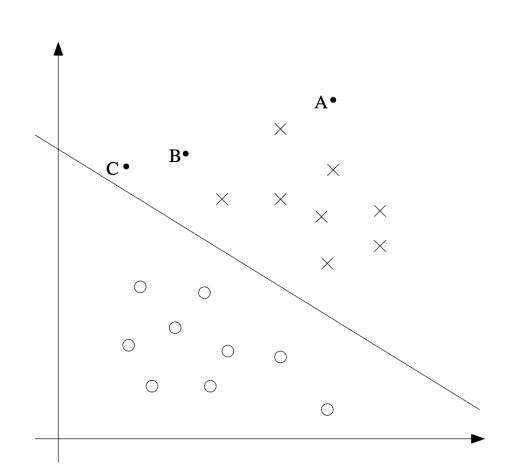
Problem rewriting

Quadratic
Optimization
Problem

$$\gamma^{(i)} = y^{(i)} \left(\left(\frac{w}{||w||} \right)^T x^{(i)} + \frac{b}{||w||} \right)$$

$$\min_{w,b} \quad \frac{1}{2} ||w||^2$$

s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1, \quad i = 1, \dots, n$



$$h_{w,b}(x) = g(w^T x + b).$$

Maximize geometric margin

Problem rewriting

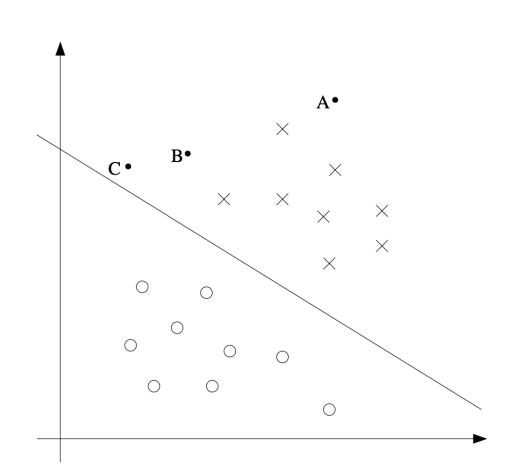
Quadratic
Optimization
Problem

$$\gamma^{(i)} = y^{(i)} \left(\left(\frac{w}{||w||} \right)^T x^{(i)} + \frac{b}{||w||} \right)$$

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1, i = 1, ..., n$

Not suitable for non-linear cases (high-dim feature map)



$$h_{w,b}(x) = g(w^T x + b).$$

Maximize geometric margin

Problem rewriting

Quadratic
Optimization
Problem

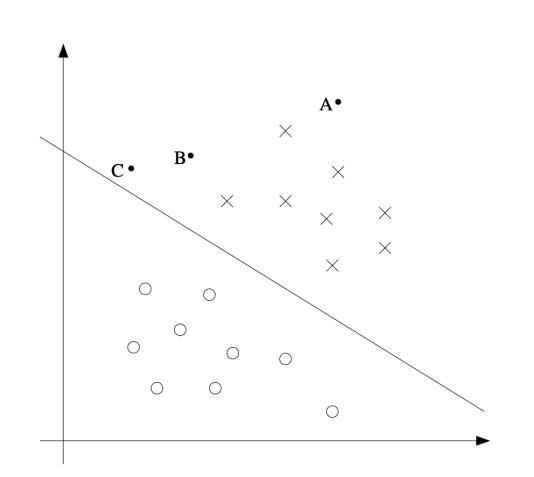
Finding a related optimization problem that is easier

$$\gamma^{(i)} = y^{(i)} \left(\left(\frac{w}{||w||} \right)^T x^{(i)} + \frac{b}{||w||} \right)$$

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1, \quad i = 1, \dots, n$

Not suitable for non-linear cases (high-dim feature map)



$$h_{w,b}(x) = g(w^T x + b).$$

Maximize geometric margin

Problem rewriting

Quadratic
Optimization
Problem

Finding a related optimization problem that is easier

Dual optimization problem

$$\gamma^{(i)} = y^{(i)} \left(\left(\frac{w}{||w||} \right)^T x^{(i)} + \frac{b}{||w||} \right)$$

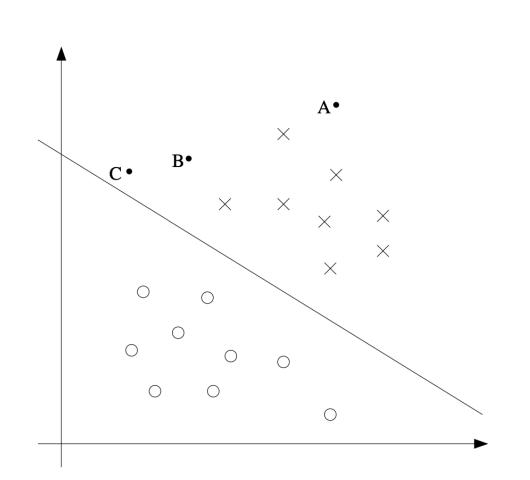
$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1, \quad i = 1, \dots, n$

Not suitable for non-linear cases (high-dim feature map)

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle$$
s.t. $\alpha_i \ge 0, \quad i = 1, \dots, n$

$$\sum_{i=1}^{n} \alpha_i y^{(i)} = 0,$$



$$h_{w,b}(x) = g(w^T x + b).$$

Maximize geometric margin

Problem rewriting

Quadratic
Optimization
Problem

Finding a related optimization problem that is easier

Dual optimization problem

$$\gamma^{(i)} = y^{(i)} \left(\left(\frac{w}{||w||} \right)^T x^{(i)} + \frac{b}{||w||} \right)$$

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1, \quad i = 1, \dots, n$

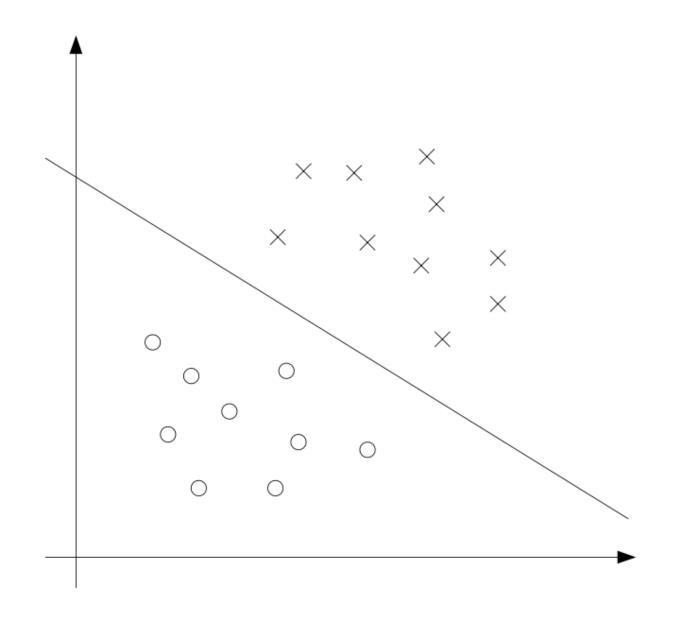
Not suitable for non-linear cases (high-dim feature map)

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle$$
s.t. $\alpha_i \ge 0, \quad i = 1, \dots, n$

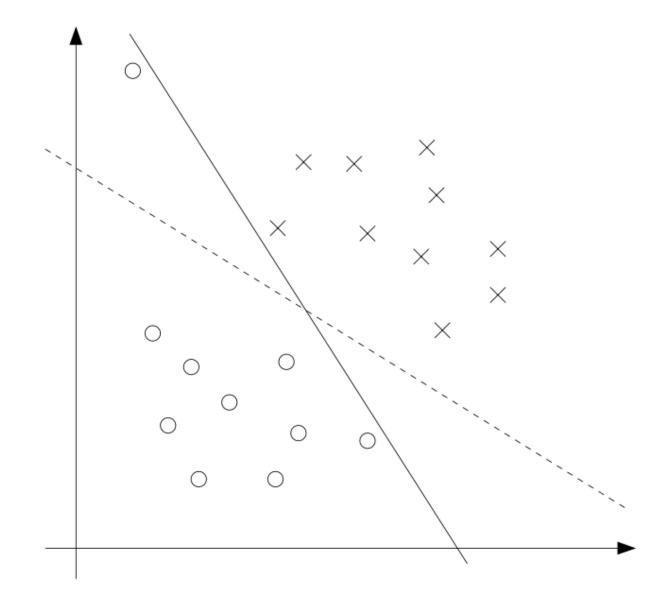
$$\sum_{i=1}^{n} \alpha_i y^{(i)} = 0,$$

Kernel makes it very flexible in non-linear cases!

The Non-Separable Case



Linearly Separable



Linearly Non-Separable

The Non-Separable Case

Primal opt problem:

$$\min_{\gamma,w,b} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$
s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1 - \xi_i, i = 1, \dots, n$

$$\xi_i \ge 0, i = 1, \dots, n.$$

Dual opt problem

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle$$
s.t. $0 \le \alpha_i \le C, \quad i = 1, \dots, n$

$$\sum_{i=1}^{n} \alpha_i y^{(i)} = 0,$$

Thank You! Q&A