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Recap: Support Vector Machines
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Recap: Notations

Consider a binary classification problem, with the input feature x and
y € {—1,1} (instead of {0,1}), the classifier is:
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g(z) =1if 2z > 0, and g(z) = —1
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Recap: Geometric Margin

What is the geometric margin?



Recap: Functional Margin

Given a training example (xV, y(")
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Recap: Functional Margin

Given a training example (xV, y(")
_ . L N
AW = 4O (wTz® 4 b).

Given a training set § = {(x(i),y(i));i =1,....,n}

¥ = min 4%
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Recap: Functional Margin

Given a training example (x¥, y()

A0 = 4@ (wTz® 4 b). 7WT><*JB —
TN —m— —
s 2l h—=2h
w

—

' : /\0"'7 o)
Given a training set S = {(x,yD);i = 1,...,n) Yy — 27
Kﬁw’fx t2h=7

Y = min &(")

m margin changes rescaling pgrameter\s,making it a bad
objective, e.g. when w->2w, b->2b, the functional margin changes

while the separating plane does not really change
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Recap: Geometric Margin



Recap: Geometric Margin




Recap: Geometric Margin




Recap: Geometric Margin
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Recap: Geometric Margin

’y = =  EEE— T I
[|wl| [|lw|

Generally



Recap: Geometric Margin

’Y = =  EEE— T I
[|wl| [|lw|

Generally




Recap: Geometric Margin

Given a training set S = {(x¥, y");i = 1,...,n)




Recap: The Optimization Problem




Recap: The Optimization Problem

Infinite solutions, as ¥ can be at any scale without
changing the classifier
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Recap: The Optimization Problem

Infinite solutions, as ¥ can be at any scale without
changing the classifier
| lw| | is not easy to deal with, non-convex objective
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Recap: The Optimization Problem

max,,, min ~¥
T =1,...,n

— \_— — 7

v

Infinite solutions, as ¥ can be at any scale without
changing the classifier
| lw| | is not easy to deal with, non-convex objective
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Recap: The Optimization Problem

min
1,.

" Rewrite maX,.,.p ¥ 4
’ |:[> T
n ! (0 (_) ORI I U T
]| w]| —~
2, WW

Infinite solutions, as ¥ can be at any scale without
changing the classifier
| lw| | is not easy to deal with, non-convex objective



Recap: The Optimization Problem

Rewrite maX, wp ¥

max,,, min " ———————> A w N\ b |
i=1,...,n st. 4 (_) L) i1

/\

e ;l/i/)'ﬂh ’ = y
Linear constraint W/? 4 rovEivie r

—————>

— — )

Infinite solutions, as ¥ can be at any scale without
changing the classifier
| lw| | is not easy to deal with, non-convex objective



Recap: The Optimization Problem

\
max,, , min y(i)

1=1,...,n

Rewrite

- - 7§ ki
Linear constraint q y ", ,U
MAaxXs o, é
—————> e Y v /\zép or” pw
st. yDwlz® £0y>4, i=1,...,n

Infinite solutions, as 7 can be at any scale without
changing the classifier

@is not easy to deal with, non-convex objective
\
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Recap: The Optimization Problem




Recap: The Optimization Problem
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Recap: The Optimization Problem
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Recap: The Optimization Problem

CL%WWIM:JW
dofoset 15 Z"/lw/V
e prhle

@ Add constrainty = 1

This is a standard quadratic |”¢f"*"
problem that can be directly solved

with quadrajltic problem solvers
1=1,...,n
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Recap: The Optim/izalic5n Problem
-

. F—9

ug/mé 1. > ..
/ A
@ Add constrainty = 1

This is a standard quadratic

, 1, ., oblem that can be directly solved
%ig ) —im Wﬁwé b §HwH with quadytatic problem solvers

/W/V’}?

s.t. yP(wlz@ +b0)>1, i=1,...,n

N - !

__\(—L/

Assumption: the training dataset is linearly separable
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The Dual Problem in Optimization

()ijl‘/\/a/'
In optimization, sometimes the primal optimization is hard to
solve, then we may find a related alternative optimization
problem that can be solved more easily, to solve the orignal
problem in an indirect way
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Quadratic Program
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Quadratic Program
-

ming, o]

s.t. yP(wlz® +b0)>1, i=1,...,n

11



Quadratic Program

, 1
ming, o]

s.t. yP(wlz® +b0)>1, i=1,...,n

This is already a standard convex opt problem that is ready to be
solved, why are we doing all the rest of things?
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Lagrange Duality — Lagrange Multiplier
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Lagrange Duality — Lagrange Multiplier

4

min,, f(w)
S.t. hz(w) — O, 1=1,..., [.
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Lagrange Duality — Lagrange Multiplier

min, f(w)
S.t. hz(w)zO, ] = ,...,l.
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Lagrange Duality — Lagrange Multiplier

min, f(w)
S.t. hz('IU) — O, ] = ].,...,l.

Solve w, b







Generalized Lagrangian
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Generalized Lagrangian

Primal optimization problem

r/
min,, f(w 5 V/V /j [ WS f@)f/
s.t. [g;(w) <0Ji=1,..., k
hi(w)=0) i=1,..., l. —
1L —"
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Generalized Lagrangian

Primal optimization problem

Generalized Lagrangian

k [

£lw,0,8) = f(w) + Y agh(w) + 3 fhu(w)

=1 < — 1=1

N TN -
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Generalized Lagrangian

z
L(w,a, ) = +20¢9 +Zﬁz’hz‘(w)
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Generalized Lagrangian

A
L(w,a,B) =

)

‘l
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Generalized Lagrangian hicw)#FO
0= F. hiow)>

!
‘C(w Q, 5 _|_ Z azgz _|_ Z ﬁzhz
1=1




Generalized Lagrangian

Consider this optimization problem

min fp(w) = min max L(w,a,f)

w w o,B:0;>0
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Generalized Lagrangian

2 w[w/)
Consider this optimization problem Y @r ez |
=7
min 6p(w) = min énaxmﬁ(w, a, 3) B
/_u}\/_/ w o,p o2

It has exactly the same solution as our original problem
i Lo
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Generalized Lagrangian

Consider this optimization problem

minfp(w) =min max L(w,a )

It has exactly the same solution as our original problem

7— min,, 0p(w

ymoﬁf V) = ) Optimie

S l Oy OYI /W/
@[ &W) /L)‘/\ 6

\ proble
ﬂh/‘/nw/ ¥
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The Dual Problem in Optimization

In optimization, sometimes the primal optimization is hard to
solve, then we may find a related alternative optimization
problem that can be solved more easily, to solve the orignal
problem in an indirect way
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The Dual Problem
)Oﬂram*W) oA, /9/

Op(a, B) lmlnﬁ(w o B)j\ " '7/

9[0 — o(wa/
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The Dual Problem

Op(a, B) = m1n£(w a, )

The dual optimization problem

a,g}ggczoe p(a, f) —a}'}ngxmmu%nﬁ(w @, B)

— N | ——"T
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The Dual Problem

max Op(a,f)= max minL(w,a, )
a,B:a; >0

The dual optimizatiwblem(})/; DL\}}

a,B:0;>20 w




The Dual Problem

Op(a, B) = mmﬁ(w a, [3)

The dual optimization problem

/ -

@me p(e, F) _a?li’x>om$n£(w , f)
The primal optimizatio(n problem ——— \ ”’/"“wﬁﬁ%)
Jminﬁp( w) = min ;na,x>0£(w a, ) e S+¢.
— \— —~— _ \//

What is the relation of the two problems?
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The Dual Problem

19



The Dual Problem
foed > [l

Vv

1 i . .
Lw,b,a) = Sllwl* =) ai [y (w2 +b) — 1]
1=1

m

e N - —

o W)
s p W
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The Dual Problem

1 n | |
L(w,b,a) = Sflwll* =) ai [y (w2 + ) — 1]
=1 ;'cj’J

The dual optimization problem

a,g}gf(zo Op(@, B) =

19



The Dual Problem

1 - | |
L(w,b,0) = olw]? = 3 s [y @ s® +5) - 1
1=1

The dual optimization problem

a,g:lgf(zo (91)(61’7 B) = a,g;l2§(20 mu%n ,C(w, Q, ﬂ)

n

Vwﬁ(w, b, Of) — W — Z azy(’&)a;(’&) — 0
N = —
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The Dual Problem

1 " o
Lw,b,0a) = Slw|* = ) o [y (w 2" +b) 1
1=1

The dual optimization problem
e Op(a, B) = a’g:lgfg

n
VoL(w,b,a)=w— ayPz® =0 W — Z ;D@
1=l i=1
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The Dual Problem
YN [ v, o ]5)
LV

1 e z, i ‘
L(w,b,a) = lwlF ~ > o [y (s + b)
1=1

The dual optimization problem

max 6Onp(a = max min/Ll(w.o.B
a,B:a;>0 D( 76) o,B:0,20 w ( ) o

- — () —
8b£(w,b,a) Zazy

Vwﬁ(w, b, (X) — W — Z azy(’&)m(’&) — 0
1=1
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The Dual Problem

1 k . .
L(w,b, o) = §Hw|\2 — Zai [y (wTz® + b) — 1]

The dual optimization problem

O L
B PP P = s e £ 0 )

- N NG 0
Vol(w,b,a) =w — Zaiy(z):c(z) =0 W = E az-y(z):c(’) %C(w b, ) =

ZO‘Z 2 Z yDyDaa (2o

zyl

Z aiy'?



S.t.

The Dual Problem

ZO‘Z _ - Z OMOION

Z]].

o; >0, 1=1,.
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The Dual Problem

ZO‘ _ 2 Z OMOIEROIN )

’L]].

st. a; >0, 1=1,.

Vol(w,b,a) =w — Z oy Pzl =0
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The Dual Problem

Za _ - Z Dy D (20T 0

’Lj].

st. a; >0, 1=1,.

n
i=1 —
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The Dual Problem

6’(04) :6_ - Z y(’&) () o ('t) ) Vﬁ

X/\ M

st. a; >0, 1=1,. Dl

n
1=1 .

L X O\\'7/0
0 — < —
e Y,
d % .




The Dual Problem

Zaz I Z y(z) (J)aza] (i))Ta:(j)

zyl

st. a; 20, 1=1,...,n

n
oo Z Y’ 0 Z

Vwﬁ(w,b, Oz) = W — Zaiy(z):c(z) — () w = a,,;y(’)a:(") %E W, b a Zazy() —

1=1 ) —

What is the relation between solving this dual problem and
solving the original problem
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The Dual Problem

d* = max minL(w,o,B) <min max L(w,a,B)=7p"
a,ﬂaz(ZO w ( , ,/B) - W 04:,30%20 ( ) 7/8) p
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The Dual Problem

a,g:laiczomlgnﬁ(w, ,B) < o X (w,a, ) =p

max min f(x,y) < minmax f(z,y)
xT Y Yy L
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The Dual Problem

d" = max minL(w,a,f) <min max L(w,a,B)=7p"
a,,Baf(ZO ’U% ( , 7/8) - W anBazZO ( ) 7/6) p

max min f(x,y) < minmax f(z,y)
xT Y Yy L

Under certain conditions: d* = p*
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The Dual Problem

d* = max minLl(w,o,B) <min max L(w,a,pB)=7p"
CM:;Baq,ZO w ( , 7/8) - W a),Baq,ZO ( ) 7/8) p

max min f(x,y) < minmax f(z,y)
xT Y Yy L

Under certain conditions: d* =p"  Zero-duality Gap

21



The Dual Problem

d* = max minL(w,qa,f) <min max L(w,a,fB)=7p"
a,,@Oj{ZO w ( , , IB) - W 04,,3@7,20 ( ) , /8) p

max min f(x,y) < minmax f(z,y)
xT Y Yy L

Under certain conditions: d* =p"  Zero-duality Gap

What are the conditions?
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Slater’s Condition

22



Slater’s Condition

f(w) and g(w) are convex
h(w) is affine (i.e. linear)

g:(w) are strictly feasible for all i, which means there
exists some w so that g.(w) < O for all i

22



Slater’s Condition

f(w) and g(w) are convex
h(w) is affine (i.e. linear)

g:(w) are strictly feasible for all i, which means there
exists some w so that g.(w) < O for all i

If slater’s condition holds, then d* = p*

22



Slater’s Condition

f(w) and g(w) are convex
h(w) is affine (i.e. linear)

g:(w) are strictly feasible for all i, which means there
exists some w so that g.(w) < O for all i

If slater’s condition holds, then d* = p*

The primal optimization problem of SVM satisfies the slater’s condition
22



KKT Conditions

23



KKT Conditions

Denote the solution to the primal problem as w*, the solution to

the dual problem as a™, f*, then zero duality gap is sufficient
and necessary (i.e. equivalent) to satisfy KKT Conditions:

23



KKT Conditions

Denote the solution to the primal problem as w*, the solution to

the dual problem as a™, f*, then zero duality gap is sufficient
and necessary (i.e. equivalent) to satisfy KKT Conditions:

E(’LU a, B _I_ Z azgz + Z Bzhz(w)
1=1

23



KKT Conditions

Denote the solution to the primal problem as w*, the solution to

the dual problem as a™, f*, then zero duality gap is sufficient
and necessary (i.e. equivalent) to satisfy KKT Conditions:

L(w,a,B) = ) + Z a;g;(w) + Z Bihi(w)
1=1

O Lw*,a", (") = 0, i=1 d
ow; ’ ’ L

O Lw*,a*,B") = 0, 1=1 [
o5 T

a gi(w*) = 0, 1=1,...,k

gi(w*) < 0, 1=1,...,k

of > 0, 1=1,...,k

23



KKT Conditions

Denote the solution to the primal problem as w*, the solution to

the dual problem as a™, f*, then zero duality gap is sufficient
and necessary (i.e. equivalent) to satisfy KKT Conditions:

‘C(w a, 5 + Z azgz + Z ﬂzhz(’w)
1=1

Normal Lagrange
multiplier equations

) 0

a gi(w*) = 0, i=1,...,
) 0
* 0

AVARR VA
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KKT Conditions

Denote the solution to the primal problem as w*, the solution to

the dual problem as a™, f*, then zero duality gap is sufficient
and necessary (i.e. equivalent) to satisfy KKT Conditions:

L(w a, ﬁ + Z azgz _|_ Z ﬁzhz(’w)
1=1

Normal Lagrange
multiplier equations

The original constraints




KKT Conditions

Denote the solution to the primal problem as w*, the solution to

the dual problem as a™, f*, then zero duality gap is sufficient
and necessary (i.e. equivalent) to satisfy KKT Conditions:

,C(’LU a, 6 + Z azgz + Z Bzhz(w)
1=1




KKT Conditions

Denote the solution to the primal problem as w*, the solution to

the dual problem as a™, f*, then zero duality gap is sufficient
and necessary (i.e. equivalent) to satisfy KKT Conditions:

L(w,a, ) = f(w) + Zazgz + Zﬁihi(w)
1=1
0
8wz£(w* Oé*, *) — O, ZZl,,d
) 0
If a > 0, then ) 0 L
g:(w*) = 0, the inequality g(w*) < 0, 1=1,...,k
is actually equality af > 0, i=1,....k



Supporting Vectors

25



Supporting Vectors

a gi(w*) = 0, 1=1,...,k
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Supporting Vectors

a gi(w*) = 0, 1=1,...,k
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Supporting Vectors

a g (w*) = 0, i=1,...,k

Only the 3 points have non-zero «;, and
they are called supporting vectors

25



Lagrangian for SVM
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Lagrangian for SVM

L(w,b,a) = —Hsz Za ()w:c()—l—b)—l]
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Lagrangian for SVM

1 - | |
L(w,b,0) = olw]? = 3 s [y @ s® +5) - 1
1=1

The dual optimization problem

a’g:lgiizo (91)(61’7 B) = a,g;lgchO Hlu%n ,C(w, Q, ﬂ)
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Lagrangian for SVM

1 - | |
L(w,b,0) = olw]? = 3 s [y @ s® +5) - 1
1=1

The dual optimization problem

a,g:lgf(zo (91)(61’7 B) = a,g;l2§(20 mu%n ,C(w, Q, ﬂ)

Vwﬁ(w, b, Of) — W — Z azy(’&)a;(’&) — 0
1=1
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Lagrangian for SVM

1 " | |
L(w,b,a) = _|lwl* = Y e [y? (w2 +b) - 1]
1=1

The dual optimization problem

a,g:lgf(zo (91)(61’7 B) = a,g;l2§(20 mu%n ,C(w, Q, ﬂ)

n
VoL(w,b,a) =w— Y ay@Pz® =0 w = Z a1y D @
1=l i=1

26



Lagrangian for SVM

L(w, b, ) —le\2 Zaz v (w

The dual optimization problem
Imnax H’D(avﬁ)

aaIB o >0

max min L(w, a, 5)

a,B:0;>0 w

e N N (i 0

26
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Lagrangian for SVM

1 - | |
L(w,b,0) = olw]? = 3 s [y @ s® +5) - 1
1=1

The dual optimization problem

a’g:lgzizo (92)((17 B) = a,g;lgchO mu%n ,C(w, Q, ﬁ)




The Dual Problem of SVM
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The Dual Problem of SVM

max., Z o — = Z Dy D (2@ z0))

'L]].
s.t. a; >0, z—l

zn: azy(Z) — 07
1=1

27



The Dual Problem of SVM

max., Z o — = Z Dy D (2@ z0))

zyl
S.t. ozz>0 z—l

Z azy(z) —

Kernel is all we need!
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The Dual Problem of SVM

max., ZO‘Z - Z Dy D (2@ z0))

231
S.t. az>0 z—l

Z O‘zy(z) —

Kernel is all we need!

After solving a (we’ll talk about how later)
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The Dual Problem of SVM

max., ZO‘Z - Z Dy D (2@ z0))

231
S.t. az>0 z—l

Z O‘zy(z) —

Kernel is all we need!

After solving a (we’ll talk about how later)

w=3"ay?z0
1=1
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The Dual Problem of SVM

max., Z o — = Z Dy D (2@ z0))

Zj].
S.t. az>0 z—l

Z azy(z) —

Kernel is all we need!

After solving a (we’ll talk about how later)

w=3"ay?z
1=1

From KKT Conditions

27



The Dual Problem of SVM

max., Z o — = Z Dy D (2@ z0))

1,J=1
S.t. az>0 z—l

Z azy(z) —

Kernel is all we need!

After solving a (we’ll talk about how later)

& . “T () 4 min,. o _, w*Tz®
. . § max;.,()—_q1 W T/ + M., )—q W T
W = E iy Mz b” = S > —

From KKT Conditions

27



The Dual Problem of SVM

max., Z o — = Z Dy D (2@ z0))

2,7=1
s.t. a; >0, 2—1,...,

Zn: azy(Z) — 07
1=1

Kernel is all we need!

After solving a (we’ll talk about how later)

& . “T () 4 min,. o _, w*Tz®
. . § max;.,()—_q1 W T/ + M., )—q W T
W = E iy Mz b” = S > —

From KKT Conditions From the original constraints
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Inference
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Inference

wlz +b

- T
(Z az-y(i)a:(i)) x4+ b
i=1

Z oy (29 x) + b.
i=1
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Inference

wlz +b

- T
(Z az-y(i)x(i)) x+b
i=1

Z oy (29 x) + b.
i=1

We never need to really compute w
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Inference

wlz +b

- T
(Z az-y(i)x(i)) x+b
i=1

Z oy (29 x) + b.
i=1

We never need to really compute w

a gi(w') = 0, 1=1,...,k

28



Inference

wlz +b

. T
(Z az-y(i):c(i)) T+ b
i=1

Z oy (29 x) + b.
i=1

We never need to really compute w

a;gi(w*) = 0, i=1,...,k

Most a; are 0, only the supporting examples will
influence the final prediction

28



Inference

T

whz +b Z oy Dz® | x4+ b
i=1

Z oy (29 x) + b.
i=1

We never need to really compute w

a;gi(w*) = 0, i=1,...,k

Most a; are 0, only the supporting examples will
influence the final prediction

28



Review of the High-Level Logic
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Review of the High-Level Logic
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Review of the High-Level Logic

hwo(z) = g(w' z + b)

29



Maximize

geometric
margin

T
i) (L) 20
[Jwl]

Review of the High-Level Logic

hwo(z) = g(w' z + b)

29



Maximize

geometric
margin

T
i) (L) 20
[Jwl]

Review of the High-Level Logic

hwo(z) = g(w' z + b)

Problem
rewriting
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Maximize

geometric
margin

T
i) (L) 20
[Jwl]

Review of the High-Level Logic

hwo(z) = g(w' z + b)

Problem

rewriting Quadratlc
—> | Optimization
Problem
ming, —|[w||?

29



. Review of the High-Level Logic

e, hwp(z) = g(w” z +b)
. Probl .
Maximize rg\?vri;r:g Quadratic
geometric —> | Optimization

Problem

margin

1
() = 00 (L)Txm, 0 min,, 5”“’”2
[Jwl] [Jw]

s.t. yP(wlzW +b0)>1, i=1,...,n

Not suitable for non-linear
cases (high-dim feature map)

29



. Review of the High-Level Logic

: hwo(z) = g(w' z + b)

Finding a related
optimization problem
that is easier
_%

Problem :
rewriting Quadratlc

geometric —> | Optimization
margin Problem

1
() = 00 (L)Txm, 0 min,, 5”“’”2
[Jwl] [Jw]

s.t. yP(wlzW +b0)>1, i=1,...,n

Maximize

Not suitable for non-linear
cases (high-dim feature map)
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Maximize

geometric
margin

. . w T .
[Jwl] |

Review of the High-Level Logic
hwo(z) = g(w' z + b)

Finding a related

Problem optimization problem

rewriting Quadratic that is easier Dual
— > | Optimization | ——— | optimization
Problem oroblem
" NER o
min,, p %Hw”z max, W(a)= ;ai —5 Z; y Dy aa,(a, 2
S.t. y(")(wa(z) + b) >1, i=1,....n S.t. Oé?i >0, 1=1,..., n
Z%y(') =0
Not suitable for non-linear i=1

cases (high-dim feature map)
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. Review of the High-Level Logic

L hwo(z) = g(w' z + b)

Finding a related

. Problem : optimization problem
Maximize rewriting Quadratic [, .. ... Dual
geometric —> | Optimization | ——— | optimization
margin Problem problem
1 max,  — = Oy g, (zD, 2
(@) — @ [ [ Y Tx(v:). b min,, |w||* Wie) z; Zy >
L AN "l 2
s.t. y(’)(wT:c(z) +b)>1, i=1,...,n .t O‘n>0 v=1,..., n
Zaiy(i):(),
Not suitable for non-linear i=1

cases (high-dim feature map) Kernel makes it very flexible in

non-linear cases!
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The Non-Separable Case

Linearly Separable Linearly Non-Separable

30



The Non-Separable Case

Primal opt problem:
1. -
Sl +C 306

s.t. yD(wlz® +b6)>1-¢, i=1,...,n
>0, 1=1,...,n.

Dual opt problem

max. Zaz _ 2 Z Oy D (2@ 7))

zyl
S.t. O<aZ<C' 1=1,...,n

Z iy =

31



Thank You!
Q& A
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