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Recap: The Dual Problem of SVM
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After solving  (coordinate ascent with clipping, 6.8.2 of the CS229 Notes)α

Kernel is all we need!

From KKT Conditions From the original constraints



Discriminative vs. Generative Learning
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Generative Model Examples
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Video Generation Examples
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Prompt: A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city 
signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She 
wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, 
creating a mirror effect of the colorful lights. Many pedestrians walk about.



Video Generation Examples
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Prompt: Photorealistic closeup video of two pirate ships battling each other as they sail inside a cup of coffee.



Video Generation Examples
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Prompt: A petri dish with a bamboo forest growing within it that has tiny red pandas running around.



Discriminative vs. Generative Learning
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Bayes Rule
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p(x) = ∑
y

p(x, y) = ∑
y

p(x |y)p(y)

If our goal is to predict , the distribution is often written as:y

p(y |x) ∝ p(x |y)p(y)



Generative Models Compared to 
Discriminative Models
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Generative models can generate data (generation, data augmentation)

Inject prior information through the prior distribution

Pros:

Cons:

Often underperforms discriminative models on discriminative tasks 
because of stronger assumptions on the data

May be learned in an unsupervised way when  is not availabley
Modeling data distribution is a fundamental goal in AI



Gaussian Discriminant Analysis 
Model (GDA)
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Multivariate Gaussian distribution

 is the covariance matrix, it is also symmetric positive semi-definiteΣ ∈ Rdxd

 denotes the determinant of |Σ | Σ



Examples of Multivariate Gaussian
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Σ = I Σ = 0.6I Σ = 2I



Examples of Multivariate Gaussian
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Gaussian Discriminant Analysis Model

Binary classification: y ∈ {0,1}, x ∈ Rd

Assumption



Maximum Likelihood Estimation
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Why is the decision boundary linear?



Connection Between GDA and Logistic Regression
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Through Bayes rule, we can show that

θ = f(ϕ, Σ, μ0, μ1)

 is Gaussianp(x |y)  follows logistic regressionp(y |x)

 is Gaussianp(x |y)  follows logistic regressionp(y |x)

Gaussian Discriminative Analysis model makes stronger assumptions



Connection Between GDA and Logistic Regression
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Gaussian Discriminative Analysis (GDA) model makes stronger assumptions

When x|y does not follow Gaussian in practice, GDA may or may not do well

When x|y does not follow Gaussian and the training data is large, the 
method that makes weaker assumptions (logistic regression) will always 
do better

When x|y indeed follows Gaussian and the training data is small, the method 
that makes stronger assumptions will do well (more data-efficient)

These are intuitions generally applicable to machine learning



Philosophy Behind Modeling 
Assumptions / Priors
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When x|y does not follow Gaussian in practice, GDA may or may not do well

When x|y does not follow Gaussian and the training data is large, the 
method that makes weaker assumptions (logistic regression) will always 
do better
When x|y indeed follows Gaussian and the training data is small, the method 
that makes stronger assumptions will do well (more data-efficient)

1. Transformers v.s. LSTMs v.s. CNN.  — transformers can be worse on small 
data, but stand out with large data (pretraining)

2. The famous and bitter lesson from IBM machine translation model: “Every 
time I fire a linguist, the model performance goes up” — Frederick Jelinek 



The Bitter Lesson
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http://www.incompleteideas.net/IncIdeas/BitterLesson.html

“The biggest lesson that can be read from 70 years of AI research is 
that general methods that leverage computation are ultimately the 
most effective, and by a large margin”  — Rich Sutton



Naive Bayes
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Binary classification:  is discretey ∈ {0,1}, x

Consider an email spam detection task, to predict whether the email is 
spam or not

How to represent the text?

if an email contains the j-th word of the dictionary, then we will set ; otherwise, we let xj = 1 xj = 0

Dimension is the size of the dictionary

vocabulary



Email Spam Classification
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Suppose the dictionary has 50000 words, 
how many possible x?

Naive Bayes assumption: ’s are conditionally independent given xi y

For any i and j, p(xi |y) = p(xi |y, xj)



Email Spam Classification
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Parameters

ϕj|y=1 = p(xj = 1 |y = 1), ϕj|y=1 = p(xj = 1 |y = 0), ϕy = p(y = 1)

50000 x 2 + 1 parameters (dict size is 50000)

Autoregressive



Maximum Likelihood Estimation
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Count the occurrence of  in spam/
non-spam emails and normalize

xj



Prediction
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Naive Classifier



Laplace Smoothing
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What if we never see the word “learning” in training data but “learning” 
exists in the test data?

Suppose the index in the dictionary for 
“learning” is q	

	p(xq = 1 |y = 1) = 0
p(xq = 1 |y = 0) = 0

=
0
0



Laplace Smoothing

26

Take the problem of estimating the mean of a multinomial random 
variable  taking values in {1, …, k}. Given the independent 
observations 

z
{z(1), ⋯, z(n)}

In the email spam classification case:

Why adding k to the 
denominator?



Thank You!	
Q & A
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