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Recap: The Dual Problem of SVM

max, Z Qi — - Z Dy Dy (2, 20))
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Kernel is all we need!

After solving a (coordinate ascent with clipping, 6.8.2 of the C5229 Notes)
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From KKT Conditions From the original constraints



Discriminative vs. Generative Learnin

Cat Y p(y)

Generative | p(x|y)

Discriminative




Generative Model Examples

ONCORD




Video Generation Examples

Prompt: A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city
signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She
wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective,

creating a mirror effect of the colorful lights. Many pedestrians walk about.




Video Generation Examples

Prompt: Photorealistic closeup video of two pirate ships battling each other as they sail inside a cup of coffee.




Video Generation Examples

Prompt: A petri dish with a bamboo forest growing within it that has tiny red pandas running around.




Discriminative vs. Generative Learnin

Cat Y p(y)

Generative | p(x|y)

Discriminative




Bayes Rule

p(z|y)p(y)
p(z)

p(x) = ) p.y) = ) px|yp()
Y Y

p(y|r) =

If our goal is to predict y, the distribution is often written as:

p(y|x) < plx|y)p(y)

argmax p(y|r) = argmax P(zly)p(y)
’ v ()

= argmaxp(z[y)p(y)
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Generative Models Compared to
Discriminative Models

Pros:

Generative models can generate data (generation, data augmentation)

Inject prior information through the prior distribution

May be learned in an unsupervised way when y is not available

Modeling data distribution is a fundamental goal in Al

Cons:

Often underperforms discriminative models on discriminative tasks
because of stronger assumptions on the data
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Gaussian Discriminant Analysis
Model (GDA)

Multivariate Gaussian distribution

p(x; p, X) = (27T)d/12\2‘1 75 €XP (—%(aj — ) Xz~ u)>

Y € R™js the covariance matrix, it is also symmetric positive semi-definite

| 22| denotes the determinant of X
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Examples of Multivariate Gaussian
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Gaussian Discriminant Analysis Model

Binary classification: y € {0,1},x € R
Assumption y ~ Bernoulli(¢)
zly=0 ~ N(ug,X)
zly=1 ~ N(u1, %)
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p(zly=1) = (27r)d/2\§3|1/2 eXp (—5(33—#1) 2 (5’3—#1))
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Maximum Likelihood Estimation

€(¢7 Mo, K1, E)

— Z 1{y(’&) _

Zizl 1{3/(2) — O}x(z)

2?21 1{y(i) _ 1}3;(2')
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lOg Hp(x(Z)a y(Z)a ¢7 Ho, M1, Z)
1=1

log | | p(z®1y; po, 1, £)p(y?; ).

Why is the decision boundary linear?
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Connection Between GDA and Logistic Regression

Through Bayes rule, we can show that
1

1 + exp(—6Tx)

p( — 1‘567 ¢7 237“’07/“1'1) —

0 = (P, Z, py, py)

p(x|y) is Gaussian I;I> p(y | x) follows logistic regression

p(x|y)is Gaussian gﬁl p(y | x) follows logistic regression

Gaussian Discriminative Analysis model makes stronger assumptions
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Connection Between GDA and Logistic Regression

Gaussian Discriminative Analysis (GDA) model makes stronger assumptions

When x|y does not follow Gaussian in practice, GDA may or may not do well

When x|y does not follow Gaussian and the training data is large, the
method that makes weaker assumptions (logistic regression) will always
do better

When x|y indeed follows Gaussian and the training data is small, the method

that makes stronger assumptions will do well (more data-efficient)
These are intuitions generally applicable to machine learning

17



Philosophy Behind Modeling
Assumptions / Priors

When x|y does not follow Gaussian in practice, GDA may or may not do well

When x|y does not follow Gaussian and the training data is large, the
method that makes weaker assumptions (logistic regression) will always

do better

When x|y indeed follows Gaussian and the training data is small, the method
that makes stronger assumptions will do well (more data-efficient)

1. Transformers v.s. LSTMs v.s. CNN. — transformers can be worse on small
data, but stand out with large data (pretraining)

I' 7

2. The famous and bitter lesson from IBM machine translation model: “Every
time | fire a linguist, the model performance goes up” — Frederick Jelinek
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The Bitter Lesson

http://www.incompleteideas.net/Incldeas/BitterLesson.html

“The biggest lesson that can be read from 70 years of Al research is
that general methods that leverage computation are ultimately the
most effective, and by a large margin” — Rich Sutton
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Naive Bayes
Binary classification: y € {0,1}, x is discrete

Consider an email spam detection task, to predict whether the email is
spam or not

How to represent the text?

if an email contains the j-th word of the dictionary, then we will set X; = 1: otherwise, we let X; = 0

-] a
0 aardvark
0 aardwolf vocabulary
€r = . .
1 buy
j : Dimension is the size of the dictionary
0 Zygmurgy
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Email Spam Classification

-1 a
0 aardvark
0 aardwolf o
| Suppose the dictionary has 50000 words,
L buy how many possible x?
i O i .zygmurgy

Naive Bayes assumption: x;'s are conditionally independent given y

Foranyiandj, p(x;|y) = p(x;|y, Xj)
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Email Spam Classification

p(x1, ..., Z50000|Y) Autoregressive

Y, 131)P($3|y, I, iEz) " ‘P($5oooo|y, L1,y ... ,5649999)

= p(z1|ly)p(z2|y)p(Z3]Y) - - - P(T50000|Y)

Parameters

Giy=1 =PX; =1y =1), ¢, =px;=11y=0), ¢,=pQy=1)
50000 x 2 + 1 parameters (dict size is 50000)
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Maximum Likelihood Estimation

n

L(dy, Djly=0, Pjly=1) = Hp(x(i)a y(i))

1=1

Yy He) = 1AyD =1)

> iy H{y® =1} Count the occurrence of x; in spam/
n (8) _ (6) — . .
2im 112" =1AYyY =0} 51 snam emails and normalize

> e Hy® =0}
Z?:l 1{3/(2) =1}

n
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Prediction

_ plzly=1)p(y =1)

g
)
|
-
&
|

p(z)

(T pasly = 1)) ply = 1)

(T p(zsly = 1)) ply = 1) + (T, plosly

Naive Classifier
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Laplace Smoothing

What if we never see the word “learning” in training data but “learning”

exists in the test data?

| Suppose the index in the dictionary for
S el =1Ay® =1}

b > oo Hy® =1} lea rning 1S g
0 Z?:ll{xg‘i)zl/\y(i)zo} p(xq — 1 ‘y _ 1) _ O
jly=0 — _ .
> iy H{y® =0}
y p(xqzl‘y:()):()
ply =1lz) = p(zly = 1)p(y = 1)

p(z)




Laplace Smoothing

Take the problem of estimating the mean of a multinomial random
variable z taking values in {1, ..., k}. Given the independent
observations {z(l), ---,z(”)}

Pj = p(z =7) b = Z?zl 1{Z(i) =7}

(g

U Why adding k to the

- 1+ Z?:l 1{Z(i) — ]} denominator?

7 k+n
) 1Y e =1AyD =1}
In the email spam classification case: = 2+ i Hy® =1}
L3 e = 1Ay = 0)
Pjly=0 =

2+ 2?21 1{?/@ = 0}
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Thank You!
Q& A
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