

Generative Models, Naive Bayes

Junxian He Oct 3, 2024 COMP 5212 Machine Learning Lecture 8

Recap: The Dual Problem of SVM

After solving *α* (coordinate ascent with clipping, 6.8.2 of the CS229 Notes)

$$
-\,\frac{1}{2}\sum_{i,j=1}^n y^{(i)}y^{(j)}\alpha_i\alpha_j\langle x^{(i)},x^{(j)}\rangle
$$

Kernel is all we need!

$$
b^* = -\frac{\max_{i:y^{(i)}=-1} w^{*T} x^{(i)} + \min_{i:y^{(i)}=1} w^{*T} x^{(i)}}{2}
$$

From KKT Conditions From the original constraints

X

Generative Model Examples

Video Generation Examples

Prompt: A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.

Video Generation Examples

Prompt: Photorealistic closeup video of two pirate ships battling each other as they sail inside a cup of coffee.

Video Generation Examples

Prompt: A petri dish with a bamboo forest growing within it that has tiny red pandas running around.

X

 $p(y|x) =$

Bayes Rule

$$
\frac{p(x|y)p(y)}{p(x)}
$$

$$
p(x | y)p(y)
$$

arg max $\frac{p(x|y)p(y)}{p(x)}$
arg max $p(x|y)p(y)$.

$$
p(x) = \sum_{y} p(x, y) = \sum_{y} p(x | y) p(y)
$$

If our goal is to predict *y*, the distribution is often written as:

- $p(y|x) \propto$
- $\arg\max_{y} p(y|x) =$

Generative Models Compared to Discriminative Models

Pros:

Cons:

- Generative models can generate data (generation, data augmentation)
- Inject prior information through the prior distribution
- May be learned in an unsupervised way when *y* is not available
- Modeling data distribution is a fundamental goal in AI

Often underperforms discriminative models on discriminative tasks because of stronger assumptions on the data

Gaussian Discriminant Analysis Model (GDA)

11

Multivariate Gaussian distribution

$$
p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)\right)
$$

$\bullet \Sigma \in R^{dxd}$ is the covariance matrix, it is also symmetric positive semi-definite $|\Sigma|$ denotes the determinant of Σ

Examples of Multivariate Gaussian

 $\Sigma = I$ $\Sigma = 0.6I$ $\Sigma = 2I$

Examples of Multivariate Gaussian

 $\Sigma = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$

 $\Sigma = \left[\begin{array}{cc} 1 & 0.5 \ 0.5 & 1 \end{array} \right]$

 $\Sigma = \left[\begin{array}{cc} 1 & 0.8 \ 0.8 & 1 \end{array} \right]$

Gaussian Discriminant Analysis Model

Binary classification: $y \in \{0,1\}$, $x \in R^d$

Assumption

$$
p(y) = \phi^{y} (1 - \phi)^{1 - y}
$$

\n
$$
p(x|y = 0) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_0)^{T} \Sigma^{-1} (x - \mu_0)\right)
$$

\n
$$
p(x|y = 1) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_1)^{T} \Sigma^{-1} (x - \mu_1)\right)
$$

-
- $y \sim \text{Bernoulli}(\phi)$ $x|y=0 \sim \mathcal{N}(\mu_0, \Sigma)$ $x|y=1 \sim \mathcal{N}(\mu_1, \Sigma)$

Maximum Likelihood Estimation

$$
\ell(\phi, \mu_0, \mu_1, \Sigma) = \log \prod_{i=1}^n p(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma)
$$

=
$$
\log \prod_{i=1}^n p(x^{(i)} | y^{(i)}; \mu_0, \mu_1, \Sigma) p(y^{(i)}; \phi).
$$

$$
\begin{array}{rcl}\n\phi & = & \frac{1}{n} \sum_{i=1}^{n} 1\{y^{(i)} = 1\} \\
\mu_0 & = & \frac{\sum_{i=1}^{n} 1\{y^{(i)} = 0\} x^{(i)}}{\sum_{i=1}^{n} 1\{y^{(i)} = 0\}} \\
\mu_1 & = & \frac{\sum_{i=1}^{n} 1\{y^{(i)} = 1\} x^{(i)}}{\sum_{i=1}^{n} 1\{y^{(i)} = 1\}} \\
\Sigma & = & \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu_{y^{(i)}})(x^{(i)} - \mu_{y^{(i)}})^T\n\end{array}
$$

Why is the decision boundary linear?

Connection Between GDA and Logistic Regression

Through Bayes rule, we can show that $p(y=1|x;\phi,\Sigma,\mu_0)$

 $\theta = f(\phi, \Sigma, \mu_0, \mu_1)$

$$
t_0,\mu_1)=\frac{1}{1+\exp(-\theta^Tx)}
$$

Connection Between GDA and Logistic Regression

Gaussian Discriminative Analysis (GDA) model makes stronger assumptions

When x v does not follow Gaussian in practice, GDA may or may not do well

When x v does not follow Gaussian and the training data is large, the method that makes weaker assumptions (logistic regression) will always do better

When x v indeed follows Gaussian and the training data is small, the method that makes stronger assumptions will do well (more data-efficient) These are intuitions generally applicable to machine learning

Philosophy Behind Modeling Assumptions / Priors

- When x v does not follow Gaussian and the training data is large, the method that makes weaker assumptions (logistic regression) will always do better
- When x | y indeed follows Gaussian and the training data is small, the method that makes stronger assumptions will do well (more data-efficient)

data, but stand out with large data (pretraining)

When x v does not follow Gaussian in practice, GDA may or may not do well

- 1. Transformers v.s. LSTMs v.s. CNN. transformers can be worse on small
- 2. The famous and bitter lesson from IBM machine translation model: "Every time I fire a linguist, the model performance goes up" — Frederick Jelinek

The Bitter Lesson

"The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation are ultimately the most effective, and by a large margin" $-$ Rich Sutton

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Binary classification: $y \in \{0,1\}$, x is discrete

Consider an email spam detection task, to predict whether the email is spam or not

How to represent the text?

if an email contains the j-th word of the dictionary, then we will set $x_i = 1$; otherwise, we let $x_i = 0$

Dimension is the size of the dictionary

vocabulary

Email Spam Classification

Suppose the dictionary has 50000 words, how many possible x?

Naive Bayes assumption: x_i 's are conditionally independent given *y*

For any i and j, $p(x_i | y) = p(x_i | y, x_j)$

Email Spam Classification

$$
p(x_1, ..., x_{50000}|y)
$$

= $p(x_1|y)p(x_2|y, x_1)p(x_3|y,$
= $p(x_1|y)p(x_2|y)p(x_3|y) \cdots$
= $\prod_{j=1}^d p(x_j|y)$

Parameters

$$
\phi_{j|y=1} = p(x_j = 1 | y = 1), \quad \phi_{j|y=1} = p(x_j = 1 | y = 0), \quad \phi_y = p(y = 1)
$$

50000 x 2 + 1 parameters (dict size is 50000)

Autoregressive

 $(x_1, x_2) \cdots p(x_{50000} | y, x_1, \ldots, x_{49999})$ $p(x_{50000}|y)$

Maximum Likelihood Estimation

 $\mathcal{L}(\phi_y, \phi_{j|y=0}, \phi_j)$

$$
|_{y=1})=\prod_{i=1}^n p(x^{(i)},y^{(i)})
$$

Count the occurrence of x_i in spam/ non-spam emails and normalize *xj*

Prediction

$$
p(y = 1|x) = \frac{p(x|y = 1)p(y = 1)}{p(x)}
$$

$$
\left(\prod_{j=1}^{d} p(x_j | y = 1)\right) p(y = 1)
$$

$$
\left(\prod_{j=1}^{d} p(x_j | y = 1)\right) p(y = 1) + \left(\prod_{j=1}^{d} p(x_j | y = 0)\right) p(y = 0)
$$

Naive Classifier

 $\!\!\!=\!\!\!$

 $=$ 1)

Laplace Smoothing

What if we never see the word "learning" in training data but "learning"

exists in the test data?

$$
\phi_{j|y=1} = \frac{\sum_{i=1}^{n} 1\{x_j^{(i)} = 1 \land y^{(i)} = 1\}}{\sum_{i=1}^{n} 1\{y^{(i)} = 1\}}
$$

$$
\phi_{j|y=0} = \frac{\sum_{i=1}^{n} 1\{x_j^{(i)} = 1 \land y^{(i)} = 0\}}{\sum_{i=1}^{n} 1\{y^{(i)} = 0\}}
$$

Suppose the index in the dictionary for "learning" is q

$$
p(x_q = 1 | y = 1) = 0
$$

$$
p(x_q = 1 | y = 0) = 0
$$

$$
p(y = 1|x) = \frac{p(x|y = 1)p(y = 1)}{p(x)} = \frac{\left(\prod_{j=1}^{d} p(x_j|y = 1)\right)p(y = 1)}{\left(\prod_{j=1}^{d} p(x_j|y = 1)\right)p(y = 1) + \left(\prod_{j=1}^{d} p(x_j|y = 0)\right)p(y = 0)} = \frac{0}{0}
$$

Laplace Smoothing

variable z taking values in $\{1, ..., k\}$. Given the independent observations $\{z^{(1)}, \cdots, z^{(n)}\}$

$$
\phi_j = p(z = j)
$$

In the email spam classification case

Take the problem of estimating the mean of a multinomial random

$$
p(z = j) \qquad \phi_j = \frac{\sum_{i=1}^n 1\{z^{(i)} = j\}}{n}
$$
\nWhy adding k to the denominator?

\n
$$
\phi_j = \frac{1 + \sum_{i=1}^n 1\{z^{(i)} = j\}}{k + n}
$$
\nassification case:

\n
$$
\phi_{j|y=1} = \frac{1 + \sum_{i=1}^n 1\{x_j^{(i)} = 1 \land y^{(i)} = 1\}}{2 + \sum_{i=1}^n 1\{y^{(i)} = 1\}}
$$
\n
$$
\phi_{j|y=0} = \frac{1 + \sum_{i=1}^n 1\{x_j^{(i)} = 1 \land y^{(i)} = 0\}}{2 + \sum_{i=1}^n 1\{y^{(i)} = 0\}}
$$

Thank You! Q & A