COMP 5212 Machine Learning

Math Basics

(Largely adapted from Stanford CS229 Slides)

Junxian He

Feb 2, 2024

Outline

Linear Algebra Review

Probability Review

Outline

Linear Algebra Review

Probability Review

Basic Notation

• By $x \in \mathbb{R}^n$, we denote a vector with n entries.

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

• By $A \in \mathbb{R}^{m \times n}$ we denote a matrix with m rows and n columns, where the entries of A are real numbers.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ a_1^1 & a_2^2 & \cdots & a_n^n \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & \vdots & | \\ - & a_m^T & - \end{bmatrix}.$$

Identity Matrix

The *identity matrix*, denoted $I \in \mathbb{R}^{n \times n}$, is a square matrix with ones on the diagonal and zeros everywhere else. That is,

$$I_{ij} = \left\{ \begin{array}{ll} 1 & i = j \\ 0 & i \neq j \end{array} \right.$$

It has the property that for all $A \in \mathbb{R}^{m \times n}$,

$$AI = A = IA$$
.

Diagonal Matrix

A diagonal matrix is a matrix where all non-diagonal elements are 0. This is typically denoted $D = \text{diag}(d_1, d_2, \dots, d_n)$, with

$$D_{ij} = \left\{ \begin{array}{ll} d_i & i = j \\ 0 & i \neq j \end{array} \right.$$

Clearly, I = diag(1, 1, ..., 1).

Vector-Vector Product

inner product or dot product

$$x^T y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i.$$

outer product

$$xy^{T} \in \mathbb{R}^{m \times n} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_my_1 & x_my_2 & \cdots & x_my_n \end{bmatrix}.$$

Matrix-Vector Product

• If we write A by rows, then we can express Ax as,

$$y = Ax = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & & \vdots \\ - & a_m^T & - \end{bmatrix} x = \begin{bmatrix} a_1^T x \\ a_2^T x \\ \vdots \\ a_m^T x \end{bmatrix}.$$

Matrix-Vector Product

• If we write A by columns, then we have:

$$y = Ax = \begin{bmatrix} \begin{vmatrix} & & & & & \\ & a^1 & a^2 & \cdots & a^n \\ & & & \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a^1 \\ x_1 \end{bmatrix} x_1 + \begin{bmatrix} a^2 \\ \end{bmatrix} x_2 + \ldots + \begin{bmatrix} a^n \\ \end{bmatrix} x_n .$$

y is a *linear combination* of the *columns* of A.

Matrix-Vector Product

It is also possible to multiply on the left by a row vector.

• If we write A by columns, then we can express $x^{\top}A$ as,

$$y^{T} = x^{T}A = x^{T}\begin{bmatrix} | & | & | \\ a^{1} & a^{2} & \cdots & a^{n} \\ | & | & | \end{bmatrix} = \begin{bmatrix} x^{T}a^{1} & x^{T}a^{2} & \cdots & x^{T}a^{n} \end{bmatrix}$$

Linear Transformation

1. As a set of vector-vector products (dot product)

$$C = AB = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ & \vdots & \\ - & a_m^T & - \end{bmatrix} \begin{bmatrix} | & | & | & | \\ b^1 & b^2 & \cdots & b^p \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} a_1^T b^1 & a_1^T b^2 & \cdots & a_1^T b^p \\ a_2^T b^1 & a_2^T b^2 & \cdots & a_2^T b^p \\ \vdots & \vdots & \ddots & \vdots \\ a_m^T b^1 & a_m^T b^2 & \cdots & a_m^T b^p \end{bmatrix}.$$

2. As a sum of outer products

3. As a set of matrix-vector products.

$$C = AB = A \begin{bmatrix} | & | & | & | \\ b^1 & b^2 & \cdots & b^n \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ Ab^1 & Ab^2 & \cdots & Ab^n \\ | & | & | \end{bmatrix}.$$
 (2)

Here the *i*th column of C is given by the matrix-vector product with the vector on the right, $c_i = Ab_i$. These matrix-vector products can in turn be interpreted using both viewpoints given in the previous subsection.

4. As a set of vector-matrix products.

$$C = AB = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ & \vdots & \\ - & a_m^T & - \end{bmatrix} B = \begin{bmatrix} - & a_1^T B & - \\ - & a_2^T B & - \\ & \vdots & \\ - & a_m^T B & - \end{bmatrix}.$$

- Associative: (AB)C = A(BC).
- Distributive: A(B + C) = AB + AC.
- In general, not commutative; that is, it can be the case that $AB \neq BA$. (For example, if $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times q}$, the matrix product BA does not even exist if m and q are not equal!)

The Transpose

The *transpose* of a matrix results from "flipping" the rows and columns. Given a matrix $A \in \mathbb{R}^{m \times n}$, its transpose, written $A^T \in \mathbb{R}^{n \times m}$, is the $n \times m$ matrix whose entries are given by

$$(A^T)_{ij} = A_{ji}$$
.

The following properties of transposes are easily verified:

- $(A^T)^T = A$
- \bullet $(AB)^T = B^T A^T$
- $(A+B)^T = A^T + B^T$

Trace

The *trace* of a square matrix $A \in \mathbb{R}^{n \times n}$, denoted $\operatorname{tr} A$, is the sum of diagonal elements in the matrix:

$$\mathrm{tr}A=\sum_{i=1}^n A_{ii}.$$

Norms

A *norm* of a vector ||x|| is informally a measure of the 'length' of the vector.

The commonly-used Euclidean or ℓ_2 norm,

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$

The ℓ_1 norm,

$$||x||_1 = \sum_{i=1}^n |x_i|$$

Norms

A *norm* of a vector |x| is informally a measure of the 'length' of the vector.

The
$$\ell_{\infty}$$
 norm,

$$||x||_{\infty} = \max_i |x_i|.$$

Norms

In fact, all three norms presented so far are examples of the family of ℓ_p norms, which are parameterized by a real number $p \geq 1$, and defined as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

Linear Independence

A set of vectors $\{x_1, x_2, \dots x_n\} \subset \mathbb{R}^m$ is said to be *(linearly) dependent* if one vector belonging to the set *can* be represented as a linear combination of the remaining vectors; that is, if

$$x_n = \sum_{i=1}^{n-1} \alpha_i x_i$$

for some scalar values $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{R}$; otherwise, the vectors are (linearly) independent.

Linear Independence

Example:

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 $x_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$ $x_3 = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$

are linearly dependent because $x_3 = -2x_1 + x_2$.

Rank of a Matrix

• The *column rank* of a matrix $A \in \mathbb{R}^{m \times n}$ is the largest number of columns of A that constitute a linearly independent set.

• The row rank is the largest number of rows of A that constitute a linearly independent set.

• For any matrix $A \in \mathbb{R}^{m \times n}$, it turns out that the column rank of A is equal to the row rank of A (prove it yourself!), and so both quantities are referred to collectively as the rank of A, denoted as rank(A).

Properties of Rank

• For $A \in \mathbb{R}^{m \times n}$, rank $(A) \leq \min(m, n)$. If rank $(A) = \min(m, n)$, then A is said to be *full rank*.

- For $A \in \mathbb{R}^{m \times n}$, $rank(A) = rank(A^T)$.
- For $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times n}$, $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$.
- For $A, B \in \mathbb{R}^{m \times n}$, $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$.

The Inverse of a Square Matrix

• The *inverse* of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1} , and is the unique matrix such that

$$A^{-1}A = I = AA^{-1}$$
.

- We say that A is *invertible* or *non-singular* if A^{-1} exists and *non-invertible* or *singular* otherwise.
- In order for a square matrix A to have an inverse A^{-1} , then A must be full rank.
- Properties (Assuming $A, B \in \mathbb{R}^{n \times n}$ are non-singular):
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $(A^{-1})^T = (A^T)^{-1}$. For this reason this matrix is often denoted A^{-T} .

Orthogonal Matrices

- Two vectors $x, y \in \mathbb{R}^n$ are *orthogonal* if $x^T y = 0$.
- A vector $x \in \mathbb{R}^n$ is *normalized* if $||x||_2 = 1$.
- A square matrix $U \in \mathbb{R}^{n \times n}$ is *orthogonal* if all its columns are orthogonal to each other and are normalized (the columns are then referred to as being *orthonormal*).

• Properties:

► The inverse of an orthogonal matrix is its transpose.

$$U^T U = I = UU^T$$
.

Operating on a vector with an orthogonal matrix will not change its Euclidean norm, i.e.,

$$||Ux||_2 = ||x||_2$$

for any $x \in \mathbb{R}^n$, $U \in \mathbb{R}^{n \times n}$ orthogonal.

Span and Projection

• The *span* of a set of vectors $\{x_1, x_2, \dots x_n\}$ is the set of all vectors that can be expressed as a linear combination of $\{x_1, \dots, x_n\}$. That is,

$$\mathrm{span}(\{x_1,\ldots x_n\}) = \left\{v : v = \sum_{i=1}^n \alpha_i x_i, \ \alpha_i \in \mathbb{R}\right\}.$$

• The *projection* of a vector $y \in \mathbb{R}^m$ onto the span of $\{x_1, \ldots, x_n\}$ is the vector $v \in \text{span}(\{x_1, \ldots, x_n\})$, such that v is as close as possible to y, as measured by the Euclidean norm $||v - y||_2$.

$$Proj(y; \{x_1, ..., x_n\}) = argmin_{v \in span(\{x_1, ..., x_n\})} ||y - v||_2.$$

Range

• The *range* or the column space of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{R}(A)$, is the the span of the columns of A. In other words,

$$\mathcal{R}(A) = \{ v \in \mathbb{R}^m : v = Ax, x \in \mathbb{R}^n \}.$$

• Assuming A is full rank and n < m, the projection of a vector $y \in \mathbb{R}^m$ onto the range of A is given by,

$$\operatorname{Proj}(y; A) = \operatorname{argmin}_{v \in \mathcal{R}(A)} ||v - y||_{2}.$$

Null Space

The *nullspace* of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{N}(A)$ is the set of all vectors that equal 0 when multiplied by A, i.e.,

$$\mathcal{N}(A) = \{x \in \mathbb{R}^n : Ax = 0\}.$$

Determinant

Let $A \in \mathbb{R}^{n \times n}$, $A_{\setminus i, \setminus j} \in \mathbb{R}^{(n-1) \times (n-1)}$ be the *matrix* that results from deleting the *i*th row and *j*th column from A.

The general (recursive) formula for the determinant is

$$|A| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} |A_{\setminus i, \setminus j}|$$
 (for any $j \in 1, \dots, n$)
 $= \sum_{j=1}^{n} (-1)^{i+j} a_{ij} |A_{\setminus i, \setminus j}|$ (for any $i \in 1, \dots, n$)

Determinant: Example

However, the equations for determinants of matrices up to size 3×3 are fairly common, and it is good to know them:

$$\begin{vmatrix} |[a_{11}]| &= a_{11} \\ |[a_{11} \ a_{12}]| \\ |[a_{21} \ a_{22}]| &= a_{11}a_{22} - a_{12}a_{21} \\ |[a_{11} \ a_{12} \ a_{23}]| \\ |[a_{21} \ a_{22} \ a_{23}]| \\ |[a_{21} \ a_{22} \ a_{23}]| &= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ |[a_{21} \ a_{22} \ a_{23}]| \\ |[a_{31} \ a_{32} \ a_{33}]| &= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ |[a_{21} \ a_{22} \ a_{23}]| &= a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31} \end{vmatrix}$$

The Determinant

The *determinant* of a square matrix $A \in \mathbb{R}^{n \times n}$, is a function $\det : \mathbb{R}^{n \times n} \to \mathbb{R}$, and is denoted |A| or $\det A$.

Given a matrix

$$\begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & \vdots & - \\ - & a_n^T & - \end{bmatrix},$$

consider the set of points $S \subset \mathbb{R}^n$ as follows:

$$S = \{v \in \mathbb{R}^n : v = \sum_{i=1}^n \alpha_i a_i \text{ where } 0 \le \alpha_i \le 1, i = 1, \dots, n\}.$$

The absolute value of the determinant of A is a measure of the "volume" of the set S.

The Determinant

For example, consider the 2×2 matrix,

$$A = \left[egin{array}{cc} 1 & 3 \ 3 & 2 \end{array}
ight]$$

Here, the rows of the matrix are

$$a_1 = \left[\begin{array}{c} 1 \\ 3 \end{array} \right] \quad a_2 = \left[\begin{array}{c} 3 \\ 2 \end{array} \right]$$

(3)

The Determinant: Properties

Algebraically, the determinant satisfies the following three properties:

- 1. The determinant of the identity is 1, |I| = 1. (Geometrically, the volume of a unit hypercube is 1).
- 2. Given a matrix $A \in \mathbb{R}^{n \times n}$, if we multiply a single row in A by a scalar $t \in \mathbb{R}$, then the determinant of the new matrix is t|A|, (Geometrically, multiplying one of the sides of the set S by a factor t causes the volume to increase by a factor t.)
- 3. If we exchange any two rows a_i^T and a_j^T of A, then the determinant of the new matrix is -|A|, for example

The Determinant: Properties

- For $A \in \mathbb{R}^{n \times n}$, $|A| = |A^T|$.
- For $A, B \in \mathbb{R}^{n \times n}$, |AB| = |A||B|.
- For $A \in \mathbb{R}^{n \times n}$, |A| = 0 if and only if A is singular (i.e., non-invertible). (If A is singular then it does not have full rank, and hence its columns are linearly dependent. In this case, the set S corresponds to a "flat sheet" within the n-dimensional space and hence has zero volume.)
- For $A \in \mathbb{R}^{n \times n}$ and A non-singular, $|A^{-1}| = 1/|A|$.

Eigenvalues and Eigenvectors

Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an *eigenvalue* of A and $x \in \mathbb{C}^n$ is the corresponding *eigenvector* if

$$Ax = \lambda x, \quad x \neq 0.$$

Intuitively, this definition means that multiplying A by the vector x results in a new vector that points in the same direction as x, but scaled by a factor λ .

Gradient over Matrix

Suppose that $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ is a function that takes as input a matrix A of size $m \times n$ and returns a real value. Then the **gradient** of f (with respect to $A \in \mathbb{R}^{m \times n}$) is the matrix of partial derivatives, defined as:

$$\nabla_{A}f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \cdots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

i.e., an $m \times n$ matrix with

$$(\nabla_A f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}.$$

Gradient over Vector

Note that the size of $\nabla_A f(A)$ is always the same as the size of A. So if, in particular, A is just a vector $x \in \mathbb{R}^n$,

$$\nabla_{x} f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_{1}} \\ \frac{\partial f(x)}{\partial x_{2}} \\ \vdots \\ \frac{\partial f(x)}{\partial x_{n}} \end{bmatrix}.$$

It follows directly from the equivalent properties of partial derivatives that:

- $\nabla_{\mathsf{x}}(f(\mathsf{x}) + g(\mathsf{x})) = \nabla_{\mathsf{x}}f(\mathsf{x}) + \nabla_{\mathsf{x}}g(\mathsf{x}).$
- For $t \in \mathbb{R}$, $\nabla_X(t f(x)) = t\nabla_X f(x)$.

The Hessian

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is a function that takes a vector in \mathbb{R}^n and returns a real number. Then the *Hessian* matrix with respect to x, written $\nabla_x^2 f(x)$ or simply as H is the $n \times n$ matrix of partial derivatives,

$$\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}} \end{bmatrix}.$$

Note that the Hessian is always symmetric, since

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}$$

Gradients of Linear Functions

For $x \in \mathbb{R}^n$, let $f(x) = b^T x$ for some known vector $b \in \mathbb{R}^n$. Then

$$f(x) = \sum_{i=1}^n b_i x_i$$

SO

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n b_i x_i = b_k.$$

From this we can easily see that $\nabla_x b^T x = b$. This should be compared to the analogous situation in single variable calculus, where $\partial/(\partial x)$ ax = a.

Common Gradient Formula

$$\nabla_x b^T x = b$$

$$\nabla_x^2 b^T x = 0$$

- $\nabla_x x^T A x = 2Ax$ (if A symmetric)
- $\nabla_x^2 x^T A x = 2A$ (if A symmetric)

Least Squares

• Given a full rank matrix $A \in \mathbb{R}^{m \times n}$, and a vector $b \in \mathbb{R}^m$ such that $b \notin \mathcal{R}(A)$, we want to find a vector x such that Ax is as close as possible to b, as measured by the square of the Euclidean norm $||Ax - b||_2^2$.

Outline

Linear Algebra Review

Probability Review

Basic Concepts

- Performing an experiment → outcome
- Sample Space (S): set of all possible outcomes of an experiment
- Event (E): a subset of S ($E \subseteq S$)
- Probability (Bayesian definition)

A number between 0 and 1 to which we ascribe meaning i.e. our belief that an event E occurs

Frequentist definition of probability

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

Axiom 1: $0 \le P(E) \le 1$

Axiom 2: P(S) = 1

$$E \subseteq F$$
, then $P(E) \le P(F)$
 $P(E \cup F) = P(E) + P(F) - P(EF)$ (Inclusion-Exclusion Principle)

General Inclusion-Exclusion Principle:

$$P\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{r=1}^{n} (-1)^{r+1} \sum_{i_{1} < \dots < i_{r}} P(E_{i_{1}} E_{i_{2}} \dots E_{i_{r}})$$

Equally Likely Outcomes: Define S as a sample space with equally likely outcomes. Then

$$P(E) = \frac{|E|}{|S|}$$

Conditional Probability and Bayes' Rule

For any events A, B such that $P(B) \neq 0$, we define:

$$P(A \mid B) := \frac{P(A \cap B)}{P(B)}$$

Let's apply conditional probability to obtain Bayes' Rule!

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \cap B)}{P(A)}$$
$$= \frac{P(B)P(A \mid B)}{P(A)}$$

Conditioned Bayes' Rule: given events A, B, C,

$$P(A \mid B, C) = \frac{P(B \mid A, C)P(A \mid C)}{P(B \mid C)}$$

Law of Total Probability

Let $B_1, ..., B_n$ be n disjoint events whose union is the entire sample space. Then, for any event A,

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i)$$

$$= \sum_{i=1}^{n} P(A \mid B_i)P(B_i)$$

We can then write Bayes' Rule as:

$$P(B_k | A) = \frac{P(B_k)P(A | B_k)}{P(A)}$$

$$= \frac{P(B_k)P(A | B_k)}{\sum_{i=1}^{n} P(A | B_i)P(B_i)}$$

Chain Rule

For any n events $A_1, ..., A_n$, the joint probability can be expressed as a product of conditionals:

$$P(A_1 \cap A_2 \cap ... \cap A_n)$$

= $P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_2 \cap A_1)...P(A_n \mid A_{n-1} \cap A_{n-2} \cap ... \cap A_1)$

Independence

Events A, B are independent if

$$P(AB) = P(A)P(B)$$

We denote this as $A \perp B$. From this, we know that if $A \perp B$,

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

Implication: If two events are independent, observing one event does not change the probability that the other event occurs.

In general: events $A_1, ..., A_n$ are mutually independent if

$$P(\bigcap_{i\in S}A_i)=\prod_{i\in S}P(A_i)$$

Random Variable

A random variable X is a variable that probabilistically takes on different values. It maps outcomes to real values

Probability Mass Function (PMF)

Given a discrete RV X, a PMF maps values of X to probabilities.

$$p_X(x) := p(x) := P(X = x)$$

For a valid PMF, $\sum_{x \in Val(x)} p_X(x) = 1$.

Cumulative Distribution Function (CDF)

A CDF maps a continuous RV to a probability (i.e. $\mathbb{R} o [0,1]$)

$$F_X(a) := F(a) := P(X \le a)$$

A CDF must fulfill the following:

- $\bullet \lim_{x\to -\infty} F_X(x)=0$
- $\lim_{x\to\infty} F_X(x) = 1$
- If $a \le b$, then $F_X(a) \le F_X(b)$ (i.e. CDF must be nondecreasing)

Also note: $P(a \le X \le b) = F_X(b) - F_X(a)$.

Probability Density Function (PDF)

PDF of a continuous RV is simply the derivative of the CDF.

$$f_X(x) := f(x) := \frac{dF_X(x)}{dx}$$

Expectation

Let g be an arbitrary real-valued function.

• If X is a discrete RV with PMF p_X :

$$\mathbb{E}[g(X)] := \sum_{x \in Val(X)} g(x) p_X(x)$$

• If X is a continuous RV with PDF f_X :

$$\mathbb{E}[g(X)] := \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Intuitively, expectation is a weighted average of the values of g(x), weighted by the probability of x.

Conditional Expectation

$$\mathbb{E}[X \mid Y] = \sum_{x \in Val(x)} x p_{X|Y}(x|y) \text{ is a function of } Y.$$

Properties of Expectation

For any constant $a \in \mathbb{R}$ and arbitrary real function f:

- $\mathbb{E}[a] = a$
- $\mathbb{E}[af(X)] = a\mathbb{E}[f(X)]$

Linearity of Expectation

Given *n* real-valued functions $f_1(X), ..., f_n(X)$,

$$\mathbb{E}\left[\sum_{i=1}^n f_i(X)\right] = \sum_{i=1}^n \mathbb{E}[f_i(X)]$$

Example

El Goog sources two batteries, A and B, for its phone. A phone with battery A runs on average 12 hours on a single charge, but only 8 hours on average with battery B. El Goog puts battery A in 80% of its phones and battery B in the rest. If you buy a phone from El Goog, how many hours do you expect it to run on a single charge?

Variance

The variance of a RV X measures how concentrated the distribution of X is around its mean.

$$Var(X) := \mathbb{E}[(X - \mathbb{E}[X])^2]$$

= $\mathbb{E}[X^2] - \mathbb{E}[X]^2$

Interpretation: Var(X) is the expected deviation of X from $\mathbb{E}[X]$.

Properties: For any constant $a \in \mathbb{R}$, real-valued function f(X)

- Var[a] = 0
- $Var[af(X)] = a^2 Var[f(X)]$

Example Distributions

Distribution	PDF or PMF	Mean	Variance
Bernoulli(p)	$\begin{cases} p, & \text{if } x = 1 \\ 1 - p, & \text{if } x = 0. \end{cases}$	p	p(1-p)
Binomial(n, p)	$\binom{n}{k} p^k (1-p)^{n-k}$ for $k=0,1,,n$	np	np(1-p)
Geometric(p)	$p(1-p)^{k-1}$ for $k=1,2,$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$Poisson(\lambda)$	$\frac{e^{-\lambda}\lambda^k}{k!}$ for $k=0,1,$	λ	λ
Uniform(a, b)	$\frac{1}{b-a}$ for all $x \in (a,b)$	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$
$Gaussian(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \text{ for all } x \in (-\infty, \infty)$	μ	σ^2
Exponential(λ)	$\lambda e^{-\lambda x}$ for all $x \ge 0, \lambda \ge 0$	$rac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Joint and Marginal Distributions

• **Joint PMF** for discrete RV's X, Y:

$$p_{XY}(x,y) = P(X = x, Y = y)$$

Note that
$$\sum_{x \in Val(X)} \sum_{y \in Val(Y)} p_{XY}(x, y) = 1$$

• Marginal PMF of X, given joint PMF of X, Y:

$$p_X(x) = \sum_{y} p_{XY}(x, y)$$

Joint and Marginal Distributions

• Joint PDF for continuous RV's $X_1, ..., X_n$:

$$f(x_1,...,x_n) = \frac{\delta^n F(x_1,...x_n)}{\delta x_1 \delta x_2 ... \delta x_n}$$

Note that
$$\int_{x_1} \int_{x_2} ... \int_{x_n} f(x_1, ..., x_n) dx_1 ... dx_n = 1$$

• Marginal PDF of X_1 , given joint PDF of $X_1, ..., X_n$:

$$f_{X_1}(x_1) = \int_{x_2} ... \int_{x_n} f(x_1, ..., x_n) dx_2 ... dx_n$$

Expectation for multiple random variables

Given two RV's X, Y and a function $g: \mathbb{R}^2 \to \mathbb{R}$ of X, Y,

• for discrete *X*, *Y*:

$$\mathbb{E}[g(X,Y)] := \sum_{x \in Val(x)} \sum_{y \in Val(y)} g(x,y) p_{XY}(x,y)$$

• for continuous X, Y:

$$\mathbb{E}[g(X,Y)] := \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) dxdy$$

Covariance

Intuitively: measures how much one RV's value tends to move with another RV's value. For RV's X, Y:

$$Cov[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

= $\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

- If Cov[X, Y] < 0, then X and Y are negatively correlated
- If Cov[X, Y] > 0, then X and Y are positively correlated
- If Cov[X, Y] = 0, then X and Y are uncorrelated

Variance of two variables

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]$$

Conditional distributions for RVs

Works the same way with RV's as with events:

• For discrete *X*, *Y*:

$$p_{Y|X}(y|x) = \frac{p_{XY}(x,y)}{p_X(x)}$$

• For continuous X, Y:

$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_{X}(x)}$$

• In general, for continuous $X_1, ..., X_n$:

$$f_{X_1|X_2,...,X_n}(x_1|x_2,...,x_n) = \frac{f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n)}{f_{X_2,...,X_n}(x_2,...,x_n)}$$

Bayes' Rule for RVs

Also works the same way for RV's as with events:

• For discrete *X*, *Y*:

$$p_{Y|X}(y|x) = \frac{p_{X|Y}(x|y)p_{Y}(y)}{\sum_{y' \in Val(Y)} p_{X|Y}(x|y')p_{Y}(y')}$$

• For continuous X, Y:

$$f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)f_{Y}(y)}{\int_{-\infty}^{\infty} f_{X|Y}(x|y')f_{Y}(y')dy'}$$

Random Vectors

Given n RV's $X_1, ..., X_n$, we can define a random vector X s.t.

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$

Note: all the notions of joint PDF/CDF will apply to X.

Given $g: \mathbb{R}^n \to \mathbb{R}^m$, we have:

$$g(x) = \begin{bmatrix} g_1(x) \\ g_2(x) \\ \vdots \\ g_m(x) \end{bmatrix}, \mathbb{E}[g(X)] = \begin{bmatrix} \mathbb{E}[g_1(X)] \\ \mathbb{E}[g_2(X)] \\ \vdots \\ \mathbb{E}[g_m(X)] \end{bmatrix}$$

Covariance Matrices

For a random vector $X \in \mathbb{R}^n$, we define its **covariance matrix** Σ as the $n \times n$ matrix whose ij-th entry contains the covariance between X_i and X_j .

$$\Sigma = \begin{bmatrix} Cov[X_1, X_1] & \dots & Cov[X_1, X_n] \\ \vdots & \ddots & \vdots \\ Cov[X_n, X_1] & \dots & Cov[X_n, X_n] \end{bmatrix}$$

applying linearity of expectation and the fact that $Cov[X_i, X_j] = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])]$, we obtain

$$\Sigma = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T]$$

Properties:

- \bullet Σ is symmetric and PSD
- If $X_i \perp X_j$ for all i, j, then $\Sigma = diag(Var[X_1], ..., Var[X_n])$

Multivariate Gaussian

The multivariate Gaussian $X \sim \mathcal{N}(\mu, \Sigma)$, $X \in \mathbb{R}^n$:

$$p(x; \mu, \Sigma) = \frac{1}{\det(\Sigma)^{\frac{1}{2}} (2\pi)^{\frac{n}{2}}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

Gaussian when n = 1.

$$p(x; \mu, \sigma^2) = \frac{1}{\sigma(2\pi)^{\frac{1}{2}}} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right)$$

Notice that if $\Sigma \in \mathbb{R}^{1 \times 1}$, then $\Sigma = Var[X_1] = \sigma^2$, and so $\Sigma^{-1} = \frac{1}{\sigma^2}$ and $det(\Sigma)^{\frac{1}{2}} = \sigma$

Effect of changing variance

If X_1 and X_2 are positively correlated:

If X_1 and X_2 are negatively correlated:

The purpose of computation is insight, not numbers.

Vectors | Chapter 1, Essence of linear algebra

Linear combinations, span, and basis vectors | Chapter 2, Essence of linear algebra

Linear transformations and matrices | Chapter 3, Essence of linear algebra

Matrix multiplication as composition | Chapter 4, Essence of linear algebra

Three-dimensional linear transformations | Chapter 5, Essence of linear algebra

The determinant | Chapter 6, Essence of linear algebra

Inverse matrices, column space and null space | Chapter 7, Essence of linear algebra

https://www.youtube.com/@3blue1brown/courses

3Blue1Brown •

@3blue1brown · 5.88M subscribers · 172 videos

My name is Grant Sanderson. Videos here cover a variety of topics in math, or adjacent fiel...

3blue1brown.com and 7 more links

Thank You!
Questions?