Generalization, Bias-Variance Tradeoff

Junxian He
Mar 6, 2024
Training and Test Data

- Training data is the data we see and use during model development.

- Test data is not observed during development.
Bias-Variance Tradeoff

Suppose the data is generated from a quadratic function with noise

$$y^{(i)} = h^*(x^{(i)}) + \xi^{(i)} \quad \xi \sim N(0, \sigma^2)$$
Fitting a Linear Model

\[\text{Error} = \mathbb{E}_x[(y - h(x))^2] \]

The best linear model has large training and test errors on this dataset
Fitting a Linear Model

Error is still large when we have many training samples

Error is still large when we do not have noise

Inherent incapability of the linear model

Bias of a model: the test error even if we were to fit to a very large training dataset
Fitting a Linear Model

Training error is large — underfitting
Fitting 5-th Degree Polynomials

Zero training error

Large test error

Training error is small, test error is large — the model does not generalize

The model captures spurious features
Fitting 5-th Degree Polynomials

A complex model is able to capture various patterns in the small, finite training dataset — large variance, small bias
Fitting 5-th Degree Polynomials

Zero training error

Large test error

What if we have enough training data?
Fitting 5-th Degree Polynomials

fitting 5-th degree model on large dataset

- training data
- best fit 5-th degree model
- ground truth h^*
Large Variance of 5-th Degree Model

Intuitive Definition of the Variance: amount of variations across models learnt on multiple different training datasets (drawn from the same underlying distribution)
Training vs. Test Error

![Diagram showing the relationship between training error, test error, and model complexity. The diagram illustrates the optimal tradeoff between bias and variance leading to minimum test error.]

- Underfitting
- Overfitting
- Model Complexity
- Test Error (\(= \text{Bias}^2 + \text{Variance}\))
- Variance
- Bias^2
An Example of Bias-Variance Tradeoff in Regression

- Draw a training dataset $S = \{x^{(i)}, y^{(i)}\}_{i=1}^{n}$ such that $y^{(i)} = h^*(x^{(i)}) + \xi^{(i)}$ where $\xi^{(i)} \in N(0, \sigma^2)$.

- Train a model on the dataset S, denoted by \hat{h}_S.

- Take a test example (x, y) such that $y = h^*(x) + \xi$ where $\xi \sim N(0, \sigma^2)$

$$\text{MSE}(x) = \mathbb{E}_{S,\xi}[(y - h_S(x))^2]$$

Mean square error on the test set
An Example of Bias-Variance Tradeoff in Regression

\[\text{MSE}(x) = \mathbb{E}_{S, \xi}[(y - h_S(x))^2] \]

\[\text{MSE}(x) = \underbrace{\sigma^2}_{\text{unavoidable}} + \underbrace{(h^*(x) - h_{\text{avg}}(x))^2}_{\triangleq \text{bias}^2} + \underbrace{\text{var}(h_S(x))}_{\triangleq \text{variance}} \]
Overparameterization is very successful in deep learning, but is still mysterious.
Revisit the Train-Test Mismatch

- The training / test empirical distributions are different with finite samples, even though their ground-truth distributions are the same.
- In practice, the ground-truth distributions may be different *Transfer Learning*.
- We always want a model that performs well on unseen data (test data).
- When a model performs well on THE unseen data, we say it generalizes to the data (but not any unseen data).
- When a model generalizes well to many unseen distributions, we say it is robust.
Tom goes everywhere with Catherine Green, a 54-year-old secretary. He moves around her office at work and goes shopping with her. "Most people don’t seem to mind Tom," says Catherine, who thinks he is wonderful. "He’s my fourth child," she says. She may think of him and treat him that way as her son. He moves around buying his food, paying his health bills and his taxes, but in fact Tom is a dog.

Catherine and Tom live in Sweden, a country where everyone is expected to lead an orderly life according to rules laid down by the government, which also provides a high level of care for its people. This level of care costs money.

People in Sweden pay taxes on everything, so aren’t surprised to find that owning a dog means more taxes. Some people are paying as much as 500 Swedish kronor in taxes a year for the right to keep their dog, which is spent by the government on dog hospitals and sometimes medical treatment for a dog that falls ill. However, most such treatment is expensive, so owners often decide to offer health and even life for their dog.

In Sweden dog owners must pay for any damage their dog does. A Swedish Kennel Club official explains what this means: if your dog runs out on the road and gets hit by a passing car, you, as the owner, have to pay for any damage done to the car, even if your dog has been killed in the accident.

Q: How old is Catherine?
A: 54

Q: where does she live?
A:
A Transfer Learning Example

Prompts break the task boundary, enabling better transfer

Sanh et al. 2022. Multitask Prompted Training Enables Zero-Shot Task Generalization
How Do We Know Generalization in Practice

- We don’t have test data, cannot compute test error

 Hold-out or Cross-validation
Hold-out method

Hold-out procedure:

- **n** data points available

\[D \equiv \{X_i, Y_i\}_{i=1}^{n} \]

1) Split into two sets (randomly and preserving label proportion):

- Training dataset
 \[D_T = \{X_i, Y_i\}_{i=1}^{m} \]
- Validation/Hold-out dataset
 \[D_V = \{X_i, Y_i\}_{i=m+1}^{n} \]

2) Train classifier on \(D_T \). Report error on validation dataset \(D_V \).

Overfitting if validation error is much larger than training error

Use the validation dataset to mimic the test case

In case of gradient descent, we can observe whether the validation error increases
Drawback of Hold-Out Method

- Validation error may be misleading if we get an “unfortunate” split

 Validation is essentially mimicking the test
Cross-Validation

K-fold cross-validation

Create K-fold partition of the dataset. Do K runs: train using K-1 partitions and calculate validation error on remaining partition (rotating validation partition on each run). Report average validation error
Drawback of Cross-Validation

- Cannot be used to select a specific model, more often used to select method design, hyperparameters, etc.

- Expensive

Hold-out is more commonly used nowadays, and the validation dataset is provided in advance
Hold-Out Method

Validation is essentially mimicking the test, always try to pick validation data that may align with test data, unnecessarily to hold out training data for validation
Validation dataset is another set of pairs \(\{(\hat{x}^{(1)}, \hat{y}^{(1)}), \ldots, (\hat{x}^{(m)}, \hat{y}^{(m)})\} \)

Does not overlap with training dataset.

Test dataset is another set of pairs \(\{ (\tilde{x}^{(1)}, \tilde{y}^{(1)}), \ldots, (\tilde{x}^{(L)}, \tilde{y}^{(L)}) \} \)

Does not overlap with training and validation dataset.

Completely unseen before deployment.

Realistic setting.
Validation is Very Important

- Track underfitting/overfitting (in case of iterative training)
- Decide when to stop training
- Select hyperparameters

Hyperparameter tuning

When you tune hyperparameters harder, it is more likely the validation error would mismatch the test error, because you are overfitting on the validation

Hyperparameter tuning is a form of training
Good ML Practice

- Do not look at or evaluate on the test dataset
 Many people are implicitly using test dataset as validation

- Always track the training and validation metrics/errors/losses
Thank You!

Q & A