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Midterm Exam

March 20, in-class (3pm-420pm, locations TBA, maybe just LTE)



Unsupervised Learning

No labels, only x is given

Unsupervised learning is typically “harder” than supervised learning



What is Clustering

Clustering: the process of grouping a set of objects into classes of similar
objects

— high intra-class similarity
— low inter-class similarity
— It is the most common form of unsupervised learning Similarity is subjective

Clustering 1s subjective

Simpson's Family ~ School Employees Females



Distance Metrics

X = (Xq, X, +eey Xp)
Y= (Y1 Y2 o) Vp)

14
2
Euclidean distance d(x,y)= 2\ Z‘ Xi— Yi|
i=l

Manhattan distance d(x,y) = Zpll Xi—yi|
i=1

Sup-distance d(x,y)=max | xi— yi|

1<i<p
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K-Means

Algorithm

Input — Desired number of clusters, k

Initialize — the k cluster centers (randomly if necessary)

Iterate —
1. Assigh points to the nearest cluster centers

2. Re-estimate the k cluster centers (aka the centroid or mean), by assuming
the memberships found above are correct.

— 1 —
Pk = 5~ E T
Cr !
1E€Ch
Termination —

If none of the objects changed membership in the last iteration, exit.
Otherwise go to 1.



K-Means: Step 1




K-Means: Step 2




K-Means: Step 3

10




K-Means: Step 4
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K-Means: Step 5
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Objective of K-Means

n
J(C,p) = Z [x) — /.LC(I) |° decreases momonotonically.
i=1

Proof?

K-means does not find a global minimus in this objective (it is NP-Hard)
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Initialization of Centers

Results are sensitive to the initialization
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Initialization of Centers

Results are sensitive to the initialization
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Initialization of Centers

Results are sensitive to the initialization

i i (1)
JC,p) =) |Ix =P
=1

1. Try out multiple starting points and compare the objective

2. K-means++ algorithm improves the initialization
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Model Selection of K-Means (or
Unsupervised Learning in General)

Try out multiple starting points and compare the objective

- i (1)
JC,op) =D X —u2
i=1

Sometimes people use supervised metrics for

This is unsupervised metric L L . . .
validation, which is not strictly unsupervised learning

1. Compute the metric on training set or test set?
2. For unsupervised learning, what is the difference of train and test?

3. Isit reasonable to assume the test input (x) is given?
4. If now | give you some data examples, ask you to cluster them. Are these data

training or test?
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Expectation Maximization (EM)



EM for Gaussian Mixture Model

Given a training set {x1, .. x"™}  No Labels

o
o
o
o
® ® . .
o0 . We have discussed the supervised
@ ® ® case in Gaussian Discriminative Model
% 4 o ®
® ®
® o o

Modeling data distribution is a fundamental goal in ML, not necessarily for

classification
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The Generative Model

0(z): multinomial , k Kis a hyperparameter based on our assumption

Classes(e.g. uniform) We assume the generative process as:

1. For each data point, sample its label
z; from p(z)

Label

(> 21)s (g5 29), -+ - (Mg 2p)

2. Samp|e Xl it N(IMZZ" Zzl.)
Data Gaussian Mixture Model (GMM)

Same as Gaussian Discriminative Analysis, but Z is
observed in GDA
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Recap: How did we do in GDA?

Binary classification: y € {0,1},x € R
Assumption y ~ Bernoulli(¢)
rly=0 ~ N(uo,X)
zly=1 ~ N(u1, %)

$'(1—¢) "

1 1 Txv—1
— (27T)d/2\2|1/2 CXPp (_i(x o IU'O) 2. (ZB o ,LL()))

=
N
<
N
|

=
8
NS
||
=
|

1 1 Ty —1
p(zly=1) = (27r)d/2\§3|1/2 eXp (—5(33—#1) 2 (SB—/Ll))

21



Recap: How did we do in GDA?

€(§b7 Mo, K1, Z) lOg Hp(x(2)7y(2)7 ¢7 Moy K1, Z)
1=1

log | | p(9[y™; o, i1, )p(y™; 9).
1=1

- Z 1{y(’&) _ 1
Z’iZl ]_{y(z) — O}ZE(Z)

Z?:l l{y(Z) — O} 2t
> iy Hy' = 1}32®

Z?  H{y® =1} X

—Z £ — ) (@Y — py0)"

X
_7 | | | | | | | |
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The Generative Model

0(z): multinomial , k Kis a hyperparameter based on our assumption

Classes(e.g. uniform) We assume the generative process as:

1. For each data point, sample its label
z; from p(z)

Label

(> 21)s (g5 29), -+ - (Mg 2p)

2. Samplex; ~ N(u,, ~.)
Data o

Same as Gaussian Discriminative Analysis, but Z is
observed in GDA
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Maximum Likelihood Estimation for GMM

Modeling data distribution is a fundamental goal in ML

Supervised: Unsupervised:

argmax, log p(x, 2) argmax, log p(x)

U How to compute this?

Prediction:
p(z|x) « p(2)p(x|z)
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Maximum Likelihood Estimation for GMM

Up,p,B) = > logp(z®; e, p,%)
1=1

n k
= ) log Y p(a@2%;u,2)p(2"; 9).
1=1

1. Intractable (no closed-form for the solution)
2. Expensive when k is large (if you want to do gradient descent)
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Things are easy when we know z..

In case we know 7

U, 1, %) = Y logp(a®|2%; 1, T) +log p(2%; 9).

1=1

1 « N
¢; = Ezl{z():]}’

Y {29 = e

Do 20 =4}

) > {2 =5}z - Hj)(x(i) — Mj)T.
Z?ﬂ l{z(z) =7}

A5
|

Expectation maximization is to infer the latent variables first (z here), and
maximize the likelihood given the inferred 7

26



Expectation Maximization for GMM

Repeat until convergence:

{ No parameter change in E-step

i, h g g : ' i 1
(E-step) For each 1, j, set COmpute the posterlor dIStrlbUthn,

0 . (50 — 140, -
w;” =p(z" =jlz%¢m%)  given current parameters

J

(M-step) Update the parameters:

1<~

¢j — ﬁng-),
1=1 |

L w2 update parameters using current p(z|x)
ljl. - —n 1 )
] Ei=1w§')

| N, S wi? (@@ — ) (@D — )T

J

Z?:l wy('Z)
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Expectation Maximization

Why does it work?

What is its relation to MLE estimation?
How is convergence guaranteed?

When we perform EM, what is the real objective that we are
optimizing?’
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General EM Algorithm

— Zp(xa 2 9)

En: log p(z¥; )
Z log Zp 3;(1) Z("')

N
—~~

D
~—
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2 This lower bound holds for any Q(z)
C : logp(z;0) = 10gZp(a:,z; 0)
Let Q to be a distribution over Z
_ IOgZQ p(x, z; 9)
(:1: 2; 0)
> ZQ(Z)log
Jensen inequality : Q(2)
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Jensen Inequality

For a convex function f, and r € |0,1]

ftx, + (1 = )xy) < tf(x)) + (1 = 1)f(x,)

In probability:

AELX] < [AX)]

If fis strictly convex, then equality holds only when X is a constant
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Evidence Lower Bound (ELBO)

logp(z;0) = log » p(,2;0)

|
<)
0%
L
o
=

Q(z) ELBO
> 3°0(2) log p(z, 2;0)

Because the log likelihood is intractable, people often
optimize its lower bound instead

Why optimizing lower bound works? How to choose Q(z), why we
computed posterior in the E step, what is the benefit?
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Thank You!
Q& A
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