

Expectation Maximization

Junxian He Mar 13, 2024 **COMP 5212** Machine Learning Lecture 12

Recap: Generative Models

We want to model p(x)

In discriminative models, we need to "design" model to make assumption about the function: linear regression, logistic regression, kernel methods

In generative models, we "design" the model and make assumptions about the data, through defining a distribution family

Recap: Generative Models

distributions that belong to the Gaussian family

As a simplest case, we directly assume $x \sim N(\mu, \Sigma)$

By varying the parameters (μ , Σ), the model represents different

Recap: Generative Models

How to construct more complex distribution family?

Introducing more latent variables

Recap: Gaussian Mixture Model

- We assume the generative process as:
- 1. For each data point, sample its label z_i from p(z)
- 2. Sample $x_i \sim N(\mu_{z_i}, \Sigma_{z_i})$

Recap: MLE for GMM

Unsupervised:

 $\operatorname{argmax}_{\phi,\mu,\Sigma} \log p(x)$

How to compute this?

Recap: MLE for GMM

- Intractable (no closed-form for the solution) 1.
- Large variance in gradient descent 2.

Expectation Maximization is to address the MLE optimization problem

$$\sum_{z^{(i)}=1}^{k} p(x^{(i)}|z^{(i)};\mu,\Sigma) p(z^{(i)};\phi).$$

Things are easy when we know z..

In case we know z.

$$\ell(\phi, \mu, \Sigma) = \sum_{i=1}^{n} \log p(x^{(i)} | z^{(i)}; \mu, \Sigma) + \log p(z^{(i)}; \phi).$$

$$\begin{split} \phi_j &= \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{z^{(i)} = j\}, \\ \mu_j &= \frac{\sum_{i=1}^n \mathbb{1}\{z^{(i)} = j\} x^{(i)}}{\sum_{i=1}^n \mathbb{1}\{z^{(i)} = j\}}, \\ \Sigma_j &= \frac{\sum_{i=1}^n \mathbb{1}\{z^{(i)} = j\} (x^{(i)} - \mu_j) (x^{(i)} - \mu_j)^T}{\sum_{i=1}^n \mathbb{1}\{z^{(i)} = j\}}. \end{split}$$

maximize the likelihood given the inferred z

Expectation maximization is to infer the latent variables first (z here), and

Expectation Maximization for GMM

Repeat until convergence:

No parameter change in E-step

(E-step) For each i, j, set

$$w_j^{(i)} := p(z^{(i)} = j | x^{(i)})$$

(M-step) Update the parameters:

$$\begin{split} \phi_j &:= \frac{1}{n} \sum_{i=1}^n w_j^{(i)}, \\ \mu_j &:= \frac{\sum_{i=1}^n w_j^{(i)} x^{(i)}}{\sum_{i=1}^n w_j^{(i)}}, \\ \Sigma_j &:= \frac{\sum_{i=1}^n w_j^{(i)} (x^{(i)} - \mu_j) (x^{(i)} - \mu_j)^T}{\sum_{i=1}^n w_j^{(i)}} \end{split}$$

- Compute the posterior distribution, $^{)};\phi,\mu,\Sigma)$ given current parameters

9

Why does it work?

What is its relation to MLE estimation?

How is convergence guaranteed?

When we perform EM, what is the real objective that we are optimizing?

Expectation Maximization

General EM Algorithm

$$p(x;\theta) = \sum_{z} p(x,z;\theta)$$

$$egin{aligned} \ell(heta) &=& \sum_{i=1}^n \log p(x^{(i)}; heta) \ &=& \sum_{i=1}^n \log \sum_{z^{(i)}} p(x^{(i)},z^{(i)}; heta). \end{aligned}$$

Let Q to be a distribution over z.

Jensen inequality

This lower bound holds for any Q(z) $\log p(x;\theta) = \log \sum_{z} p(x,z;\theta)$ $= \log \sum_{z} Q(z) \frac{p(x,z;\theta)}{Q(z)}$ $\geq \sum_{z} Q(z) \log \frac{p(x,z;\theta)}{Q(z)}$ Suality

11

For a convex function f, and $t \in [0,1]$

$$f(tx_1 + (1 - t)x_2)$$

In probability:

$f(\mathbb{E}[X]) \le [f(X)]$

If f is strictly convex, then equality holds only when X is a constant

Jensen Inequality

$\leq tf(x_1) + (1 - t)f(x_2)$

 $\log p(x; \theta) = \log \theta$

 $= \log \left(\frac{1}{2} \right)$

 \geq

optimize its lower bound instead

Why optimizing lower bound works? How to choose Q(z), why we computed posterior in the E step, what is the benefit?

$$g \sum_{z} p(x, z; \theta)$$

$$g \sum_{z} Q(z) \frac{p(x, z; \theta)}{Q(z)} \qquad \text{ELBO}$$

$$Q(z) \log \frac{p(x, z; \theta)}{Q(z)}$$

Because the log likelihood is intractable, people often

When is the lower bound tight?

$$\frac{p(x, z; \theta)}{Q(z)} = c$$

 $\log p(x;\theta) = \log \sum p(x,z;\theta)$ $= \log \sum_{z} Q(z) \frac{p(x, z; \theta)}{Q(z)}$ $\geq \sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)}$

 $Q(z) = \frac{p(x, z; \theta)}{\sum_{z} p(x, z; \theta)}$ $= \frac{p(x,z;\theta)}{2}$ $p(x; \theta)$ $= p(z|x;\theta)$

Verify
$$\sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)}$$
 when $Q(z) = p(z|x)$?

 $\text{ELBO}(x; Q, \theta) = \sum$

 $\forall Q, \theta, x, \quad \log p(x; \theta) \ge \text{ELBO}(x; Q, \theta)$

For a dataset of many data samples

$$\ell(\theta) \ge \sum_{i} \text{ELBO}(x^{(i)}; Q_i, \theta)$$
$$= \sum_{i} \sum_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})}$$

$$\sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)}$$

What is $\operatorname{argmax}_{Q(z)} \operatorname{ELBO}(x; Q, \theta)$?

 $\text{ELBO}(x; Q, \theta) = \sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)}$

The General EM Algorithm

Repeat until convergence { (E-step) For each i, set

$$Q_i(z^{(i)}) := p(z^{(i)}|x^{(i)})$$

(M-step) Set

$$egin{aligned} & heta := rg\max_{ heta} \sum_{i=1}^n ext{ELBO}(x^{(i)}; Q_i, heta) \ & = rg\max_{ heta} \sum_i \sum_{z^{(i)}} Q_i(z^{(i)}) \log rac{p(x)}{2} \end{aligned}$$

E-step is maximizing ELBO over Q(z), M-step is maximizing ELBO over θ Why is maximizing lower-bound sufficient?

 $(; \theta)$. Based on current θ , model parameters does not change in E-step

 $rac{x^{(i)}, z^{(i)}; heta)}{Q_i(z^{(i)})}.$

Q(z) is not relevant to θ , and Q(z) does not change in the M-step

$\log p(x;\theta)$ Only related to θ , no z

ELBO

$\log p(x;\theta)$

ELBO

E-step: $Q(z) = p(z | x; \theta)$, making ELBO tight "dog" doesn't change, because θ does not change

$\log p(x;\theta)$

ELBO

ELBO becomes larger, and it is not tight anymore because posterior changes

M-step: max *ELBO* θ

$\log p(x;\theta)$

ELBO

EM is Hill Climbing

Larger

$\log p(x; \theta)$

ELBO

E-step: $Q(z) = p(z | x; \theta)$, making ELBO tight "dog" doesn't change, because θ does not change

Revisit the E-Step

Repeat until convergence { (E-step) For each i, set $Q_i(z^{(i)}) := p(z^{(i)}|x^{(i)};\theta).$ (M-step) Set $\theta := \arg \max_{\theta} \sum_{i=1} \operatorname{ELBO}(x^{(i)}; Q_i, \theta)$ $= \arg\max_{\theta} \sum_{i} \sum_{(i)} Q_i(z^{(i)}) \log \frac{p(x^{(i)})}{Q_i}$

- Computable posterior is important. If Q(z) is not the posterior, then there is no guarantee that $\log p(x)$ is improved at every iteration
 - Still remember conjugate prior? Which is for easy-to-compute posterior

$$rac{Q_i(z^{(i)}; heta)}{Q_i(z^{(i)})}$$

Revisit the M-Step

$$\operatorname{argmax}_{\theta} \sum_{z} Q(z) \log p(x, z; \theta) = \operatorname{argmax}_{\theta} \mathbb{E}_{z \sim Q(z)} \log p(x, z; \theta)$$

We can use Monto-Carlo sampling to approximate the expectation

$\operatorname{argmax}_{\theta} \sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)} = \operatorname{argmax}_{\theta} \sum_{z} Q(z) \log p(x, z; \theta)$

Sometimes the sum is computable, but sometimes not

Comparing Direct Maximization and EM

Direct maximization:

Z

M-Step in EM:

Why don't we use MC sampling to approximate expectation in direct maximization?

It may need a large number of samples to have a good approximation

$\operatorname{argmax}_{\theta} \log \sum p(x | z; \theta) p(z) = \operatorname{argmax}_{\theta} \log \mathbb{E}_{z \sim p(z)} p(x | z; \theta)$

$\operatorname{argmax}_{\theta} \sum Q(z) \log p(x, z; \theta) = \operatorname{argmax}_{\theta} \mathbb{E}_{z \sim Q(z)} \log p(x, z; \theta)$

Other Interpretations of ELBO

$$ELBO(x; Q, \theta) = E_{z \sim Q}[]$$
$$= E_{z \sim Q}[]$$

$ELBO(x; Q, \theta) = \log p(x)$

Maximizing ELBO over Q(z) is essentially solving the posterior distribution p(z|x)

 $\begin{aligned} \left[\log p(x, z; \theta)\right] - \mathcal{E}_{z \sim Q}[\log Q(z)] \\ \left[\log p(x|z; \theta)\right] - D_{KL}(Q||p_z) \\ \end{aligned}$ Regularize Q(z) towards the prior p(z)

$$z) - D_{KL}(Q \| p_{z|x})$$

What if we do not have closed-form model posterior? —> Variational EM

The process of approximating the model posterior is called variational inference

We will learn variational autoencoder later

Thank You! Q&A