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Recap: The General EM Algorithm

Repeat until convergence {

(E-step) For each i, set
Q:(2®) := p(zD|2D:; ) Based on current 6, model parameters does not

change in E-step

(M-step) Set

f := argmax ¥ ELBO(z";Q;,0)
0 Z ((z) is not relevant to @, and Q(z)does

(2@, 2(); 9) not change in the M-step

1=1
i p
= a,rgmea,xZZQi(z())log 01 (2)
i () ’

E-step is maximizing ELBO over Q(z), M-step is maximizing ELBO over@

Why is maximizing lower-bound sufficient?
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log p(x; 0)

ELBO

Recap: EM is Hill Climbing

Only related to @, no 7




Recap: EM is Hill Climbing

log p(x; 0)

Larger

)
fe@x ELBO

QS E-step: O(2) = p(z|x; 6), making ELBO tight
P' “dog” doesn’t change, because @ does not change
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Recap: EM is Hill Climbing

log p(x; 0)

Larger

M-step: max ELBO
0

ELBO becomes larger, and it is not tight
anymore because posterior changes



Recap: EM is Hill Climbing
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Recap: EM is Hill Climbing
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E-step: O(z) = p(z]|x; 6), making ELBO tight

“dog” doesn’t change, because @ does not change



Recap: EM is Hill Climbing
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. logp(x;0)
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M-step: max ELBO
0

ELBO becomes larger, and it is not tight
anymore because posterior changes

log p(x; @) is monotonically increasing!

We are doing MLE implicitly! Convergence is guaranteed
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High-Dimensional Data

High-Dimensions = Lot of Features

Document classification
Features per document =
thousands of words/unigrams
millions of bigrams, contextual
information
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High-Dimensional Data

High-Dimensions = Lot of Features

EG Brain Imaging

120 locations x 500 time points

X 20 objects

AEGOB33
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Curse of Dimensionality

* Why are more features bad?

— Redundant features (not all words are useful to classify a document)
more noise added than signal

— Hard to store and process data (computationally challenging)

— Hard to interpret and visualize

— Complexity of decision rule tends to grow with # features
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Dimensionality Reduction

“Unrolling the swiss roll”

13



Dimensionality Reduction

* Feature Selection — Only a few features are relevant to the learning task

/N rrll /

'I“IIIIl X3 - Irrelevant
1
2

* Latent features — Some linear/nonlinear combination of features provides a
more efficient representation than observed features

X3
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Latent Feature Extraction

Combinations of observed features provide more efficient representation, and
capture underlying relations that govern the data

E.g. Ego, personality and intelligence are hidden attributes that characterize
human behavior instead of survey questions

Topics (sports, science, news, etc.) instead of documents

e |inear

Principal Component Analysis (PCA)

Factor Analysis
Independent Component Analysis (ICA)

e Nonlinear

ISOMAP
Local Linear Embedding (LLE)
Laplacian Eigenmaps
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Principal Component Analysis (PCA)

Only one relevant feature Both features become relevant

Can we transform the features so that we only need to preserve one latent
feature? Find linear projection so that projected data is uncorrelated.

16



Principal Component Analysis (PCA)

D=2
d=1

Assumption: Data lies on or near a low d-dimensional linear subspace.

Axes of this subspace are an effective representation of the data

ldentifying the axes is known as Principal Components Analysis, and
can be obtained by Eigen or Singular value decomposition
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Principal Component Analysis (PCA)

Project the data onto different directions

We want the low-dim features that can

Which projection is better?
discriminate the data the most
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Normalizing Data

(2)
. Ty — .
:Egz) y 9 M

0 Wi = %2?21 $§-i) sz _ %Z?:l(:vﬁ-’)

Different features may have different scales

After normalization, each feature has O mean and variance 1

19



Principal Component Analysis (PCA)

Let v be the principal component

Find vector that maximizes sample variance of projection

1 — 1
— Z(VTXi)Q — v XXy
T 1 T

m@x viIXX!ly st. viv=1

Lagrangian: maxv: XX v — \(viv —1)

v

0/0v =0 (XX —AI)v=0 = (XX)v = Av

Definition of eigenvectors
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K-dimensional Cases

If we project our data into a k-dimensional subspace (k<d), we should choose
Vi, V5, . ., V;, to be the top k eigenvectors of xx!

For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal
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Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal
directions that capture most of the variance
In the data

18t PC — direction of greatest variability in
data

Projection of data points along 1st PC
discriminate the data most along any one
direction
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Principal Component Analysis (PCA)

Sample variance of projection =vIXX!Tv = vlv =)\

Thus, the eigenvalue A denotes the amount of variability captured along
that dimension.

The 18t Principal component v1 is the eigenvector of the sample covariance
matrix XXT associated with the largest eigenvalue A1

The 2" Principal component vz is the eigenvector of the sample covariance
matrix XX associated with the second largest eigenvalue A2

And soon ...
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Computing the Principal Components (PCs)

Eigenvectors are solutions of the following equation:

(XX1)v = Av (XX —ADv =0

Non-zero solution v # 0 possible only if
det(XX1 — A\I) =0
We can compute the eigenvalues from this equation

This is a D' order equation in A, can have at most D distinct solutions (roots
of the characteristic equation)

Once eigenvalues are computed, solve for eigenvectors (Principal Components)
using
(XX —A)v=0
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Another Interpretation

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the
vectors yields minimum MSE reconstruction
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Dimensionality Reduction using PCA

The eigenvalue A denotes the amount of variability captured along
that dimension.

Zero eigenvalues indicate no variability along those directions =>
data lies exactly on a linear subspace

Only keep data projections onto principal components with non-
zero eigenvalues, say v1, ..., vawhere d = rank (XX')

Original Representation Transformed representation

data point projections
xi = [xi! X2, .... 0] [viTxi, v2'xi, ... vda'xi]

(D-dimensional vector) (d-dimensional vector)
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Dimensionality Reduction using PCA

Usually data lies near a linear subspace, as noise introduces small variability

Only keep data projections onto principal components with large eigenvalues
Can ignore the components of lesser significance.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You might lose some information, but if the

| , It is not lossless compression
eigenvalues are small, you don’t lose much
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Example: faces
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Eigenfaces
from 7562
Images:

top left image

IS lInear
combination
of rest.

Sirovich & Kirby (1987)
Turk & Pentland (1991)




- Weaknesses
—Limited to second order statistics

Strenaths

i Wi Isil i

—Eigenvector method
—No tuning parameters

—Non-iterative
—No local optima

—Limited to linear projections
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Properties of PCA

Nonlinear example
Jrd PC fwd—&‘\
0.1F g 393
01 F Q \\
-0-2
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2nd PC 01\\- /0] 1st PC




Thank You!
Q& A
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