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Logis&c	Func&on	as	a	Graph
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Computa3on	Graph



Neural	Networks	
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Mul&layer	Networks	of	Sigmoid	Units
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More	Applica&ons
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Expressive	Capabili&es	of	ANNs
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Predic&on	using	Neural	Networks
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Objec&ve	Func&ons	for	NNs
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Gradient	descent	for	training	NNs
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w ← w − α ⋅
∂L
∂w

Gradient	decent	for	1	node:

Chain	rule



Univariate	Chain	Rule
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Example:



Example	of	Chain	Rule
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Using	Chain	Rules
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The	goal	isn’t	to	obtain	closed-form	solu3ons,	but	to	be	able	to	write	a	
program	that	efficiently	computes	the	deriva3ves



Univariate	Chain	Rule
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A	Slightly	More	Convenient	Nota&on
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Mul&variate	Chain	Rule
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Example:



Mul&variate	Chain	Rule
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Another	Example
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Backpropaga&on
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[1]	David	Rumelhart,	Geoffrey	Hinton,	Ronald	Williams.	Learning	representa3ons	
by	back-propaga3ng	errors.	Nature.	1986



Backpropaga&on
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Mul3layer	Perceptron	(mul3ple	outputs):



Backpropaga&on
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Backpropaga&on	as	Message	Passing
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Each	node	only	has	to	know	how	to	compute	deriva3ves	with	respect	to	its	
arguments,	and	doesn’t	have	to	know	anything	about	the	rest	of	the	graph



Computa&onal	Cost
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The	backward	pass	is	about	as	expensive	as	two	forward	passes
For	a	mul3layer	perceptron,	this	means	the	cost	is	linear	in	the	number	of	
layers,	quadra3c	in	the	number	of	units	per	layer



Backpropaga&on
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Backpropaga&on
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Stochas&c	Gradient	Descent
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Vanilla	backpropaga3on	training	is	slow	with	lot	of	data	and	lot	of	weights

L = 𝔼x∼pdata
l(x) ≈

1
N

N

∑
i=1

l(xi)

Denote	the	loss	of	a	single	data	example	 	as	 ,	the	training	loss	 	is:xi l(xi) L

This	is	slow	on	the	en3re	training	dataset,	thus	we	use	MCMC	to	approximate:

N	is	the	size	of	the	
en3re	training	dataset

∇L = ∇𝔼x∼pdata
l(x) ≈ ∇

1
n

n

∑
i=1

l(xi)
n	is	the	size	of	a	

random	minibatch	
(batch	size)

n	can	be	as	small	as	one
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Ac&va&on	Func&ons
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Tanh
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Ac&va&on	Func&on
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ReLU
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Other	Ac&va&on	Func&ons
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Mul&layer	Perceptron	Neural	
Networks	(MLP)
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Thank	You!
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