EERMRAKE COMP 5212

== TLE HONG KONG : :
UNIVERSITY OF SCIENCE Machine Learning
AND TECHNOLOGY lecture 18

Neural Networks, Backpropagation

Junxian He
Apr 12, 2024

Logistic Function as a Graph

1
14+ exp(—(wo + >, w; X;))

Output, o(x) = o(wy + Z w; X

Sigmoid Unit

II
'—l

.I’

E ner = Z W X - :

1 = =
—0 o = G(netr) "d

Computation Graph

Neural Networks

* fcan be a non-linear function
* X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

* Neural networks - Represent f by network of sigmoid (more

recently ReLU — next lecture) units :

Multilayer Networks of Sigmoid Units

Output

4000 _ _ .

a hesad

& hid
{ + hod
: * had
| ¢ hawed

1 « heard

5\ -,s\ -_'--

Hidden ! | o
ayer) who

~ hood

Input
layer

)
Q 500 1000 1400

Two layers of logistic units

Highly non-linear decision surface

More Applications

Neural Network
trained to drive a
car!

Expressive Capabilities of ANNs

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers

[Cybenko 1988].

Prediction using Neural Networks

Prediction — Given neural network (hidden units and weights), use it to predict
the label of a test point

Forward Propagation —
Start from input layer
For each subsequent layer, compute output of sigmoid unit

Sigmoid unit: O(X) — U(’wo + Z wimi)
1

1-Hidden layer, o(x) = o |wy+ o (1wl i ool
1 output NN: (x) (O zh: ho (wo z@: i T;)
\—#

7

Objective Functions for NNs

* Regression:
— Use the same objective as Linear Regression
— Quadratic loss (i.e. mean squared error)

* (lassification:
— Use the same objective as Logistic Regression
— Cross-entropy (i.e. negative log likelihood)

— This requires probabilities, so we add an additional
“softmax” layer at the end of our network

Gradient descent for training NNs

oL
W—Ww—q- - —
ow
Gradient decent for 1 node:
Sigmoid Unit
net :gbw,- X; 0 = G(net) = l_ne
| +e
0o do Onet
= o(1 — o)x;

Ow; Onet Ow; Chain rule

Univariate Chain Rule

@ We've already been using the univariate Chain Rule.

@ Recall: if f(x) and x(t) are univariate functions, then

d df dx
S _ |
1t X)) = -4

Example: 7 — wx+ b
y =o(z2)
1 2
L = 5()’ — t)

Let’'s compute the loss derivatives.

10

Example of Chain Rule

L = %(O'(WX + b) — t)?

oL 0O [1 5
ow ~ ow |27 TR
1 O 5
— 2({)W(a(v\/x—l—b) — t)

= (o(wx + b) — t)o’ (wx + b)aiw(wx + b)
= (o(wx + b) — t)o’ (wx + b)x

11

Using Chain Rules

Computing the derivatives:

Computing the loss: a7
_ y 7
z=wx-+b dz i
y = o2 =@
ﬁzg(y—t)z 8_52%)(
ow dz
oL dL
ob ~ dz

The goal isn’t to obtain closed-form solutions, but to be able to write a
program that efficiently computes the derivatives

12

Univariate Chain Rule

Compute Loss
—_—)

t

-

Compute Derivatives
—

13

A Slightly More Convenient Notation

Use y to denote the derivative dL/dy, sometimes called the error signal

Computing the loss: Computing the derivatives:
z=wx+b y=y—t
y = o(2) z=yo'(z)
1 wW=2ZXx
L=(y—t) _
Sy — 1) -

14

Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 17
This requires the multivariate Chain Rule!

< > SOy0) =5 S+
Example:

df Ofdx Of dy

f —= i — = |

xoy)=y+e dt Oxdt Oy dt
x(t) = cost

y(t) = $2 = (ye”)-(—sint) + (1 + xe¥) - 2t

15

df

dt

- Ox dt

Multivariate Chain Rule

Mathematical expressions
to be evaluated

/ ™\

Of de Of dy

Oy dt

N/

Values already computed
by our program

16

D

/\/

/\

Another Example

17

Backpropagation
Let v1,..., vy be a topological ordering of the computation graph

(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

For:=1,...,N

forward pass .
Compute v; as a function of Pa(v;)

backward pass

[1] David Rumelhart, Geoffrey Hinton, Ronald Williams. Learning representations

by back-propagating errors. Nature. 1986 "

Backpropagation

Multilayer Perceptron (multiple outputs): Backward pass:

Forward pass: L=1

(1) w(Q) (2) v/, — —
NN = 3w+ b = e
1 1 : (2) —
J W,.," =— Yk h;
. \ \ k

1>\’<Z1—>h1><fyl\ hi = o(z) R
> > ko = Yk
$2—+22—>h2 +y2/ Yk = Z WlSi)hi T b§<) h_ — Z .)Tkw(z)
i S ki
bg)//v‘T b(z)//”T 1 , k
1 2 2 I
e 4 wid L=352 n—t) 7 = hio (z)
Wes Woyo P
plt) — 7

19

Backpropagation

In vectorized form:
Backward pass:

(1) (2) _
W W\ t\ 71
y=L(y—t
X >/, »h >y)E y (y)
/ /‘ W@®) =yh'
bt!) b2 b —y
Forward pass: h — W(Z)Ty
z = V\(I(l))x + b Z=ho 0‘/(2)
h =o0(z -
y = Wh + b®) W) = 2x
b(1) =Z

1
L=|t—yl?
St =yl

20

Backpropagation as Message Passing

9z

\ -
/'_ azw
Z ——
Ow

< /
w > Incoming messages

0z \ sum to
ZV z

b

@ Each node receives a bunch of messages from its children, which it
aggregates to get its error signal. It then passes messages to Its
parents.

Each node only has to know how to compute derivatives with respect to its
arguments, and doesn’t have to know anything about the rest of the graph

21

Computational Cost

@ Computational cost of forward pass: one add-multiply operation per
weight
1 1
Z,':ZWU(-)XJ-|-bI()
J

@ Computational cost of backward pass: two add-multiply operations
per weight

Wi = Vih

=S v (2)

The backward pass is about as expensive as two forward passes

For a multilayer perceptron, this means the cost is linear in the number of

layers, quadratic in the number of units per layer
22

Backpropagation

@ Backprop is used to train the overwhelming majority of neural nets today.

e Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop i1s believed to be neurally implausible.

e No evidence for biological signals analogous to error derivatives.

o All the biologically plausible alternatives we know about learn much
more slowly (on computers).

@ So how on earth does the brain learn?

23

Backpropagation

@ By now, we've seen three different ways of looking at gradients:

o Geometric: visualization of gradient in weight space
e Algebraic: mechanics of computing the derivatives
o Implementational: efficient implementation on the computer

24

Stochastic Gradient Descent

Vanilla backpropagation training is slow with lot of data and lot of weights

Denote the loss of a single data example x; as [(x;), the training loss L is:

N is the size of the

1 N
L = ‘prdaml(x) ~ N Z l(xi) entire training dataset
=1

This is slow on the entire training dataset, thus we use MCMC to approximate:

VL

V

1 n
) A V— PILED
=1

25

nis the size of a

random minibatch n can be as small as one
(batch size)

A Recipe for

Background , ,
: Machine Learning

1. Given training data:

{miv Y, ’fil

4. Train with SGD:

(take small steps
opposite the gradient)

26

Activation Functions

So far, we’ve
assumed that the
activation function
(nonlinearity) is
always the sigmoid
function...

27

Tanh

* A new change: modifying the nonlinearity
— The logistic is not widely used in modern ANNSs

tanh(x)

28

Alternate 1:
tanh

Like logistic function but
shifted to range [-1, +1]

Activation Function

Understanding the difficulty of training deep feedforward neural networks

Al Stats 2010

- - - - — o — -~

80 — Sigmoid depth 5
~—— Sigmoid depth 4
. — Tanh depth4?
I Softsign
| Softsign N
60 Tanh N
- — Pre-training
=50
£ |
@ \‘m
40 VMW""-"M /
bt A A . o
. "rrx-,wtu] sigmoid
b f".‘mf-\“k N wam‘\-.\\f, ‘ VS.
30 \ G e TR tanh
2 M -
“‘wﬁ*\w\ R,
20 . L LIA "'_;':'.:.?;'v:"_‘:’:'::":M'\"\‘.H,'rr'(1o
M‘erwiktn . Rl IS g t’-v'l -_?‘7"7.« , .
10 .*FWMMMM*. o A A e '&l\.\‘w-.,
0.0 0.5 1.0 1.5 2.0 2.5
le7

Figure from Glorot & Bentio (2010)

exemples seen

29

RelU

—10.0

-7.5

-5.0

—2.5

30

0.0

2.5

5.0

7.5

o(z) = 7 +le—z (sigmoid)
o(z) = Zj __|_ Z:: (tanh)

o(z) = ma:x{z,yz}, Y E_ (0,1)
o(z) = 5 _1 + erf(ﬁ)_

o(z) = %log(l + exp(Bz)), 8 >0

Other Activation Functions

(leaky ReLU)
(GELU)

(Softplus)

1 — RelU

— sigmoid

| —— tanh

—— leaky RelLU, y=0.3
— GELU

21 —— Softplus, B=1

31

Multilayer Perceptron Neural
Networks (MLP)

ST

> N 5NN\ N
O (.\‘é ,’ X ;
NN KX

L RKL =
/“ 7 “: eA“v

\/ \/

Thank You!

33

