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Recap:	Mul+layer	Perceptron	Neural	
Networks	(MLP)
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Convolu+onal	Neural	Networks
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Convolu+on	is	template	matching
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Convolu+on:	a	1-D	example
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Convolu+on:	a	1-D	example
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Convolu+on:	a	1-D	example
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Convolu+on:	a	1-D	example
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Convolu+on:	a	1-D	example
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Convolu+on:	a	2-D	example
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Convolu+on:	a	2-D	example
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Convolu+on:	a	2-D	example
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Convolu+on:	a	2-D	example
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Convolu+on:	a	2-D	example
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Convolu+on:	a	2-D	example

15



Convolu+on:	2-D
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Convolu+on:	Mul+-channel	outputs
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Understanding	the	filter/kernel	as	feature	extractors
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Convolu+on:	Mul+-channel	inputs

Like	(R,	G,	B)	color	notaQons	have	three	features



Convolu+on:	tensor	views
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Convolu+on:	tensor	view
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The	same	filter	tensor	applies	to	different	locaQons	



Convolu+on:	#	parameters	and	#	opera+ons
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Convolu+on:	padding
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Convolu+on:	padding
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Convolu+on:	stride
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Convolu+on:	stride
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Convolu+on:	stride
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Convolu+on:	transla+on-invariance
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Deep	Convolu+onal	Networks

28



Deep	Convolu+onal	Networks
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Pooling	=	Down-sampling
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Max	pooling



Deep	Convolu+onal	Networks
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[1]	LeNet	5,	LeCun	et	al.	1998MNIST



Misclassified	examples	on	MNIST
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Alex	Net

33

[1]	Alex	Krizhevsky,	Ilya	Sutskever,	Geoffrey	Hinton.	ImageNet	ClassificaQon	with	Deep	ConvoluQonal	Neural	Networks.	
NeurIPS	2012.	



ImageNet
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ImageNet	Results
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ImageNet	Results
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Recurrent	Neural	Networks	(RNNs)
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Recurrent	Neural	Networks
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Computa+on	Graph

39

Like	Markov	model,	but	here	 	is	determinisQc	given	s(t+1) s(t)



Computa+on	Graph
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Compact	view
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Like	staQonary	HMM



Recurrent	Neural	Networks
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Recurrent	Neural	Networks
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Recurrent	Neural	Networks

There	are	many	variants	of	RNNs	since	the	funcQonal	form	to	compute	
	can	vary,	e.g.,	LSTMs(t)



Sequence-to-Sequence	Learning
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Example	of	Neural	Machine	TranslaQon



Residual	Connec+on
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We	want	deeper	and	deeper	NNs,	but	going	deep	is	difficult

Weight	iniQalizaQon	
NormalizaQon	modules	
Deep	residual	learning

Commonly	used	techniques	to	train	“Deep”	NNs:



The	Degrada+on	Problem
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Deep	Residual	Learning
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Deep	Residual	Networks	(ResNet)
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Kaiming	He	et	al.	Deep	Residual	Learning	for	Image	RecogniQon.		CVPR	2016.



Transformers
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Vaswani	et	al.	AhenQon	is	All	You	Need.	NeurIPS	2017.


