

Neural Networks, Architectures

Junxian He Apr 17, 2024 COMP 5212 Machine Learning Lecture 19

Recap: Multilayer Perceptron Neural Networks (MLP)

Convolutional Neural Networks

Convolution is template matching

- with a sliding window
- abstract templates
- similarity measured by dot product
- stronger activation, better matching

sliding window ullet

dot product ullet

sliding window •

dot product ullet

sliding window

• dot product

sliding window •

dot product ullet

input

0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	1	1	1	0	0	0
0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0

output

input

⁰ 1	⁰ 2	⁰ 1	О	0	0	0	0
0 0	0 0	0 0	0	0	1	1	0
⁰ -1	¹ -2	¹ -1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	1	1	1	0	0	0
0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0

•

ullet

output

sliding window dot product

-3			

input

0	⁰ 1	⁰ 2	⁰ 1	0	0	0	0
0	0 ⁰	0 0	0 ⁰	0	1	1	0
0	¹ -1	¹ -2	¹ -1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	1	1	1	0	0	0
0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0

output

sliding window dot product

-3	-4		

input

0	0	⁰ 1	⁰ 2	⁰ 1	0	0	0
0	0	0 ⁰	0 ⁰	0 ⁰	1	1	0
0	1	¹ -1	¹ -2	¹ -1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	1	1	1	0	0	0
0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0

sliding windowdot product

output

-3	-4	-4		

input

0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	1	1	1	⁰ 1	⁰ 2	⁰ 1
0	0	1	1	1	⁰ 0	0 ⁰	0 ⁰
0	0	0	0	0	⁰ -1	⁰ -2	⁰ -1

output

•

•

sliding window dot product

-3	-4	-4	-4	-4	-3
-3	-4	-4	-3	-1	0
0	0	0	0	0	0
2	1	0	1	3	3
2	1	0	1	3	3
1	3	4	3	1	0

Convolution: 2-D

*

Convolution: Multi-channel outputs

*

one filter, one feature

*

Understanding the filter/kernel as feature extractors

1	2	1	-
0	0	0	
-1	-2	-1	

Convolution: Multi-channel inputs

Like (R, G, B) color notations have three features

Convolution: tensor views

- feature maps
 - 3-D tensor: C × H × W
 - C: channels
 - H: height
 - W: width

Convolution: tensor view

Tensor: high-dimension array

- feature maps •
 - 3-D tensor: C × H × W
 - C: channels
 - H: height
 - W: width
- filters •
 - 4-D tensor: $C_0 \times C_i \times K_h \times K_w$
 - C_o: output channels
 - C_i: input channels
 - K_h, K_w: filter height, width

The same filter tensor applies to different locations

Convolution: # parameters and # operations

- # parameters
 - weights: $C_0 \times C_i \times K_h \times K_w$
 - bias: C_o

- # floating-point operations (FLOPs)
 - # params \times H_o \times W_o

Convolution: padding

input: $H \times W = 8 \times 8$

output: $H \times W = 6 \times 6$

$$H_{out} = H_{in} - K_h + 1$$

Convolution: padding

input: 8×8 , + pad

pad = [kernel_size / 2]

• maintains feature map size

$$H_{out} = H_{in} + 2pad_h - K_h + 1$$

input

stride = 2

Convolution: stride

input

stride = 2

Convolution: stride

Convolution: stride

input: $H \times W = 8 \times 8$

stride = 2

- reduces feature map size
- compress and abstract

 $H_{out} = [(H_{in} + 2pad_h - K_h) / str] + 1$

Convolution: translation-invariance

Process each window in the same way

apply the same weights regardless of the window location

Deep Convolutional Networks

[Convolution + Nonlinear activation] + Pooling

LeNet – tanh activation

$$f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Deep Convolutional Networks

[Convolution + Nonlinear activation] + Pooling

Pooling = Down-sampling

Max pooling

x	1	1	2	4
	5	6	7	8
	3	2	1	0
	1	2	3	4

max pool with 2x2 filters and stride 2

Deep Convolutional Networks

MNIST

[1] LeNet 5, LeCun et al. 1998

Misclassified examples on MNIST

True label -> Predicted label

4	3	2	1	5
4->6	3->5	8->2	2->1	5->3
4 9->4	B 8->0	7 ->8	5 ->3	7 8->7
8	5	4 ->8	۲	U
8->2	5->3		3->9	6->0
9	9	L	3	≻
9->4	2->0	6->1	3->5	3->2
4	7 ->3	4	₩	2
4->6		9->4	4->6	2->7
२	4	℃	5	K
8->7	4->2	8->4	3->5	8->4
f	9	6 ->3	D	€
1->5	9->8		0->2	6->5
2	8 ->5	4	7	7
2->8		4->9	7->2	7->2
4 4->9	a 2->8			

[1] Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NeurIPS 2012.

Alex Net

- 15M images
- 22K categories
- □ Images collected from Web
- Human labelers (Amazon's Mechanical Turk crowd-sourcing) ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)
- - 1K categories Ο
 - 1.2M training images (~1000 per category) Ο
 - o 50,000 validation images
 - 150,000 testing images Ο
- RGB images
- □ Variable-resolution, but this architecture scales them to 256x256 size

ImageNet Results

container sni	mite
container sl	mite
lifebo	black widow
amphibi	cockroach
firebo	tick
drilling platfo	starfish
muchroom	arillo

grille	mushroom	
convertible	agar	
grille	mushroo	
pickup	jelly fung	
beach wagon	gill fun	
fire engine	dead-man's-finge	

Recurrent Neural Networks (RNNs)

- Dates back to (Rumelhart et al., 1986)
- A family of neural networks for handling sequential data, which involves variable length inputs or outputs
- Especially, for natural language processing (NLP)

Computation Graph

 $s^{(t+1)} = f(s^{(t)};\theta)$

Figure from *Deep Learning*, Goodfellow, Bengio and Courville

Like Markov model, but here $s^{(t+1)}$ is deterministic given $s^{(t)}$

Computation Graph

 $s^{(t+1)} = f(s^{(t)}, x^{(t+1)}; \theta)$

Compact view

Key: the same f and θ for all time steps

 $s^{(t+1)} = f(s^{(t)}, x^{(t+1)}; \theta)$

Like stationary HMM

- Use the same computational function and parameters across different time steps of the sequence
- Each time step: takes the input entry and the previous hidden state to compute the output entry
- Loss: typically computed every time step

Figure from Deep Learning, by Goodfellow, Bengio and Courville

There are many variants of RNNs since the functional form to compute $s^{(t)}$ can vary, e.g., LSTM

Figure from Deep Learning, Goodfellow, Bengio and Courville

Example of Neural Machine Translation

Sequence-to-Sequence Learning

Decoder RNN is a Language Model that generates target sentence conditioned on encoding.

We want deeper and deeper NNs, but going deep is difficult

- Troubles accumulate w/ more layers
- Signals get distorted when propagated
- in forward and backward passes

Commonly used techniques to train "Deep" NNs: Weight initialization Normalization modules **Deep residual learning**

The Degradation Problem

- Good init + norm enable training deeper models
- Simply stacking more layers?
- Degrade after ~20 layers
- Not overfitting
- Difficult to train

raining deeper models rs?

Deep Residual Learning

H(x) = F(x) + x

Deep Residual Networks (ResNet)

ResNet-152

Kaiming He et al. Deep Residual Learning for Image Recognition. CVPR 2016.

Transformers

Vaswani et al. Attention is All You Need. NeurIPS 2017.

