Transformers，VAEs

Junxian He
Apr 19， 2024

Transformer

Encoder

Decoder

Transformer Encoder

What is Attention

Scaled Dot-Product Attention
$Q \in R^{n \times d} \quad K \in R^{m \times d} \quad V \in R^{m \times d}$
We have n queries, m (key, value) pairs

Attention weight $=\operatorname{softmax}\left(Q K^{T}\right)$
Dot-products grow large in magnitude
Scaled Attention weight $=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right)$ Shape is $m \times n$
Attention weight represents the strength to "attend" values V

$$
\text { Attention }(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V
$$

Q, K, V

Self-Attention

Query, key, and value are from the same input, thus it is called "self"-attention

Self-Attention

At each step, the attention computation attends to all steps in the input example

Nobel committee awards Strickland who advanced optics

Self-Attention

Self-Attention

Self-Attention

Self-Attention

Nobel committee awards Strickland who advanced optics

Multi-Head Attention

Multi-Head Attention

Multi-Head Self-Attention

Multi-Head Self-Attention

1) Concatenate all the attention heads

2) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

3) Multiply with a weight matrix W° that was trained jointly with the model

X

Jay Alammar. The Illustrated Transformer.

Multi-head Self-Attention

Multi-head Self-Attention

Concat and output projection

Slides by Emma Strubell

Multi-head Self-Attention + FFN

Transformer Encoder

Currently we only cover the encoder side

This encoder-decoder arch is originally proposed as a seq2seq arch, for classification tasks, often only encoder is used. And language models often only have a decoder

Transformer Decoder in Seq2Seq

decoder
Cross-attention
Self-attention

Cross-attention uses the output of encoder as input

Masked Attention

Typical attention attends to the entire sequence, while masked attention only attends to the ones on the left because future words
 have not been generated
decoder

Decoding time step: 1 (2) $345 \quad 5 \quad 6$
OUTPUT

INPUT Je suis étudiant PREVIOUS

Position Embeddings

Question: If we shuffle the order of words in the sequence, will that change the attention output and feed forward output of the corresponding word?

Position embeddings are added to each word embedding, otherwise our model is unaware of the position of a word

Positional Encoding

Transformer Positional Encoding

$$
\begin{gathered}
P E_{(p o s, 2 i)}=\sin \left(\frac{p o s}{10000^{2 i / d_{\text {model }}}}\right) \\
P E_{(p o s, 2 i+1)}=\cos \left(\frac{p o s}{10000^{2 i / d_{\text {model }}}}\right)
\end{gathered}
$$

Positional encoding is a 512d vector $i=$ a particular dimension of this vector pos = dimension of the word d_model = 512

Complexity

Layer Type	Complexity per Layer	Sequential Operations
Self-Attention	$O\left(n^{2} \cdot d\right)$	$O(1)$
Recurrent	$O\left(n \cdot d^{2}\right)$	$O(n)$
Convolutional	$O\left(k \cdot n \cdot d^{2}\right)$	$O(1)$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	$O(1)$

n is sequence length, d is embedding dimension.
Restricted self-attention means not attending all words in the sequence, but only a restricted field

Square complexity of sequence length is a major issue for transformers to deal with long sequence

Auto-Encoding Variational Bayes

Diederik P. Kingma Machine Learning Group Universiteit van Amsterdam dpkingma@gmail.com

Max Welling Machine Learning Group Universiteit van Amsterdam welling.max@gmail.com

Variational Autoencoders

VAE is a Generative Model

The VAE Model

$\mathrm{p}(\mathrm{z})$ is a normal distribution in most cases

f is a neural network taking Z as input

Training

How to train the model? Can we do MLE?

$$
\text { Intractable } \mathrm{P}(\mathrm{X}), \mathrm{EM} \text { algorithm? }
$$

Let's try EM

E-Step: compute $\mathrm{P}(\mathrm{z} \mid \mathrm{x})$

$$
Q(z)=P(z \mid x) \propto P(z) P(x \mid z) \quad \text { This is ok? }
$$

M-Step: the ELBO objective

$$
\operatorname{argmax}_{\theta} \sum Q(z) \log p(x, z ; \theta)=\operatorname{argmax}_{\theta} \mathbb{E}_{z \sim Q(z)} \log p(x, z ; \theta)
$$

$$
z
$$

In most cases, we cannot do the sum, and cannot easily sample from $Q(z)$ either

Approximate Posterior

We need an easy-to-sample distribution to approximate $\mathrm{P}(\mathrm{z} \mid \mathrm{x})$

$$
q(z \mid x ; \phi) \text { to approximate } p(z \mid x ; \theta) \quad \text { Why conditioned on } \mathrm{x} \text { ? }
$$

ϕ is the parameter for the approximate function, θ is the generative model parameter

How to train $q(z \mid x ; \phi)$, what would be the loss to find ϕ ?

Recap: ELBO

$$
\operatorname{ELBO}(x ; Q, \theta)=\sum_{z} Q(z) \log \frac{p(x, z ; \theta)}{Q(z)}
$$

What is $\operatorname{argmax}_{Q(z)} \operatorname{ELBO}(x ; Q, \theta)$?

ELBO is maximized when $Q(z)$ is equal to $p(z \mid x)$
Therefore, we can approximate the true posterior by maximizing ELBO:

$$
\operatorname{argmax}_{\phi} \sum_{z} q(z \mid x ; \phi) \log \frac{p(x, z ; \theta)}{q(z \mid x ; \phi)}
$$

Training VAEs

E-Step:

$$
\operatorname{argmax}_{\phi} \sum_{z} q(z \mid x ; \phi) \log \frac{p(x, z ; \theta)}{q(z \mid x ; \phi)}
$$

M-Step:

$$
\operatorname{argmax}_{\theta} \sum_{z} q(z \mid x ; \phi) \log \frac{p(x, z ; \theta)}{q(z \mid x ; \phi)}
$$

Same objective, different parameters to optimize
Because we use approximate rather than exact posterior, it is also called Variational EM

Training VAEs

E-Step:

$$
\operatorname{argmax}_{\phi} \sum_{7} q(z \mid x ; \phi) \log \frac{p(x, z ; \theta)}{q(z \mid x ; \phi)} \quad \begin{aligned}
& \text { Can we do gradient } \\
& \text { descent over } \phi ?
\end{aligned}
$$

M-Step:

$$
\operatorname{argmax}_{\theta} \sum_{z} q(z \mid x ; \phi) \log \frac{p(x, z ; \theta)}{q(z \mid x ; \phi)}
$$

We use MC sampling to approximate expectation and use gradient descent to optimize θ

