EERMRAKE COMP 5212

== TLE HONG KONG : :
UNIVERSITY OF SCIENCE Machine Learning
AND TECHNOLOGY Lecture 22

Generative Adversarial Networks,
Reinforcement Learning

Junxian He
Apr 26, 2024

The GAN Model

p(z) The same as the VAE model, except that x is a deterministic
l function of z, but it can be a distribution as well

Can VAE use a deterministic x = G(z)?
Neural Networks

Sometimes we call GANs implicit generative models

You can draw samples, but hard to evaluate p(x)

X = G(2)

Training GANs

Computation Graph

p(z)

Discriminator
D(x)

9

X = G(2)

Discriminate whether

the input is real or fake
A diata(x)

1. Generator is trained to produce realistic examples to fool the discriminator
2. Discriminator is trained to discriminate real and fake examples

3

Training GANs

1. Generator is trained to produce realistic examples to fool the discriminator
2. Discriminator is trained to discriminate real and fake examples

The two objectives are against each other

Adversarial Game

minmax V(D, G) = Egp)08 D@)] + Exnp, (x)[log(1 — D(G(2)))]

D(x) outputs the probability of x being the real example

G(z) is trained to minimize the probability of G(z) recognized as “fake” by D

D(x) is trained with a standard classification loss

min max V(D,G) =

G

Theory of GANs

Proposition 1. For G fixed, the optimal discriminator D is

C(G) =max V(G, D)

D

Dg(z) =

ata log DE (m) ?szz
ata Og Dg (w) gw’\’pg

Pdata (CB)

Pdata (CU)

L (@) 108 D(@)] + Eamp (o) log(1 — D(G(2)))].

log(1 — D¢ (G(

B pdata(m) + Pg (m)

z)))]

log(1 — Dj(@))

lo
“ | % Praa(@) + py()_

+ T

log

Theory of GANs

minmax V(D, G) = Egp)10 D(@)] + Exnp, (x)[log(1 — D(G(2)))]

Theorem 1. The global minimum of the virtual training criterion C(QG) is achieved if and only if
Pg = Ddata- At that point, C'(G) achieves the value — log 4.

C(G) _ —log(4) + KL (pdata pdata;‘pg) + KL (pg Pdata ‘|‘pg)

A
Q
|

— —log(4) + 2 JSD (Pgasa ||y)

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and p,, is updated so as to improve the criterion

L npiua 108 D (€)] + Egnp, [log(l — Dg(x))]

then p, converges 10 Pgaq

Training GANs

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

Inner loop to update
discriminator first

fo ,
r number of fraining iterations do N

for £ steps do

e Sample minibatch of m noise samples {z(1), ..., 2(™)} from noise prior p,(2).
e Sample minibatch of m examples {z(!),... £(™} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo, L 3" [log D () + 108 (1~ D (& (=)))]

1=1

end for
e Sample minibatch of m noise samples {z*/, ...z} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

v%%glog (1-D(c (9))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum 1n our experiments.

Training GANs

1. GAN is a new algorithm to train a common generative model (like VAE)

2. GAN training is not MLE What i< it then?

Suppose the generator G(x) is parameterized by @, then what is the
gradient when updating G(x)?

Pdata _I_p>I< Pdata _I_p>I<
C(G) = = 10g@) + KL(Pgua | |7 + KL(p | |———)
pgfk is from the solution of the discriminator, which is fixed when optimizing &
Pdata T pg)k(x)
VoC(G) = V,KL(p,(x; 0) ||)

2

Training GANs

Recall that MLE is equivalent to minimizing KL(p ,,,(X) | | p,(x))

Pdata + Py (X)
For GANSs, the generator is to minimize KL(p,(x; 0) | \M+)

KL(p||q) # KL(q| | p)

KL divergence is asymmetric, and GANs’ KL divergence is in the opposite
direction with respect to MLE

GANs v.s. VAEs

GANs are widely demonstrated to show superiority to VAEs on generating
realistic, vivid images. In contrast, VAEs" generation is more blurred

. -
Y e

T N)] ! >l P i
e WP Gl oS SRS -l
s . \ Fra e .
v y - el f o N
A y - o =
S 7 oY ' ’A\Y‘\
v~ L ‘
3
J ‘ LAy

GANSs’ generated images

GANSs’ generation can “miss mode” of the data distribution, where the
generated images are not diverse to cover all the data distributions (VAEs
do not have this issue)

Brock et al. LARGE SCALE GAN TRAINING FOR HIGH

10 FIDELITY NATURAL IMAGE SYNTHESIS. ICLR 2019.

Implication of the KL divergence

KL(pdata(x) ‘ \pg(x)) V.S. KL(pg()C) ‘ |pdata(x))

VAES GANSs (approximately)

Reinforcement Learning

12

Learning Tasks

* Supervised learning - D = {(x(i),y(i))}liv=1
* Regression -y(i) e R
» Classification - y(i) e{l,..,C}

~yN
* Unsupervised learning - D = {x(‘)}i=1
* Clustering

* Dimensionality reduction

T
* Reinforcement learning - D = {S(t), a(t)’r(t)}tzj_

13

RL Setup

In many cases, we cannot precisely define what the correct output is (think
of we want to train a robot to walk)

Environment Al agent

Agent chooses actions which can depend on past

Environment can change state with each action

Reward (Output) depends on (Inputs) action and state of environment

Goal: maximize the total reward
14

Differences from Supervised
Learning

Environment Al agent

o Maximize reward (rather than learn reward) Supervised training is like imitation

o Inputs are not iid — state & action depends on past

15

RL Examples

|
e VL

ALPHAGDO

16

RL Setup

- State space, &

* Action space, A

* Reward function

» Stochastic, p(r | s, a)

* Deterministic, R: S X A - R
* Transition function

» Stochastic, p(s' | s, a)

* Deterministic, 0: S XA > §

In this lecture, we assume they are known
* Reward and transition functions can be known or unknown

17

RL Setup

* Policy m: 8 - A

* Specifies an action to take in every state

* Value function, V™*: § - R

- Measures the expected total reward of starting in

some state s and executing policy i, i.e., in every

state, taking the action that o returns

18

RL Example - gridworld

S = all empty squares in the
grid

A = {up, down, left, right}

Deterministic transitions

Rewards of +1 and -1 for
entering the labelled squares

Terminate after receiving either
reward

19

RL Example - gridworld

- =))|
1)
t - - -

Is this policy optimal?

20

RL Example - gridworld

Optimal policy given a reward of -2 per step

21

RL Example - gridworld

Optimal policy given a reward of -0.5 per step

What would be the algorithm to find the optimal policy automatically?

22

Markov Decision Process

1. Startin some initial state s

2. For time step t:

a. Agent observes state s¢

b. Agent takes action a; = m(s¢) Deterministic policy
c. Agentreceives reward ry ~ p(r | s¢, ag)

d. Agent transitions to state sgy 1 ~ (s’ | S¢, a)

* MDPs make the Markov assumption: the reward and next
state only depend on the current state and action.

23

Discounted Reward
Total reward is z Ve =rg+yr +v1i, i+ ..
t=0
where 0 < y < 1 is some discount factor for future rewards

Why discount?

- Mathematically tractable — total reward doesn’t explode

1+1+1+..=o00 but 1+0.8*%1+(0.8)%*1+..=5

- Actions don’t have lasting impact

24

Key Challenges

 The algorithm has to gather its own training data

 The outcome of taking some action is often stochastic or

unknown until after the fact

* Decisions can have a delayed effect on future outcomes

(exploration-exploitation tradeoff)

explore decisions whose reward is uncertain

exploit decisions which give high reward

25

RL: Objective function

* Find a policy ™ = argmax V"' (s) VS €S

T

- V™ (s) = E[discounted total reward of starting in state

s and executing policy forever]

— Z Y E[R(s¢, m(sy))]
t=0

where 0 < y < 1 is some discount factor for future rewards

26

Value Function

Bellman equations

V7(s) = R(s,m()) +v) p(s11s,m(s)V(sp)

R/—/ S,ES Recursive form
| _ Y,
Immediate e
reward Expected (Discounted)

Future reward

27

Solve Value Function

V7(s) = R(s,mt(s)) +y 2 p(sy|s,m(s))V™(sy)

S]_ES

Given R, transition function p, and policy z(s), we can utilize this

equation to solve V(s) for any s
How?

Suppose the state size is finite |S|, you have |S| linear
equations with |S| variables

28

Optimal value function and policy

- Optimal value function:

V'(s) = max [R(s,@) + v) p(s' | 5,a)V"(s")]

s'eS

- System of |§| equations and |§| variables — nonlinear!

- Optimal policy:

n*(s) = argmax R(s,a) + y p(s’'|s,a)V*(s")

acA -
S'ES
N J L J
Y Y
Immediate Expected (Discounted)
reward Future reward

* Insight: if you know the optimal value function, you can solve

for the optimal policy!

29

Value Iteration

Algorithm 4 Value Iteration

1: For each state s, initialize V (s) := 0.
2: for until convergence do
3: For every state, update

After find the optimal value function, we can find the optimal policy

30

Policy Iteration

Algorithm 5 Policy Iteration

1: Initialize m randomly.

2: for until convergence do

3: Let V :=VT". > typically by linear system solver
4: For each state s, let

Both value iteration and policy iteration are standard algorithms for
solving MDPs, there isn’t universal agreement over which is better

31

Next Questions

1. How to handle unknown state transition and reward functions?
2. How to handle continuous states and actions?

32

