EERMRAKE COMP 5212

== TLE HONG KONG : :
UNIVERSITY OF SCIENCE Machine Learning
AND TECHNOLOGY Lecture 23

Reinforcement Learning

Junxian He
May 3, 2024

Reminder

1. Programming HW is due today

2. We will have HW4 released this week, all multi-choice questions,
helping you review the contents in this semester

Markov Decision Process

1. Startin some initial state s

2. For time step t:

a. Agent observes state s¢

b. Agent takes action a; = m(s¢) Deterministic policy
c. Agentreceives reward ry ~ p(r | s¢, ag)

d. Agent transitions to state s;1 1 ~ (S’ | S¢, a)

* MDPs make the Markov assumption: the reward and next
state only depend on the current state and action.

3

RL Example - gridworld

S = all empty squares in the
grid

A = {up, down, left, right}

Deterministic transitions

Rewards of +1 and -1 for
entering the labelled squares

Terminate after receiving either
reward

RL Example - gridworld

- =))|
1)
t - - -

Is this policy optimal?

RL Example - gridworld

Optimal policy given a reward of -2 per step

RL Example - gridworld

Optimal policy given a reward of -0.5 per step

What would be the algorithm to find the optimal policy automatically?

7

Discounted Reward
Total reward is z Ve =rg+yr +v1i, i+ ..
t=0
where 0 < y < 1 is some discount factor for future rewards

Why discount?

- Mathematically tractable — total reward doesn’t explode

1+1+1+..=o00 but 1+0.8*%1+(0.8)%*1+..=5

- Actions don’t have lasting impact

Key Challenges

 The algorithm has to gather its own training data

 The outcome of taking some action is often stochastic or

unknown until after the fact

* Decisions can have a delayed effect on future outcomes

(exploration-exploitation tradeoff)

explore decisions whose reward is uncertain

exploit decisions which give high reward

9

RL: Objective function

* Find a policy ™ = argmax V"' (s) VS €S

T

- V™ (s) = E[discounted total reward of starting in state

s and executing policy forever]

— Z v E(R(s¢, m(sy))]
t=0

where 0 < y < 1 is some discount factor for future rewards

10

Value Function

Bellman equations

V7(s) = R(s,m()) +v) p(s11s,m(s)V(sp)

R/—/ S,ES Recursive form
| _ Y,
Immediate e
reward Expected (Discounted)

Future reward

11

Solve Value Function

V7(s) = R(s,mt(s)) +y 2 p(sy|s,m(s))V™(sy)

S]_ES

Given R, transition function p, and policy z(s), we can utilize this

equation to solve V(s) for any s
How?

Suppose the state size is finite |S|, you have |S| linear
equations with |S| variables

12

Optimal value function and policy

- Optimal value function:

V'(s) = max [R(s,@) + v) p(s' | 5,a)V"(s")]

s'eS

- System of |§| equations and |§| variables — nonlinear!

- Optimal policy:

n*(s) = argmax R(s,a) + y p(s’'|s,a)V*(s")

acA -
S'ES
N J L J
Y Y
Immediate Expected (Discounted)
reward Future reward

* Insight: if you know the optimal value function, you can solve

for the optimal policy!

13

Value Iteration

* Inputs: R(s,a), p(s’|s,a),0<y <1
-+ Initialize V@ (s) =0V s € S (or randomly) and sett = 0

- While not converged, do:

*Fors €S
VD (g) max [R(s,a) +y 2 p(s’|s, a)V(t)(s’)]
a
. s'esS y
~
ct=t+1 Qls,a)

n*(s) < argmax [R(s,a) + Y XgocsP(s' |, a)V® (s))]
aeEeA

After finding the optimal value function, we can find the optimal policy

14

Value Iteration: Convergence

Theorem 1: Value function convergence

V will converge to V" if each state is “visited”
infinitely often (Bertsekas, 1989)

15

Policy Iteration

* Inputs: R(s,a), (s’ |s,a),0 <y <1
* |nitialize ™ randomly

- While not converged, do:

* Solve the Bellman equations defined by policy 7 Linear equation system

V() = R(s,n()) + ¥) p(s'| 5wV
s'es
- Update it

n(s) « argmax R(s,a) + y p(s’'|s,a)V™(s")
aecA

s'es§
Both value iteration and policy iteration are standard algorithms for

solving MDPs, there isn’t universal agreement over which is better
16

Learning a Model for an MDP

State transition p(s’| s, a) and reward function R(s, a) are unknown in practice

Suppose we have a number of trials:

1) a6’ (1) e (1) a5’ (1) a5’

(2) a5 (2) 9 (2) a5 (2) a5

Poo(s) #times took we action a in state s and got to s
sa\S) =

#times we took action a in state s

Similarly we can estimate R(s, a) to be the the average reward observed at state s with action a

17

Finding the Optimal Policy

1. Initialize m randomly.
2. Repeat {

(a) Execute 7 in the MDP for some number of trials.

(b) Using the accumulated experience in the MDP, update our esti-
mates for P,, (and R, if applicable).

(c) Apply value iteration with the estimated state transition probabil-
ities and rewards to get a new estimated value function V.

(d) Update 7 to be the greedy policy with respect to V.

}

18

Continuous State

Continuous states are common, e.g., using (X, y) coordinates and
velocity to express the state of a car

5.5

Discretization

5_

4.5

4}

> 35

3_

2.5

2_

1.5Lx ! 1 ! L 1 L
1 2 3 4 5 6 7 8

Dimensions are high when we have several states
19

Value Function Approximation

Learn a function fy(s) : s = V(s)
Similar to supervised learning, f,(s) could be a neural network
Want to compose a training

dataset, next is to estimate V(s)
for these n points

2) 3)...

1. Randomly sample n states S(l), st : 5
2. For every state, repeat value iteration to approximate V(S(i))

3. Now we have a supervised dataset to train f4(s)

20

Learning a Proxy Model

Policy is a function parameterized by @: 7,

T = (Sg, Ao, S1, Ays - - - 5 ST_1> A1, S7) 1S the trajectory from 7,

7 is a random variable

Total payoff for the policy is:

T—1
o = Epl) 7'R(s,)]
=0

Pp contains the policy and the transition p(s’ | s, a)

We want to optimize € to maximize 7

21

Policy Gradient

T—1
;/]6’ — _TNPG[Z }/tR(Sta at)]
=0

We define [f(7) =3, 7*R(s:, ar)

n(0) = Ervp, [f(7)]

Connection to VAE? Reparameterization trick?

22

Policy Gradient

= E-p, [(Volog B(7)) f(7)]
Can be approximated using MC sampling

Policy gradient is a commonly used method to propagate
gradients through discrete variables

23

Policy Gradient

Ervp, [(Volog By(7))f(7)] Whatis V, log Py(7)

P9(T) — “(SO)WH(QO‘SO)PSOGO (sl)WH(al‘Sl)Psml (32) T PST—laT—l (ST)

Volog Py(1) = Vglogmg(ag|sg) + Velog mg(ai|si) +-- - + Velogmg(ar—_1|sr_1)

Von(0) = VeE v p, [f(T)] = Ernp,

— E'TNP@

(
(

~
(-

lﬂTl}.
|
O

t=

-]

24

Vo log Wg(at‘st)) ' f(T)

T—1 i
V@ lOg Wg(at‘st)) . (Z ’}/tR(St, azt)

t=0

A Lemma

E [Vylog Py(x)| = 0.

.CL'NPQ

EatNﬂ'g(°|St)v9 lOg 7T9(Clt‘8t) = ()

T—1
E:p, [Z Vy log 7T9(at|5t)] =
t=0

25

Policy Gradient

T-1 -
Von(0) = E,-p, | Vglogmy(as|s;) - (Z v R(Sj, 0)
t=0 i
T-1 -
— E,~p, | Vglogmg(as|st) - (ZW’]R (55,a,))
t=0 _ 3>t

Loss does not mean much, and you should only care about the return

26

Learning Policy and Value Function Together

Repeat{
1. Perform a number of trials from policy 7, to get all the trajectory
2. Update the policy with the current value function
3. Compute the expected reward for each state in the trajectories
4. Supervised training to train the value function

Reward models are often trained in advance

27

Model for the Environment

S, Simulator S~ P,

dy

Model-based Reinforcement Learning

1. Interaction with real environment can be slow
2. Interaction with real environment can be risky

28

Taxonomy of RL

RL Algorithms
Model-Free RL Model-Based RL
‘ - ! { . !
Policy Optimization Q-Learning Learn the Model Given the Model
s ™\ 'd ™\ s ™\ P ™
Policy Gradient <—— —> DQN —> World Models AlphaZero
i —> DDPG <«) ’) ’
A2C / A3C <«— r \ —> C51 —> I2A
" J SR TD3 <« " J .
PPO D — , \ —> QR-DQN —> MBMF
: > SAC <))
TRPO <« —> HER —> MBVE
" J " J "

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#part-2-kinds-of-rl-algorithms
29

