

Reinforcement Learning

Junxian He May 3, 2024 **COMP 5212** Machine Learning Lecture 23

- 1. Programming HW is due today
- 2. We will have HW4 released this week, all multi-choice questions, helping you review the contents in this semester

Markov Decision Process

- 1. Start in some initial state s_0
- 2. For time step t:
	- a. Agent observes state s_t
	- b. Agent takes action $a_t = \pi(s_t)$
	- c. Agent receives reward $r_t \sim p(r \mid s_t, a_t)$
	- d. Agent transitions to state $s_{t+1} \sim p(s' | s_t, a_t)$
- . MDPs make the Markov assumption: the reward and next state only depend on the current state and action.

Deterministic policy

RL Example - gridworld

 $S =$ all empty squares in the grid

 $\mathcal{A} = \{ \text{up}, \text{down}, \text{left}, \text{right} \}$

Deterministic transitions

Rewards of +1 and -1 for entering the labelled squares

Terminate after receiving either reward

RL Example - gridworld

Is this policy optimal?

RL Example - gridworld

Optimal policy given a reward of -2 per step

Optimal policy given a reward of -0.5 per step

What would be the algorithm to find the optimal policy automatically?

RL Example - gridworld

Discounted Reward

Total reward is
$$
\sum_{t=0}^{\infty} \gamma^{t} r_{t} = 1
$$

Why discount?

• Mathematically tractable – total reward doesn't explode

 $1 + 1 + 1 + ... = \infty$ but $1 + 0.8 * 1 + (0.8)^{2*} 1 + ... = 5$

• Actions don't have lasting impact

 $r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 r_3 + \dots$

where $0 < y < 1$ is some discount factor for future rewards

- The algorithm has to gather its own training data
- The outcome of taking some action is often stochastic or unknown until after the fact
- Decisions can have a delayed effect on future outcomes \bullet (exploration-exploitation tradeoff)
	- explore decisions whose reward is uncertain
	- exploit decisions which give high reward

Key Challenges

RL: Objective function

- Find a policy π^* = argmax $V^{\pi}(s)$ $\forall s \in S$ $\boldsymbol{\pi}$
- $V^{\pi}(s) = \mathbb{E}[discounted \text{ total reward of starting in state}]$ s and executing policy π forever]

$$
= \sum_{t=0}^{\infty} \gamma^t \mathbb{E}\big[R\big(s_t, \pi(s_t)\big)\big]
$$

where $0 < y < 1$ is some discount factor for future rewards

Bellman equations $V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 | s, \pi(s)) V^{\pi}(s_1)$ Immediate reward \Box

Value Function

Recursive form

Expected (Discounted) Future reward

Solve Value Function

$$
V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s_1 \in \mathcal{S}} p(s_1 \mid s, \pi(s)) V^{\pi}(s_1)
$$

Given R, transition function p, and policy $\pi(s)$, we can utilize this equation to solve V(s) for any s How?

Suppose the state size is finite $|S|$, you have $|S|$ *linear* equations with |S| variables

Optimal value function and policy

• Optimal value function:

$$
V^*(s) = \max_{a \in \mathcal{A}} \left[R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s) \right]
$$

• System of $|\mathcal{S}|$ equations and $|\mathcal{S}|$ variables – nonlinear!

• Optimal policy:

• Insight: if you know the optimal value function, you can solve for the optimal policy!

- $s' \mid s, a)V^*(s')$
	-

Future reward

- Inputs: $R(s, a)$, $p(s' | s, a)$, $0 < y < 1$
- Initialize $V^{(0)}(s) = 0$ $\forall s \in S$ (or randomly) and set $t = 0$
- While not converged, do:

• For $s \in S$

 $\cdot t = t + 1$

 $\pi^*(s) \leftarrow \text{argmax} [R(s, a) + \gamma \sum_{s' \in s} p(s' \mid s, a)V^{(t)}(s')]$ $a \in \mathcal{A}$

After finding the optimal value function, we can find the optimal policy

Value Iteration

Value Iteration: Convergence

Theorem 1: Value function convergence

 V will converge to V^* if each state is "visited" infinitely often (Bertsekas, 1989)

Policy Iteration

- Inputs: $R(s, a)$, $p(s' | s, a)$, $0 < y < 1$
- Initialize π randomly
- While not converged, do:
	- Linear equation system • Solve the Bellman equations defined by policy π

$$
V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} p(s' \mid s, \pi(s)) V^{\pi}(s')
$$

• Update π

 $\pi(s) \leftarrow \text{argmax } R(s, a) +$ $a \in \mathcal{A}$

Both value iteration and policy iteration are standard algorithms for solving MDPs, there isn't universal agreement over which is better

$$
\gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{\pi}(s')
$$

16

Learning a Model for an MDP

Suppose we have a number of trials:

 $P_{sa}(s') = \frac{\# \text{times took we action } a \text{ in state } s \text{ and got to } s'}{\# \text{times we took action a in state } s}$

 $\ddot{}$

Similarly we can estimate $R(s, a)$ to be the the average reward observed at state s with action a

State transition $p(s'|s, a)$ and reward function $R(s, a)$ are unknown in practice

- 1. Initialize π randomly.
- 2. Repeat $\{$
	- (a) Execute π in the MDP for some number of trials.
	- mates for P_{sa} (and R, if applicable).
	-
	- (d) Update π to be the greedy policy with respect to V.
	- $\}$

Finding the Optimal Policy

(b) Using the accumulated experience in the MDP, update our esti-

(c) Apply value iteration with the estimated state transition probabilities and rewards to get a new estimated value function V .

Continuous State

Continuous states are common, e.g., using (x, y) coordinates and velocity to express the state of a car

19

Dimensions are high when we have several states

Value Function Approximation

- Learn a function $f_{\theta}(s) : s \rightarrow V(s)$
	-

- 1. Randomly sample n states $s^{(1)}$, $s^{(2)}$, $s^{(3)}$...
- 2. For every state, repeat value iteration to approximate $V(s^{(i)})$
- 3. Now we have a supervised dataset to train $f_{\theta}(s)$

Similar to supervised learning, $f_{\theta}(s)$ could be a neural network

Want to compose a training dataset, next is to estimate $V(s)$ for these n points

Learning a Proxy Model

Policy is a function parameterized by θ : π_{θ}

$$
\tau = (s_0, a_0, s_1, a_1, \dots, s_{T-1}, a_{T-1}, s_T)
$$

\n
$$
\tau
$$
 is a ran

Total payoff for the policy is:

$$
\eta_{\theta} = \mathbb{E}_{\tau \sim p_{\theta}} \left[\sum_{t=0}^{T-1} \gamma^{t} R(s_{t}, a_{t}) \right]
$$

-
- τ *)* is the trajectory from π _{*A*}
- *<u>idom</u>* variable

- p_{θ} contains the policy and the transition $p(s' \mid s, a)$
	- We want to optimize *θ* to maximize *η*

$$
\eta_{\theta} = \mathbb{E}_{\tau \sim p_{\theta}} \left[\sum_{t=0}^{T-1} \gamma^t R(s_t, a_t) \right]
$$

We define $f(\tau) = \sum_{t=0}^{T-1} \gamma^t R(s_t, a_t)$

 $\eta(\theta) = \mathbb{E}_{\tau \sim P_{\theta}}[f(\tau)]$

Connection to VAE? Reparameterization trick?

$$
\nabla_{\theta} \mathcal{E}_{\tau \sim P_{\theta}} [f(\tau)] = \nabla_{\theta} \int P_{\theta}(\tau) f(\tau) d\tau
$$

=
$$
\int \nabla_{\theta} (P_{\theta}(\tau) f(\tau)) d\tau \quad \text{(swap integ)}
$$

=
$$
\int (\nabla_{\theta} P_{\theta}(\tau)) f(\tau) d\tau \quad \text{(because } f d\tau
$$

=
$$
\int P_{\theta}(\tau) (\nabla_{\theta} \log P_{\theta}(\tau)) f(\tau) d\tau
$$

 $= E_{\tau \sim P_{\theta}} [(\nabla_{\theta} \log P_{\theta}(\tau)) f(\tau)]$

gradients through discrete variables

- gration with gradient)
- does not depend on θ)

Can be approximated using MC sampling Policy gradient is a commonly used method to propagate

Policy Gradient

$$
E_{\tau \sim P_{\theta}} \left[(\nabla_{\theta} \log P_{\theta}(\tau)) f(\tau) \right] \qquad \text{What is } \nabla_{\theta} \log P_{\theta}(\tau)
$$
\n
$$
P_{\theta}(\tau) = \mu(s_0) \pi_{\theta}(a_0|s_0) P_{s_0a_0}(s_1) \pi_{\theta}(a_1|s_1) P_{s_1a_1}(s_2) \cdots P_{s_{T-1}a_{T-1}}(s_T)
$$
\n
$$
\nabla_{\theta} \log P_{\theta}(\tau) = \nabla_{\theta} \log \pi_{\theta}(a_0|s_0) + \nabla_{\theta} \log \pi_{\theta}(a_1|s_1) + \cdots + \nabla_{\theta} \log \pi_{\theta}(a_{T-1}|s_{T-1})
$$
\n
$$
\nabla_{\theta} \eta(\theta) = \nabla_{\theta} E_{\tau \sim P_{\theta}} \left[f(\tau) \right] = E_{\tau \sim P_{\theta}} \left[\left(\sum_{i=1}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \right) \cdot f(\tau) \right]
$$

$$
= \mathrm{E}_{\tau \sim P_\theta}
$$

$$
\left[\left(\sum_{t=0}^{T-1} \nabla_\theta \log \pi_\theta(a_t|s_t)\right)\cdot f(\tau)\right] \\ \left(\sum_{t=0}^{T-1} \nabla_\theta \log \pi_\theta(a_t|s_t)\right)\cdot \left(\sum_{t=0}^{T-1} \gamma^t R(s_t,a_t)\right)\right]
$$

 $\mathop{\rm E}_{x\sim P_\theta} [\nabla_\theta$.

 $\mathrm{E}_{a_t \sim \pi_\theta(\cdot | s_t)} \nabla$

 $\label{eq:1} \mathbf{E}_{\tau\sim P_\theta}\left[\sum_{t=0}^{T-1}\nabla$

A Lemma

$$
\log P_{\theta}(x)] = 0.
$$

$$
{\color{black} \nabla_\theta \log \pi_\theta(a_t | s_t) = 0}
$$

$$
\nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \Bigg] = 0
$$

Policy Gradient

$$
\nabla_\theta \eta(\theta) = \sum_{t=0}^{T-1} \mathrm{E}_{\tau \sim P_\theta} \left[\nabla_\theta \log \pi_\theta(a_t|s_t) \cdot \left(\sum_{j=0}^{T-1} \gamma^j R(s_j, a_j) \right) \right] \\ = \sum_{t=0}^{T-1} \mathrm{E}_{\tau \sim P_\theta} \left[\nabla_\theta \log \pi_\theta(a_t|s_t) \cdot \left(\sum_{j \geq t}^{T-1} \gamma^j R(s_j, a_j) \right) \right]
$$

Loss does not mean much, and you should only care about the return

Learning Policy and Value Function Together

Repeat{

}

- 1. Perform a number of trials from policy π_{θ} to get all the trajectory 2. Update the policy with the current value function
-
-
- 3. Compute the expected reward for each state in the trajectories 4. Supervised training to train the value function

Reward models are often trained in advance

Model for the Environment

- Interaction with real environment can be slow
- 2. Interaction with real environment can be risky

Model-based Reinforcement Learning

Taxonomy of RL

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#part-2-kinds-of-rl-algorithms