
1

Language	Models,	Pretraining

Junxian	He

May	8,	2024

COMP	5212

Machine	Learning

Lecture	24



Reminder:	HW4	due	this	Sunday

2

HW4	only	has	multi-choice	questions	to	review	the	contents	of	this	semester,	
expected	to	be	finished	within	2	hours



Recap:	Learning	a	Proxy	Model

3

Policy	is	a	function	parameterized	by	 :	θ πθ

	is	the	trajectory	from	τ = (s0, a0, s1, a1, . . . , sT−1, aT−1, sT) πθ
	is	a	random	variableτ

Total	payoff	for	the	policy	is:

ηθ = 𝔼τ∼pθ
[

T−1

∑
t=0

γtR(st, at)]

We	want	to	optimize	 	to	maximize	θ η

	contains	the	policy	and	the	transition	p(s’	|	s,	a)pθ

In	practice,	we	often	use	a	
learned	value	function	here



Recap:	Value	Function	Approximation

4

Learn	a	function		fθ(s) : s → V(s)

Similar	to	supervised	learning,	 	could	be	a	neural	networkfθ(s)

1.	Randomly	sample	n	states	s(1), s(2), s(3) . . .
Want	to	compose	a	training	
dataset,	next	is	to	estimate	V(s)	
for	these	n	points

2.	For	every	state,	repeat	value	iteration	to	approximate	V(s(i))

3.	Now	we	have	a	supervised	dataset	to	train	fθ(s)



Recap:	Policy	Gradient

5

ηθ = 𝔼τ∼pθ
[

T−1

∑
t=0

γtR(st, at)]

We	define	

Connection	to	VAE?	Reparameterization	trick?



Recap:	Policy	Gradient

6

Can	be	approximated	using	MC	sampling

Policy	gradient	is	a	commonly	used	method	to	propagate	
gradients	through	discrete	variables



Recap:	Policy	Gradient

7

What	is	∇θlog Pθ(τ)

Loss	does	not	mean	much,	and	you	should	only	care	about	the	return



Learning	Policy	and	Value	Function	Together

8

1. Perform	a	number	of	trials	from	policy	 	to	get	all	the	trajectory

2. Update	the	policy	with	the	current	value	function

3. Compute	the	expected	reward	for	each	state	in	the	trajectories

4. Supervised	training	to	train	the	value	function	

πθ

Repeat{

}

Reward	models	are	often	trained	in	advance



Model	for	the	Environment

9

Model-based	Reinforcement	Learning

1. Interaction	with	real	environment	can	be	slow

2. Interaction	with	real	environment	can	be	risky



Taxonomy	of	RL

10

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#part-2-kinds-of-rl-algorithms



11

Language Models



Probability	of	Sequences

12

p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi |x1:i−1)

Probability	of	multiple	random	variables:

Probability	of	language:

Autoregressive	language	models



Autoregressive	Language	Models

13

p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi |x1:i−1)

Next	Word Context



Autoregressive	Language	Models

14

Learning	a	language	model	is	to	learn	these	conditional	
probabilities,	for	any	language	sequence

p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi |x1:i−1)



Autoregressive	Language	Models

15

Given	a	dataset,	how	to	find	these	probabilities?

Maximum	Likelihood	Estimation

p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi |x1:i−1)



Count-based	Language	Models

16

p(xi |x1:i−1) =
c(x1:i)

c(x1:i−1)

Count	the	frequency	and	divide

There	are	infinite	number	of	parameters	for	language

We	may	see	long	sequences	only	once,	counting	becomes	meaningless



n-gram	Language	Models

17

Next	token	probability	only	depends	on	the	previous	n-1	words

Unigram	LM:

p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi) Each	token	is	independent

Bigram	LM:

p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi |xi−1) Markov	assumption?

Generally	for	n-gram	LM:

p(x1, x2, . . . , xI) =
I

∏
i=1

p(xi |xi−n+1:i−1)
Similar	to	n-th	order	HMM?

Is	HMM	autoregressive	LM?



Parameter	Estimation	for	n-gram	LM

18

Count-based:

p(xi |xi−n+1:i−1) =
c(xi−n+1:i)

c(xi−n+1:i−1)

Number	of	parameters	decreases,	but	flexibility	decreases	as	well

Traditionally,	we	directly	compute	this	probability,	but	neural	language	
models	use	neural	networks	to	compute	the	probability	



Neural	Language	Models

19

Neural	language	models	are	typically	autoregressive

Data: “The mouse ate the cheese .”

Neural	Networks

<start> 

The 



Neural	Language	Models

20

Neural	Networks

Neural	language	models	are	typically	autoregressive

<start> The 

mouse 

Data: “The mouse ate the cheese .”



Neural	Language	Models

21

Neural	Networks

Neural	language	models	are	typically	autoregressive

<start> The mouse 

ate

Data: “The mouse ate the cheese .”



Neural	Language	Models

22

Neural	Networks

Neural	language	models	are	typically	autoregressive

<start> The mouse ate 

the

Data: “The mouse ate the cheese .”

We	can	compute	the	loss	on	every	token	in	parallel



Neural	Language	Models

23

Neural	Networks

Neural	language	models	are	typically	autoregressive

<start> 

The 

The 

mouse 

mouse ate 

ate

the

the

cheese

cheese .

Data: “The mouse ate the cheese .”

Each	prediction	only	sees	the	inputs	on	its	lef



Neural	Language	Models

24

Is	language	modeling	MLE?

Are	language	models	generative	models?

Can	we	compute	p(x)	given	x?	Can	we	sample	new	x?

✅

✅

✅

At	inference	time,	to	generate:

Neural	Networks

<start> 

The 



Neural	Language	Models

25

Is	language	modeling	MLE?

Are	language	models	generative	models?

Can	we	compute	p(x)	given	x?	Can	we	sample	new	x?

✅

✅

✅

At	inference	time,	to	generate:

Neural	Networks

<start> 

The 

The 

mouse 



Neural	Language	Models

26

Is	language	modeling	MLE?

Are	language	models	generative	models?

Can	we	compute	p(x)	given	x?	Can	we	sample	new	x?

✅

✅

✅

At	inference	time,	to	generate:

Neural	Networks

<start> 

The 

The 

mouse 

mouse 

ate



Neural	Language	Models

27

Is	language	modeling	MLE?

Are	language	models	generative	models?

Can	we	compute	p(x)	given	x?	Can	we	sample	new	x?

✅

✅

✅

At	inference	time,	to	generate:

Neural	Networks

<start> 

The 

The 

mouse 

mouse ate 

ate

the

the

cheese

cheese . Autoregressive	generation	has	to	generate	
token	by	token

Cann’t	parallelize,	efficiency	of	
autoregressive	decoding	is	still	an	
important	research	topic



RNN	Language	Models

28

<start> 

The 

The 

mouse 

mouse ate 

ate

the

the

cheese

cheese .



Transformer	Language	Models

29

<start> 

The 

The 

mouse 

mouse ate 

ate the

Self-attention

MLP

Self-attention	only	attends	to	the	tokens	on	the	left	(masked	attention)



Neural	Language	Models

30

Language	model	is	the	fundamental	block	to	model	language	distribution	p(x)

For	a	long	time,	to	solve	specific	tasks:

Image/text/audio Encoder Decoder Text

When	we	have	a	better	arch/training	
for	LM,	we	can	have	a	better	decoder

Not	long	ago,	some	people	think	purely	language	models	is	useless	because	it	
does	not	directly	address	tasks,	and	LM	performance	may	not	transfer	to	
downstream	tasks Some	impactful	papers	are	rejected	by	such	reviewers	(e.g.	transformer-XL)



Pretraining

31

Source	Data	A	(maybe	a	different	task) Target	Data	B

Model

Train	on	data	A	first

Model

Then	train	on	data	B

Classically,	this	is	transfer	Learning

It	is	now	called	pretraining	because	of	the	scale	of	A



Pretraining

32

Source	Data	A	(maybe	a	different	task) Target	Data	B

Model

Train	on	data	A	first

Model

Then	train	on	data	B

For	supervised	training,	data	A	is	often	limited

How	can	we	find	large-scale	data	A	to	train?



ELMO

33

Self-supervised	Pretraining Construct	supervision	from	unannotated	data

Peters	et	al.	Deep	contextualized	word	representations.	NAACL	2018



BERT

34

Mask	language	modeling

Transformer	

<start> The [mask] ate 

mouse

the cheese

Construct	a	synthetic	task	from	raw	text	only
Can	be	made	very	large-scale

Is	Bert	a	language	model?	Is	it	a	generative	model?
Devlin	et	al.	BERT:	Pre-training	of	Deep	Bidirectional	Transformers	for	
Language	Understanding.	NAACL	2019.


