

Language Models, Pretraining

Junxian He May 8, 2024 COMP 5212 Machine Learning Lecture 24

Reminder: HW4 due this Sunday

HW4 only has multi-choice questions to review the contents of this semester, expected to be finished within 2 hours

Recap: Learning a Proxy Model

Policy is a function parameterized by θ : π_{θ}

$$au = (s_0, a_0, s_1, a_1, \dots, s_{T-1}, a_{T-1}, s_T)$$

 au is a ran

Total payoff for the policy is:

$$\eta_{\theta} = \mathbb{E}_{\tau \sim p_{\theta}} [\sum_{t=0}^{T-1} \gamma^{t} R(s_{t}, a_{t})]$$

- $_{T}$) is the trajectory from π_{θ}
- dom variable

In practice, we often use a learned value function here

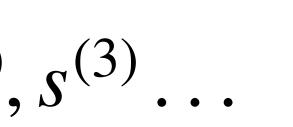
- p_{θ} contains the policy and the transition p(s' | s, a)
 - We want to optimize θ to maximize η

Recap: Value Function Approximation

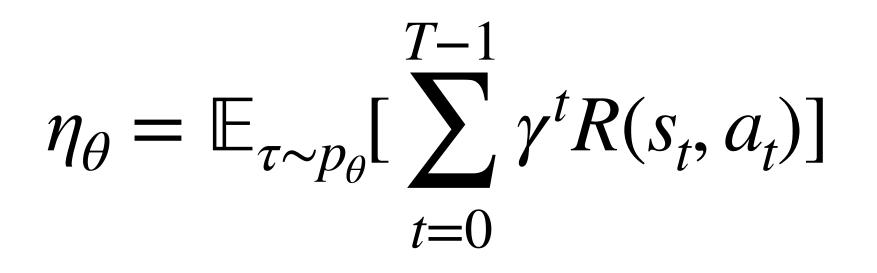
Learn a function $f_{\theta}(s) : s \to V(s)$

- 1. Randomly sample n states $s^{(1)}$, $s^{(2)}$, $s^{(3)}$...
- 2. For every state, repeat value iteration to approximate $V(s^{(i)})$
- 3. Now we have a supervised dataset to train $f_{\theta}(s)$

Similar to supervised learning, $f_{\theta}(s)$ could be a neural network



Want to compose a training dataset, next is to estimate V(s) for these n points



- We define $f(\tau) = \sum_{t=0}^{T-1} \gamma^t R(s_t, a_t)$
 - $\eta(\theta) = \mathcal{E}_{\tau \sim P_{\theta}} \left[f(\tau) \right]$

Connection to VAE? Reparameterization trick?

Recap: Policy Gradient

$$\begin{aligned} \nabla_{\theta} \mathcal{E}_{\tau \sim P_{\theta}} \left[f(\tau) \right] &= \nabla_{\theta} \int P_{\theta}(\tau) f(\tau) d\tau \\ &= \int \nabla_{\theta} (P_{\theta}(\tau) f(\tau)) d\tau \quad \text{(swap integendent} \\ &= \int (\nabla_{\theta} P_{\theta}(\tau)) f(\tau) d\tau \quad \text{(becaue } f \text{ d} t) \\ &= \int P_{\theta}(\tau) (\nabla_{\theta} \log P_{\theta}(\tau)) f(\tau) d\tau \end{aligned}$$

 $= \mathbf{E}_{\tau \sim P_{\theta}} \left[(\nabla_{\theta} \log P_{\theta}(\tau)) f(\tau) \right]$ Can be approv

Can be approximated using MC sampling Policy gradient is a commonly used method to propagate gradients through discrete variables

gration with gradient)

does not depend on θ)

Recap: Policy Gradient

 $E_{\tau \sim P_{\theta}} \left[(\nabla_{\theta} \log P_{\theta}(\tau)) f(\tau) \right] \qquad \text{What is } \nabla_{\theta} \log P_{\theta}(\tau)$ $P_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0|s_0)P_{s_0a_0}(s_1)\pi_{\theta}(a_1|s_1)P_{s_1a_1}(s_2)$ $\nabla_{\theta} \log P_{\theta}(\tau) = \nabla_{\theta} \log \pi_{\theta}(a_0 | s_0) + \nabla_{\theta} \log \pi_{\theta}(a_1)$

$$\begin{aligned} \nabla_{\theta} \eta(\theta) &= \nabla_{\theta} \mathcal{E}_{\tau \sim P_{\theta}} \left[f(\tau) \right] = \mathcal{E}_{\tau \sim P_{\theta}} \left[\left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) \cdot f(\tau) \right] \\ &= \mathcal{E}_{\tau \sim P_{\theta}} \left[\left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) \cdot \left(\sum_{t=0}^{T-1} \gamma^t R(s_t, a_t) \right) \right] \end{aligned}$$

Loss does not mean much, and you should only care about the return

$$(P_2) \cdots P_{s_{T-1}a_{T-1}}(s_T)$$

$$|s_1) + \cdots + \nabla_{\theta} \log \pi_{\theta}(a_{T-1}|s_{T-1})$$

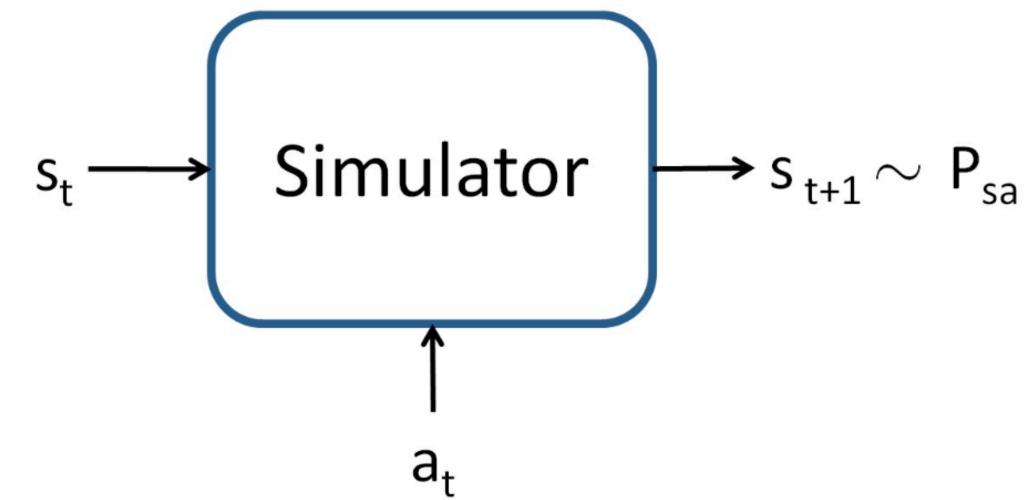
Learning Policy and Value Function Together

Repeat{

- Perform a number of trials from policy π_{θ} to get all the trajectory 1. Update the policy with the current value function 2.
- Compute the expected reward for each state in the trajectories Supervised training to train the value function
- 3. 4.

Reward models are often trained in advance

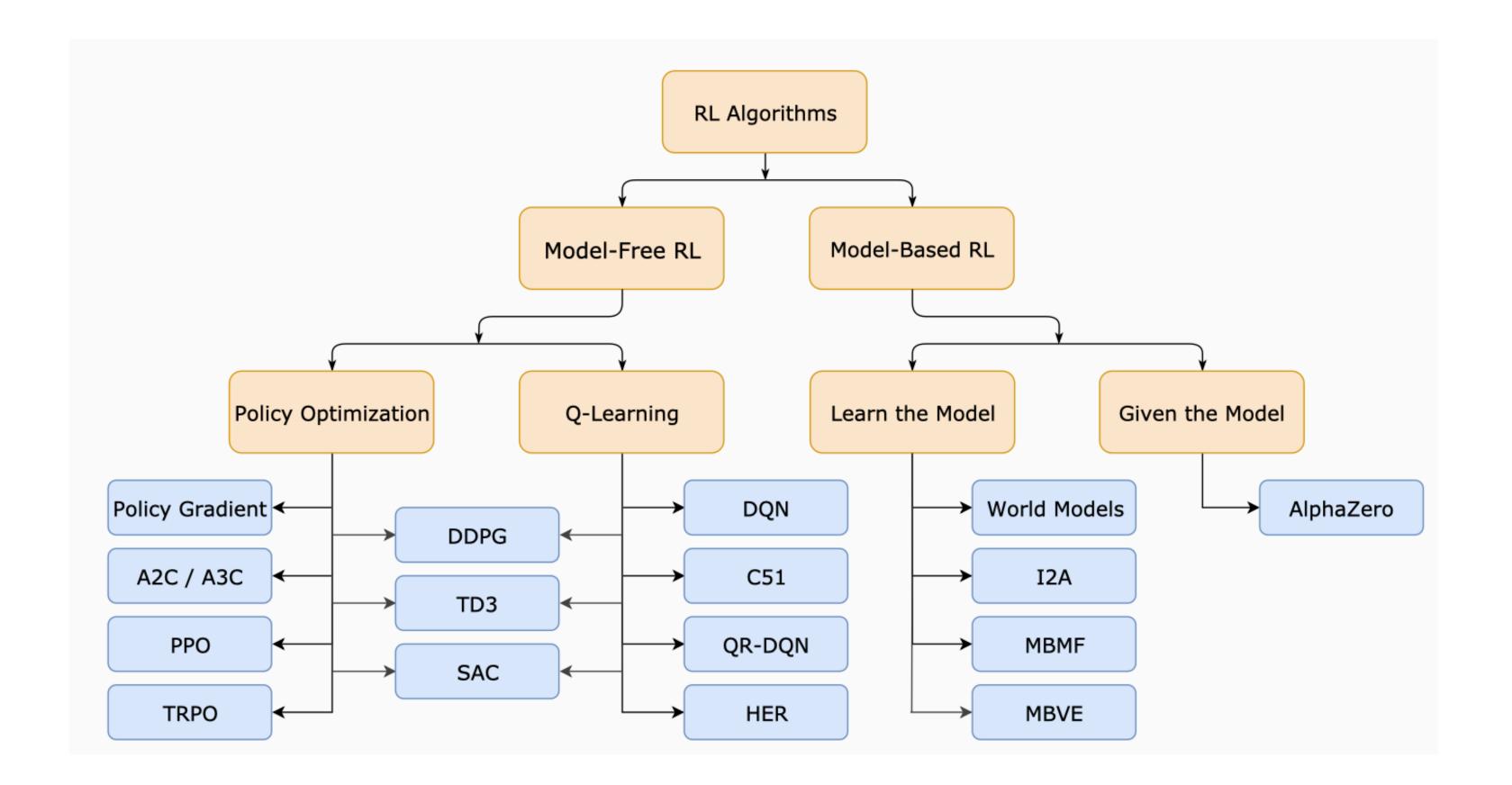
Model for the Environment



- Interaction with real environment can be slow
- 2. Interaction with real environment can be risky

Model-based Reinforcement Learning

Taxonomy of RL



https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#part-2-kinds-of-rl-algorithms

Language Models

Probability of Sequences

Probability of multiple random variables:

$$p(x_1, x_2, \ldots, x_I)$$

Probability of language:

p(the, mouse, ate, the, cheese) = p(the)p(mouse | the)p(ate | the, mouse)p(the | the, mouse, ate)p(cheese | the, mouse, ate, the).

$$= \prod_{i=1}^{I} p(x_i | x_{1:i-1})$$

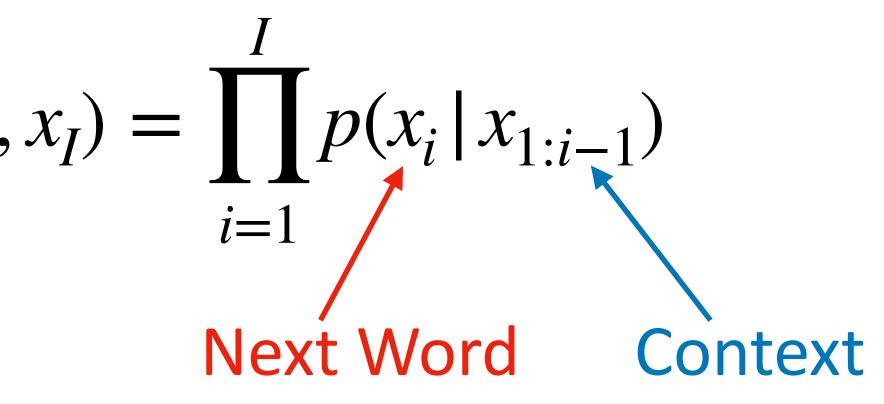
Autoregressive language models

Autoregressive Language Models

p(the, mouse, ate, the, cheese) = p(the)p(mouse | the)p(ate | the, mouse)p(the | the, mouse, ate)

$$p(x_1, x_2, \ldots, .$$

- $p(\text{cheese} \mid \text{the, mouse, ate, the}).$



Autoregressive Language Models

- p(the, mouse, ate, the, cheese) = p(the)
 - p(mouse | the)
 - p(ate | the, mouse)
 - p(the | the, mouse, ate)
 - $p(\text{cheese} \mid \text{the, mouse, ate, the}).$

$$p(x_1, x_2, \dots, x_I) = \prod_{i=1}^{I} p(x_i | x_{1:i-1})$$

probabilities, for any language sequence

Learning a language model is to learn these conditional

Autoregressive Language Models

- p(the, mouse, ate, the, cheese) = p(the)
 - p(mouse | the)
 - p(ate | the, mouse)
 - p(the | the, mouse, ate)
 - $p(\text{cheese} \mid \text{the, mouse, ate, the}).$

$$p(x_1, x_2, \dots, x_I) = \prod_{i=1}^{I} p(x_i | x_{1:i-1})$$

Maximum Likelihood Estimation

Given a dataset, how to find these probabilities?

Count-based Language Models

Count the frequency and divide

 $p(x_i | x_{1:i-})$

We may see long sequences only once, counting becomes meaningless

$$x_{1}) = \frac{c(x_{1:i})}{c(x_{1:i-1})}$$

There are infinite number of parameters for language

n-gram Language Models

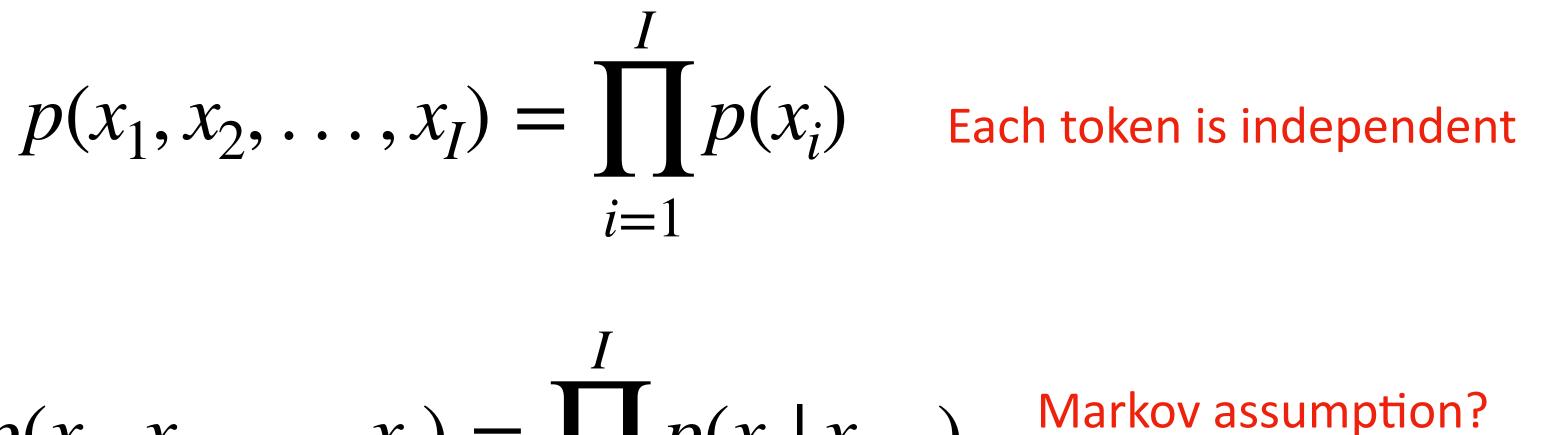
i=1

Next token probability only depends on the previous n-1 words **Unigram LM:**

Bigram LM:

 $p(x_1, x_2, \dots, x_I) = \prod_{i=1}^{I} p(x_i | x_{i-1})$

Generally for n-gram LM:



Similar to n-th order HMM? $p(x_1, x_2, \dots, x_I) = \prod_{i=n+1:i=1}^{n} p(x_i | x_{i-n+1:i-1}) \text{ Is HMM autoregressive LM?}$ *i*=1

Parameter Estimation for n-gram LM

Count-based:

Number of parameters decreases, but flexibility decreases as well

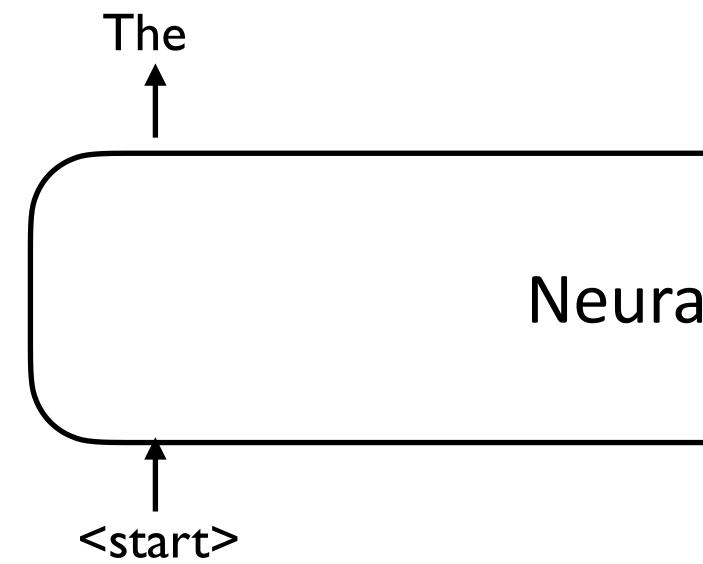
models use neural networks to compute the probability

 $p(x_i | x_{i-n+1:i-1}) = \frac{c(x_{i-n+1:i})}{c(x_{i-n+1:i-1})}$

Traditionally, we directly compute this probability, but neural language

Neural language models are typically autoregressive

Data: "The mouse ate the cheese ."

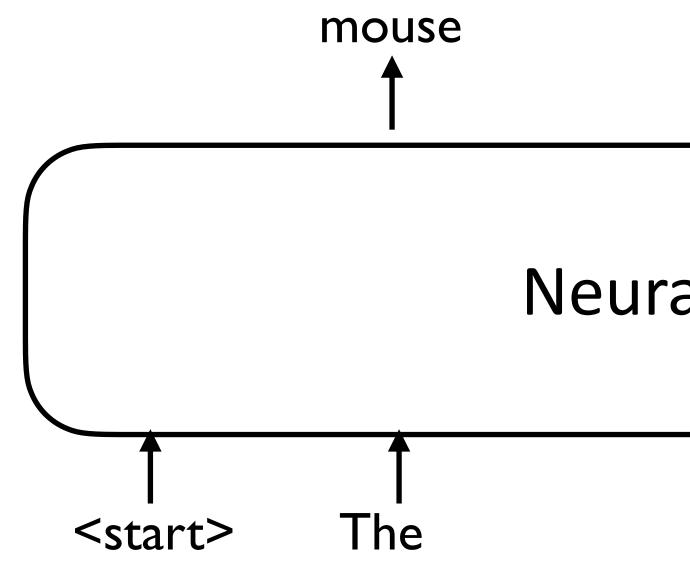


Neural Language Models

Neural Networks

Neural language models are typically autoregressive

Data: "The mouse ate the cheese ."

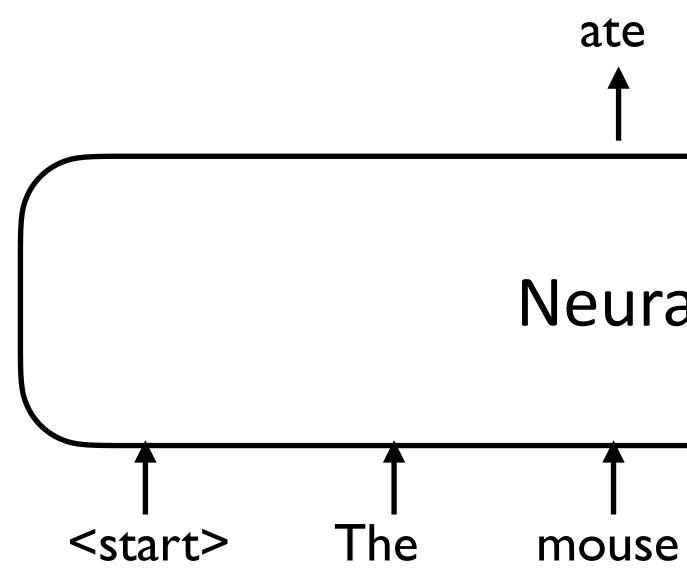


Neural Language Models

Neural Networks

Neural language models are typically autoregressive

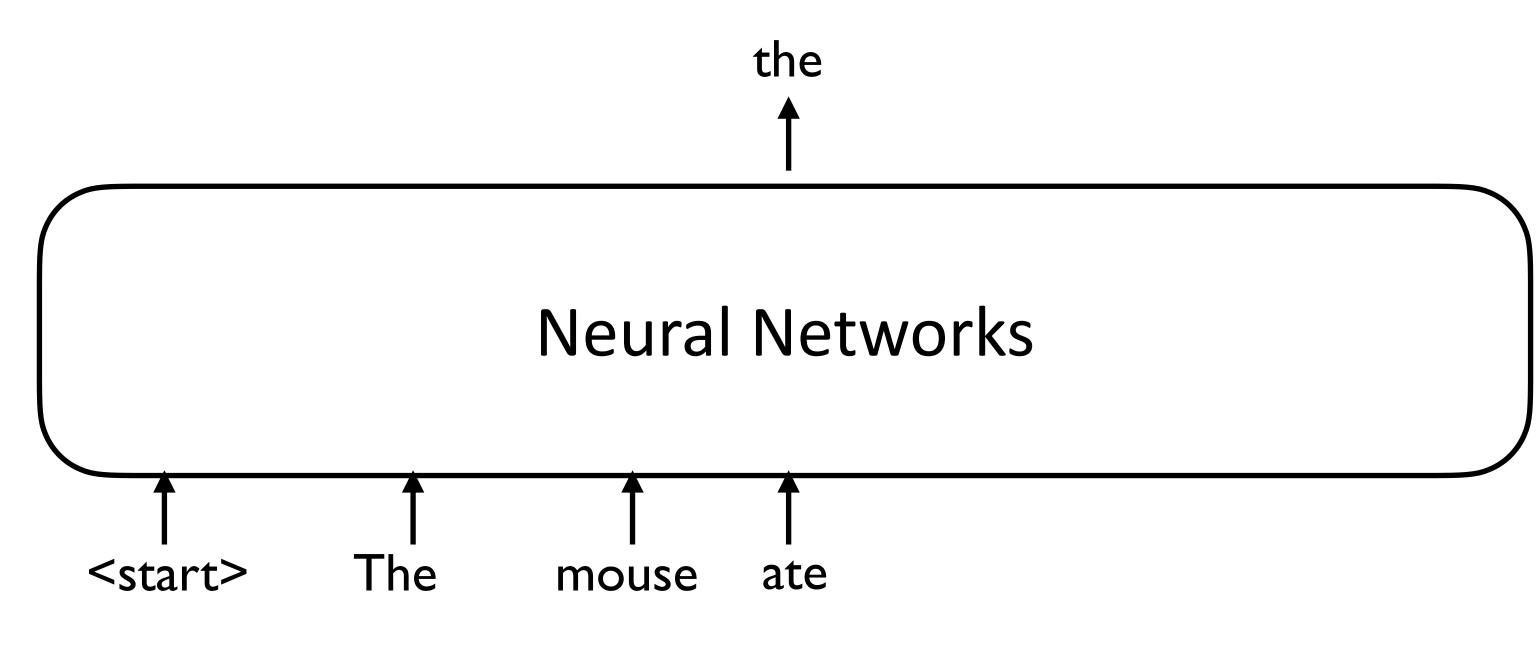
Data: "The mouse ate the cheese ."



Neural Networks

Neural language models are typically autoregressive

Data: "The mouse ate the cheese ."

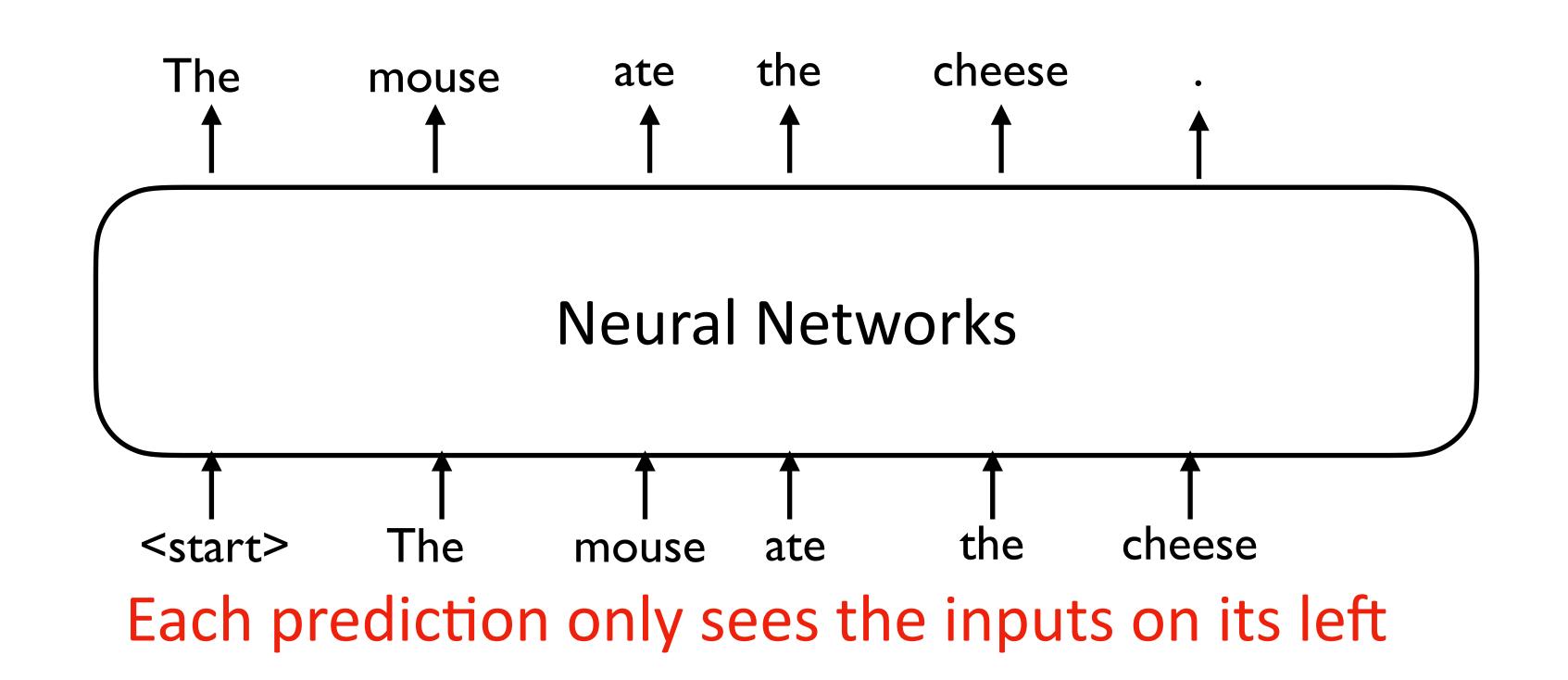


We can compute the loss on every token in parallel

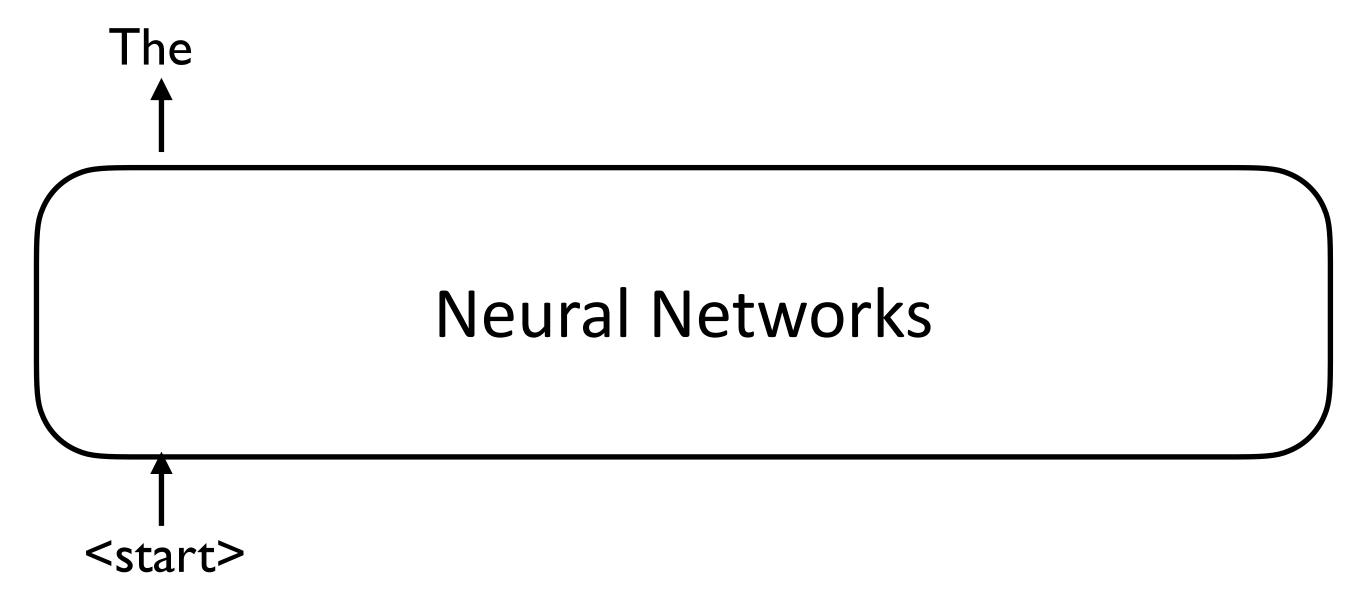
22

Neural language models are typically autoregressive

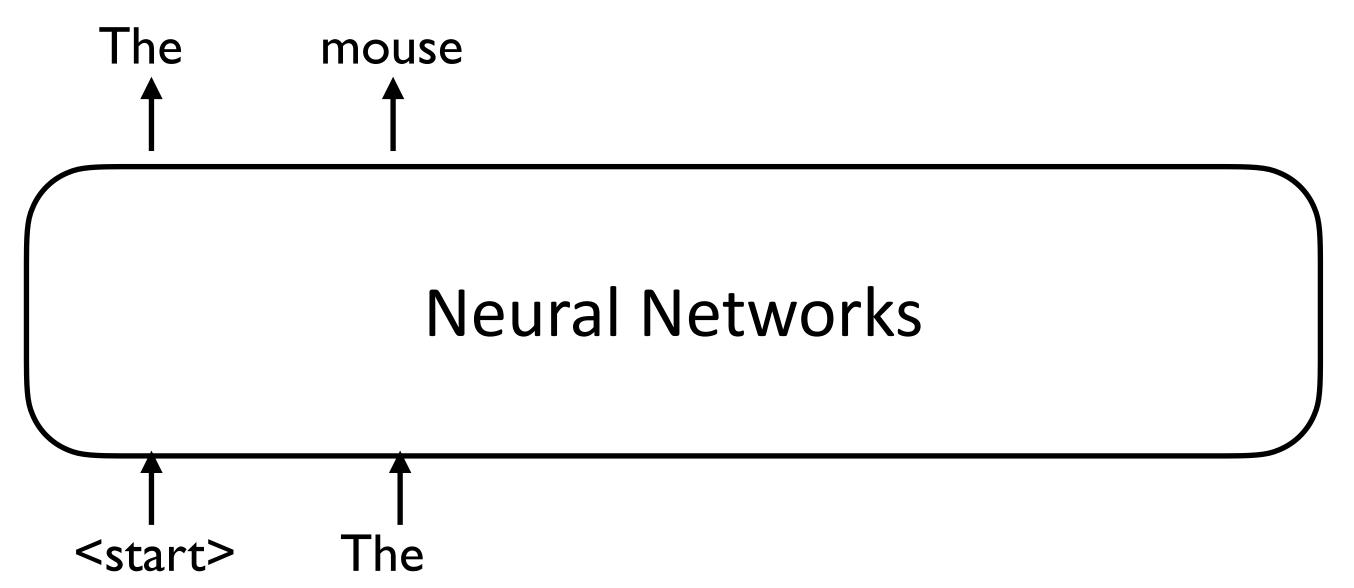
Data: "The mouse ate the cheese ."



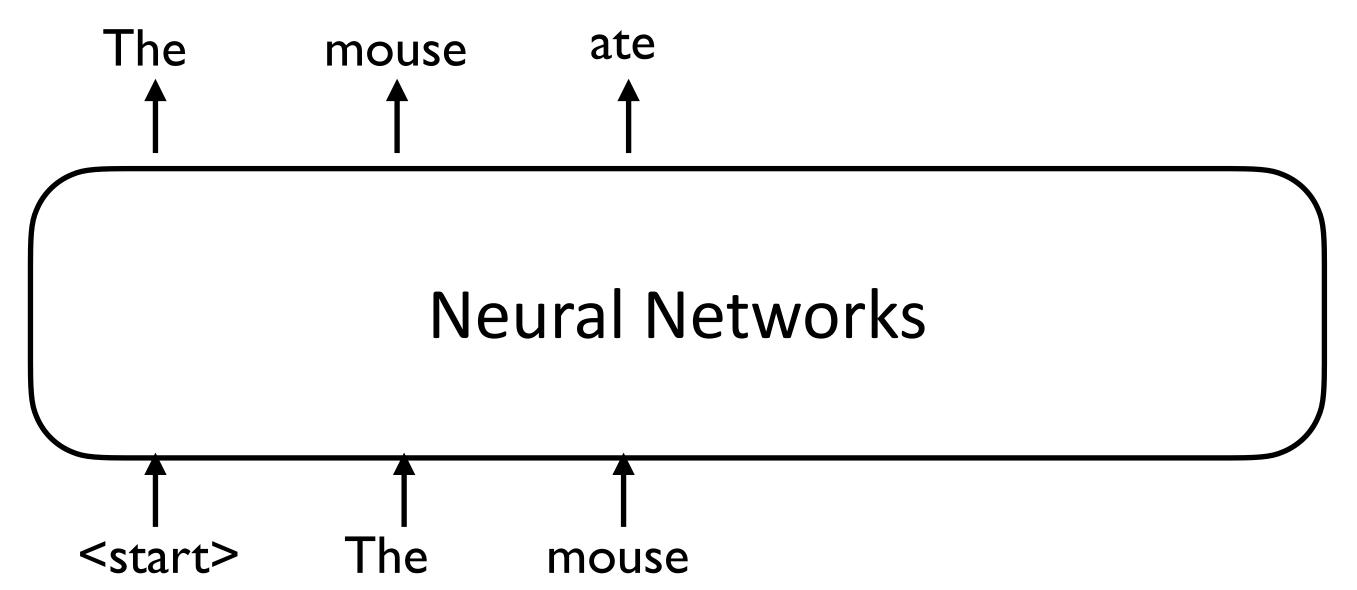
Is language modeling MLE? Are language models generative models? Can we compute p(x) given x? Can we sample new x?



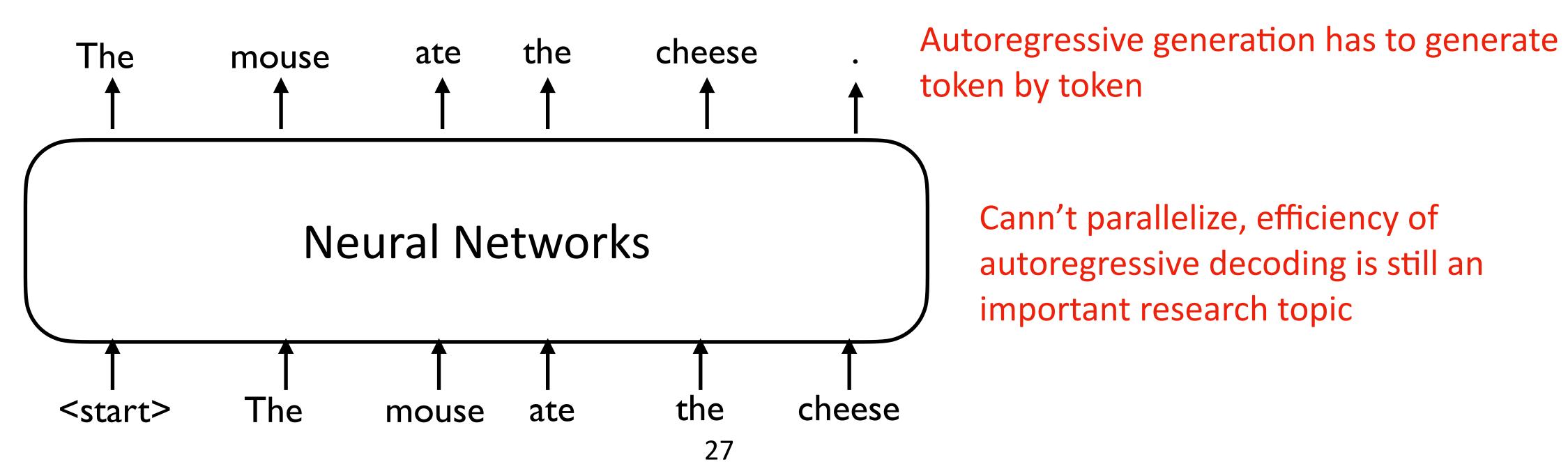
Is language modeling MLE? Are language models generative models? Can we compute p(x) given x? Can we sample new x?



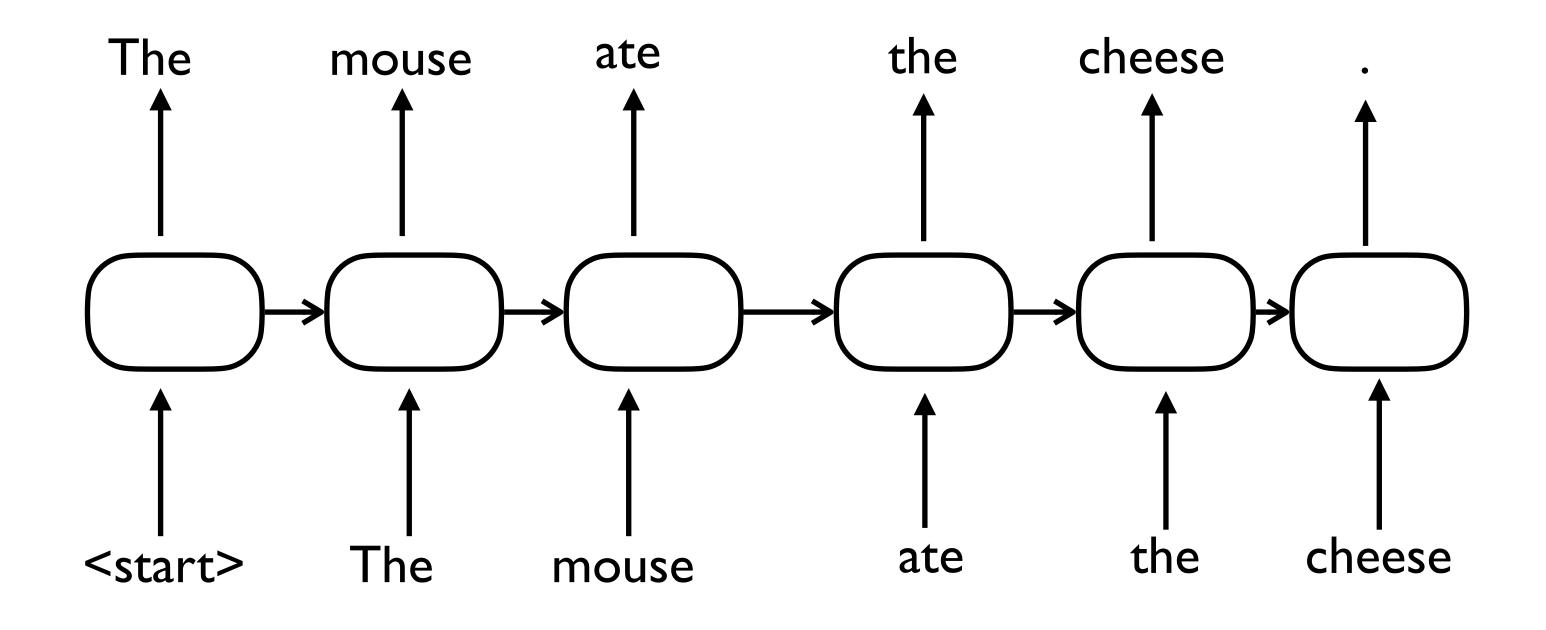
Is language modeling MLE? Are language models generative models? Can we compute p(x) given x? Can we sample new x?



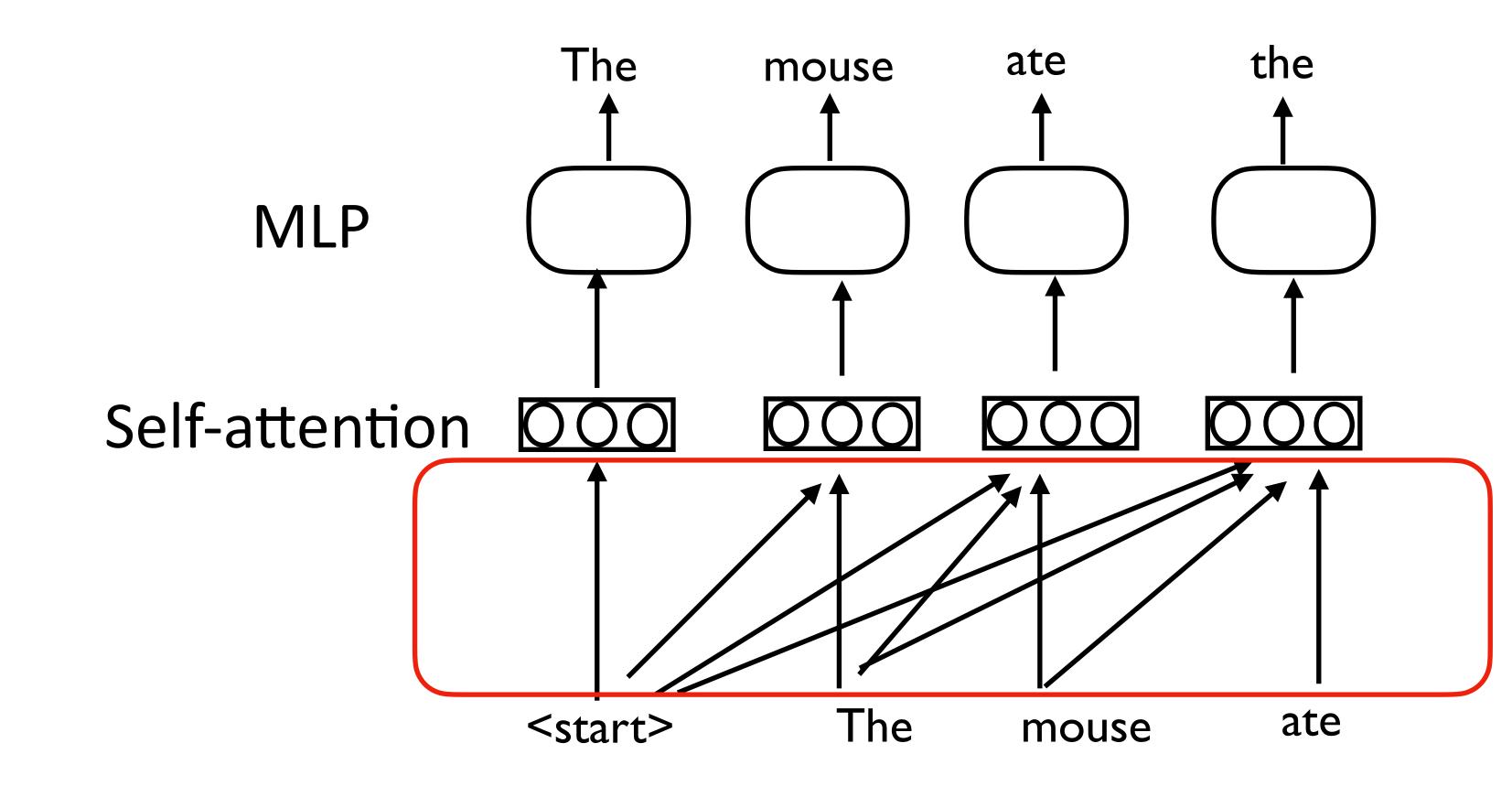
Is language modeling MLE? \checkmark Are language models generative models? Can we compute p(x) given x? Can we sample new x?



RNN Language Models



Transformer Language Models



Self-attention only attends to the tokens on the left (masked attention)

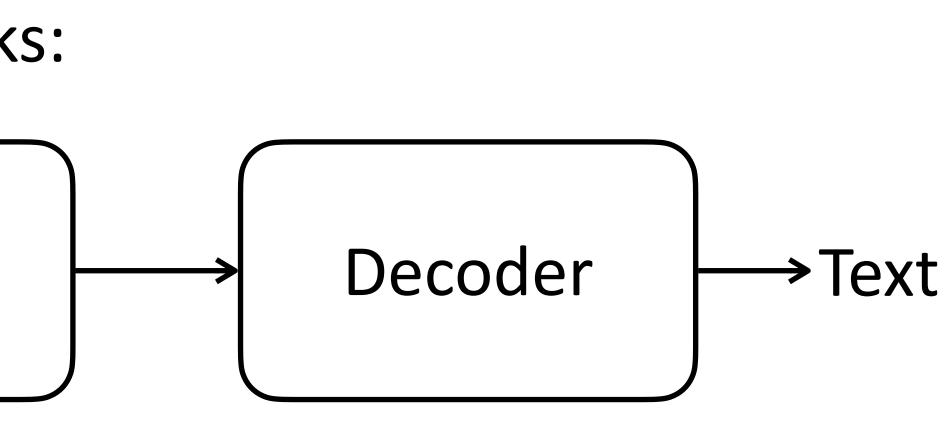
For a long time, to solve specific tasks:

Image/text/audio-

Encoder

Not long ago, some people think purely language models is useless because it does not directly address tasks, and LM performance may not transfer to downstream tasks Some impactful papers are rejected by such reviewers (e.g. transformer-XL)

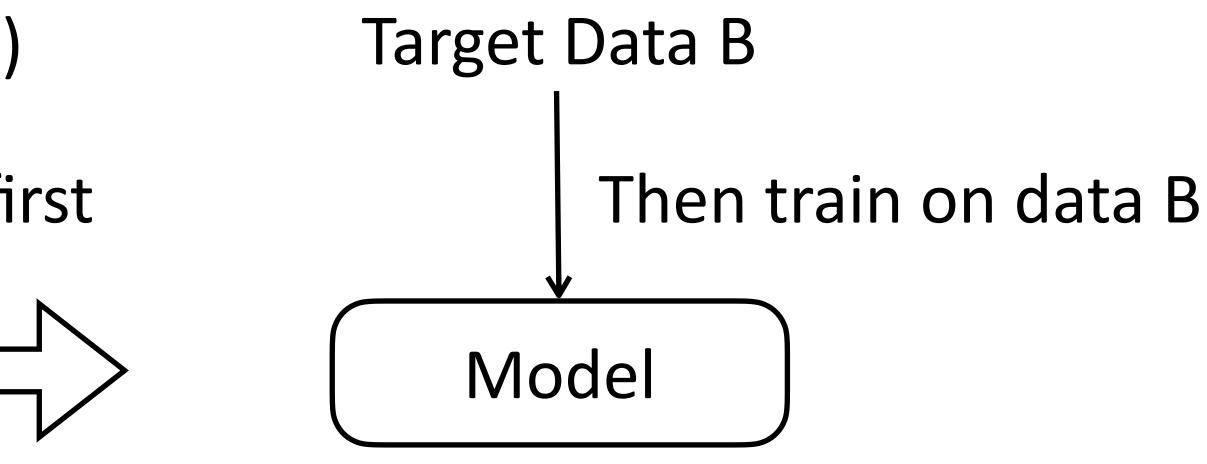
Language model is the fundamental block to model language distribution p(x)



When we have a better arch/training for LM, we can have a better decoder

Source Data A (maybe a different task) Train on data A first Model

It is now called pretraining because of the scale of A

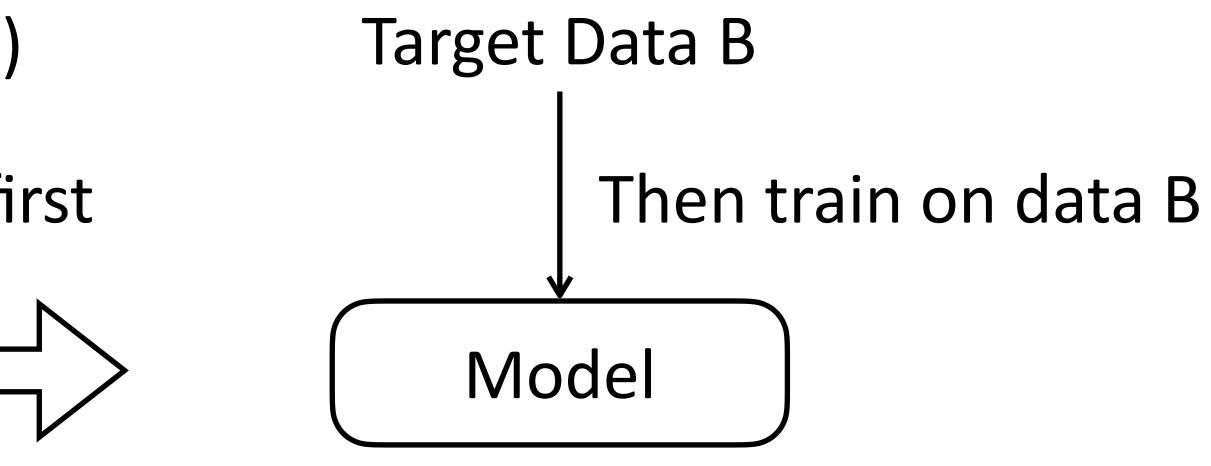


Classically, this is transfer Learning

Source Data A (maybe a different task) Train on data A first Model

For supervised training, data A is often limited

How can we find large-scale data A to train?



Self-supervised Pretraining **Construct supervision from unannotated data**

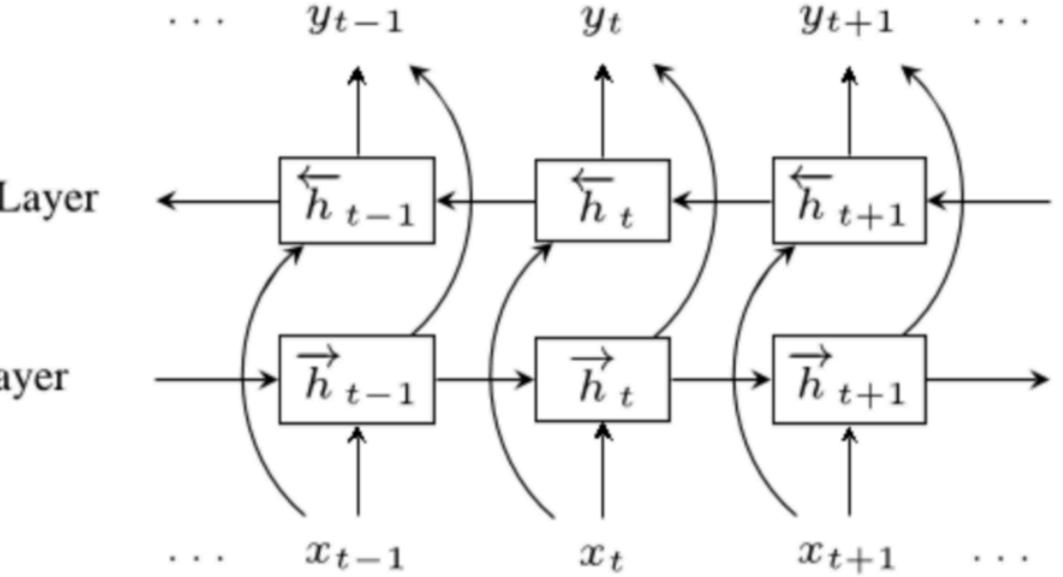
Outputs

Backward Layer

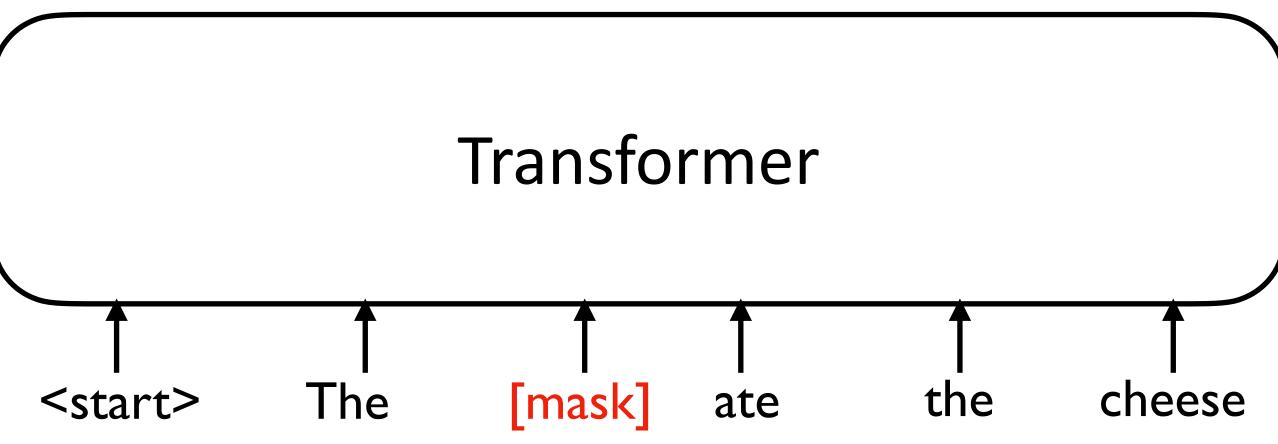
Forward Layer

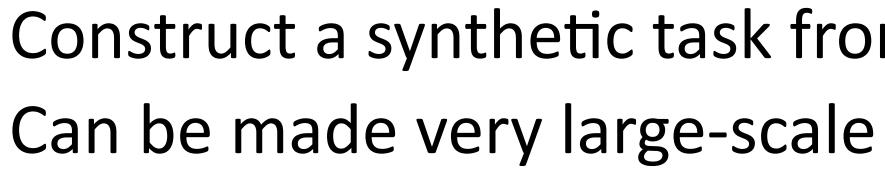
Inputs

Peters et al. Deep contextualized word representations. NAACL 2018



Mask language modeling





Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019.

mouse

Construct a synthetic task from raw text only

Is Bert a language model? Is it a generative model?

