THE HONG KONG
UNIVERSITY OF SCIENCE
AND TECHNOLOGY

Logistic Regression， Exponential Family

Junxian He
Feb 9， 2024

Classification

CAT

Labels are discrete

Logistic Regression

Logistic Regression

Given a training set $\left\{\left(x^{(i)}, y^{(i)}\right)\right.$ for $\left.i=1, \ldots, n\right\}$ let $y^{(i)} \in\{0,1\}$. Want $h_{\theta}(x) \in[0,1]$. Let's pick a smooth function:

$$
h_{\theta}(x)=g\left(\theta^{T} x\right)
$$

Logistic Regression

Given a training set $\left\{\left(x^{(i)}, y^{(i)}\right)\right.$ for $\left.i=1, \ldots, n\right\}$ let $y^{(i)} \in\{0,1\}$. Want $h_{\theta}(x) \in[0,1]$. Let's pick a smooth function:

$$
h_{\theta}(x)=g\left(\theta^{T} x\right) \quad \text { Link Function }
$$

Logistic Regression

Given a training set $\left\{\left(x^{(i)}, y^{(i)}\right)\right.$ for $\left.i=1, \ldots, n\right\}$ let $y^{(i)} \in\{0,1\}$.
Want $h_{\theta}(x) \in[0,1]$. Let's pick a smooth function:

$$
h_{\theta}(x)=g\left(\theta^{T} x\right) \quad \text { Link Function }
$$

There are many options of $g \ldots$....

Logistic Regression

Given a training set $\left\{\left(x^{(i)}, y^{(i)}\right)\right.$ for $\left.i=1, \ldots, n\right\}$ let $y^{(i)} \in\{0,1\}$.
Want $h_{\theta}(x) \in[0,1]$. Let's pick a smooth function:

$$
h_{\theta}(x)=g\left(\theta^{T} x\right) \quad \text { Link Function }
$$

There are many options of $g . .$.

$$
g(z)=\frac{1}{1+e^{-z}}
$$

Logistic Regression

Given a training set $\left\{\left(x^{(i)}, y^{(i)}\right)\right.$ for $\left.i=1, \ldots, n\right\}$ let $y^{(i)} \in\{0,1\}$. Want $h_{\theta}(x) \in[0,1]$. Let's pick a smooth function:

$$
h_{\theta}(x)=g\left(\theta^{T} x\right) \quad \text { Link Function }
$$

There are many options of $g \ldots$....

$$
g(z)=\frac{1}{1+e^{-z}}
$$

Logistic Regression

Given a training set $\left\{\left(x^{(i)}, y^{(i)}\right)\right.$ for $\left.i=1, \ldots, n\right\}$ let $y^{(i)} \in\{0,1\}$.
Want $h_{\theta}(x) \in[0,1]$. Let's pick a smooth function:

$$
h_{\theta}(x)=g\left(\theta^{T} x\right) \quad \text { Link Function }
$$

There are many options of g....

$$
g(z)=\frac{1}{1+e^{-z}} .
$$

How do we interpret $h_{\theta}(x)$?

$$
\begin{aligned}
& P(y=1 \mid x ; \theta)=h_{\theta}(x) \\
& P(y=0 \mid x ; \theta)=1-h_{\theta}(x)
\end{aligned}
$$

Logistic Regression

Given a training set $\left\{\left(x^{(i)}, y^{(i)}\right)\right.$ for $\left.i=1, \ldots, n\right\}$ let $y^{(i)} \in\{0,1\}$.
Want $h_{\theta}(x) \in[0,1]$. Let's pick a smooth function:

$$
h_{\theta}(x)=g\left(\theta^{T} x\right) \quad \text { Link Function }
$$

There are many options of g....

$$
g(z)=\frac{1}{1+e^{-z}}
$$

Logistic Function

How do we interpret $h_{\theta}(x)$?

$$
\begin{aligned}
& P(y=1 \mid x ; \theta)=h_{\theta}(x) \\
& P(y=0 \mid x ; \theta)=1-h_{\theta}(x)
\end{aligned}
$$

Logistic Regression

Given a training set $\left\{\left(x^{(i)}, y^{(i)}\right)\right.$ for $\left.i=1, \ldots, n\right\}$ let $y^{(i)} \in\{0,1\}$.
Want $h_{\theta}(x) \in[0,1]$. Let's pick a smooth function:

$$
h_{\theta}(x)=g\left(\theta^{T} x\right) \quad \text { Link Function }
$$

There are many options of g....

$$
g(z)=\frac{1}{1+e^{-z}} \cdot \text { Sigmoid Function }
$$

How do we interpret $h_{\theta}(x)$?

$$
\begin{aligned}
& P(y=1 \mid x ; \theta)=h_{\theta}(x) \\
& P(y=0 \mid x ; \theta)=1-h_{\theta}(x)
\end{aligned}
$$

Logistic Regression

Let's write the Likelihood function. Recall:

$$
\begin{aligned}
& P(y=1 \mid x ; \theta)=h_{\theta}(x) \\
& P(y=0 \mid x ; \theta)=1-h_{\theta}(x)
\end{aligned}
$$

Logistic Regression

Let's write the Likelihood function. Recall:

$$
\begin{aligned}
& P(y=1 \mid x ; \theta)=h_{\theta}(x) \\
& P(y=0 \mid x ; \theta)=1-h_{\theta}(x)
\end{aligned}
$$

Then,
$L(\theta)=P(y \mid X ; \theta)=\prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)} ; \theta\right)$

Logistic Regression

Let's write the Likelihood function. Recall:

$$
\begin{aligned}
& P(y=1 \mid x ; \theta)=h_{\theta}(x) \\
& P(y=0 \mid x ; \theta)=1-h_{\theta}(x)
\end{aligned}
$$

Then,
$L(\theta)=P(y \mid X ; \theta)=\prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)} ; \theta\right) \quad$ We want to express "if-then" logics, how?

Logistic Regression

Let's write the Likelihood function. Recall:

$$
\begin{aligned}
& P(y=1 \mid x ; \theta)=h_{\theta}(x) \\
& P(y=0 \mid x ; \theta)=1-h_{\theta}(x)
\end{aligned}
$$

Then,

$$
\begin{aligned}
L(\theta)=P(y \mid X ; \theta) & =\prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)} ; \theta\right) \quad \text { We want to express "if-then" logics, how? } \\
& =\prod_{i=1}^{n} h_{\theta}\left(x^{(i)}\right)^{y^{(i)}}\left(1-h_{\theta}\left(x^{(i)}\right)\right)^{1-y^{(i)}}
\end{aligned}
$$

Logistic Regression

Let's write the Likelihood function. Recall:

$$
\begin{aligned}
& P(y=1 \mid x ; \theta)=h_{\theta}(x) \\
& P(y=0 \mid x ; \theta)=1-h_{\theta}(x)
\end{aligned}
$$

Then,
$L(\theta)=P(y \mid X ; \theta)=\prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)} ; \theta\right) \quad$ We want to express "if-then" logics, how?

$$
=\prod_{i=1}^{n} h_{\theta}\left(x^{(i)}\right)^{y^{(i)}}\left(1-h_{\theta}\left(x^{(i)}\right)\right)^{1-y^{(i)}}
$$

Taking logs to compute the log likelihood $\ell(\theta)$ we have:
$\ell(\theta)=\log L(\theta)=\sum_{i=1}^{n} y^{(i)} \log h_{\theta}\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right) \quad$ Maximum likelihood estimation

Derivative of Logistic Function

$$
\begin{aligned}
g^{\prime}(z) & =\frac{d}{d z} \frac{1}{1+e^{-z}} \\
& =\frac{1}{\left(1+e^{-z}\right)^{2}}\left(e^{-z}\right) \\
& =\frac{1}{\left(1+e^{-z}\right)} \cdot\left(1-\frac{1}{\left(1+e^{-z}\right)}\right) \\
& =g(z)(1-g(z))
\end{aligned}
$$

Gradient Descent

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} \ell(\theta) & =\left(y \frac{1}{g\left(\theta^{T} x\right)}-(1-y) \frac{1}{1-g\left(\theta^{T} x\right)}\right) \frac{\partial}{\partial \theta_{j}} g\left(\theta^{T} x\right) \\
& =\left(y \frac{1}{g\left(\theta^{T} x\right)}-(1-y) \frac{1}{1-g\left(\theta^{T} x\right)}\right) g\left(\theta^{T} x\right)\left(1-g\left(\theta^{T} x\right)\right) \frac{\partial}{\partial \theta_{j}} \theta^{T} x \\
& =\left(y\left(1-g\left(\theta^{T} x\right)\right)-(1-y) g\left(\theta^{T} x\right)\right) x_{j} \\
& =\left(y-h_{\theta}(x)\right) x_{j}
\end{aligned}
$$

$$
\theta_{j}:=\theta_{j}+\alpha\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{j}^{(i)}
$$

Gradient Descent

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} \ell(\theta) & =\left(y \frac{1}{g\left(\theta^{T} x\right)}-(1-y) \frac{1}{1-g\left(\theta^{T} x\right)}\right) \frac{\partial}{\partial \theta_{j}} g\left(\theta^{T} x\right) \\
& =\left(y \frac{1}{g\left(\theta^{T} x\right)}-(1-y) \frac{1}{1-g\left(\theta^{T} x\right)}\right) g\left(\theta^{T} x\right)\left(1-g\left(\theta^{T} x\right)\right) \frac{\partial}{\partial \theta_{j}} \theta^{T} x \\
& =\left(y\left(1-g\left(\theta^{T} x\right)\right)-(1-y) g\left(\theta^{T} x\right)\right) x_{j} \\
& =\left(y-h_{\theta}(x)\right) x_{j}
\end{aligned}
$$

$$
\theta_{j}:=\theta_{j}+\alpha\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{j}^{(i)}
$$

Looks identical to LMS update rule in linear regression

Gradient Descent

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} \ell(\theta) & =\left(y \frac{1}{g\left(\theta^{T} x\right)}-(1-y) \frac{1}{1-g\left(\theta^{T} x\right)}\right) \frac{\partial}{\partial \theta_{j}} g\left(\theta^{T} x\right) \\
& =\left(y \frac{1}{g\left(\theta^{T} x\right)}-(1-y) \frac{1}{1-g\left(\theta^{T} x\right)}\right) g\left(\theta^{T} x\right)\left(1-g\left(\theta^{T} x\right)\right) \frac{\partial}{\partial \theta_{j}} \theta^{T} x \\
& =\left(y\left(1-g\left(\theta^{T} x\right)\right)-(1-y) g\left(\theta^{T} x\right)\right) x_{j} \\
& =\left(y-h_{\theta}(x)\right) x_{j}
\end{aligned}
$$

$$
\theta_{j}:=\theta_{j}+\alpha\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{j}^{(i)}
$$

Looks identical to LMS update rule in linear regression Is this coincidence?

Multi-Label Classification

\{Cat, dog, dragon, fish, pig\}

Multi-Label Classification

Given a training set $\left\{\left(x^{(1)}, y^{(1)}\right), \cdots,\left(x^{(n)}, y^{(n)}\right)\right\}, y^{(i)} \in\{1,2, \cdots, k\}$, we aim to model the distribution $p(y \mid x ; \theta)$

Multi-Label Classification

Given a training set $\left\{\left(x^{(1)}, y^{(1)}\right), \cdots,\left(x^{(n)}, y^{(n)}\right)\right\}, y^{(i)} \in\{1,2, \cdots, k\}$, we aim to model the distribution $p(y \mid x ; \theta)$

Categorical distribution, $p(y=k \mid x ; \theta)=\phi_{k}$

$$
\text { s.t. } \sum_{i=1}^{k} \phi_{i}=1
$$

Multi-Label Classification

Given a training set $\left\{\left(x^{(1)}, y^{(1)}\right), \cdots,\left(x^{(n)}, y^{(n)}\right)\right\}, y^{(i)} \in\{1,2, \cdots, k\}$, we aim to model the distribution $p(y \mid x ; \theta)$

Categorical distribution, $p(y=k \mid x ; \theta)=\phi_{k}$

$$
\text { s.t. } \sum_{i=1}^{k} \phi_{i}=1
$$

$$
\phi_{i}=\theta_{i}^{T} x \text { ? }
$$

Softmax Function

Softmax Function

$$
\text { Softmax: } \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}
$$

Softmax Function

Softmax: $\mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$

$$
\operatorname{softmax}\left(t_{1}, \ldots, t_{k}\right)=\left[\begin{array}{c}
\frac{\exp \left(t_{1}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)} \\
\vdots \\
\frac{\exp \left(t_{k}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}
\end{array}\right]
$$

Softmax Function

$$
\text { Softmax: } \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}
$$

$$
\operatorname{softmax}\left(t_{1}, \ldots, t_{k}\right)=\left[\begin{array}{c}
\frac{\exp \left(t_{1}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)} \\
\vdots \\
\frac{\exp \left(t_{k}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}
\end{array}\right]
$$

The denominator is a normalization constant

Multi-Label Classification

Multi-Label Classification

Let $\left(t_{1}, \ldots, t_{k}\right)=\left(\theta_{1}^{\top} x, \cdots, \theta_{k}^{\top} x\right)$

Multi-Label Classification

Let $\left(t_{1}, \ldots, t_{k}\right)=\left(\theta_{1}^{\top} x, \cdots, \theta_{k}^{\top} x\right)$

$$
\left[\begin{array}{c}
P(y=1 \mid x ; \theta) \\
\vdots \\
P(y=k \mid x ; \theta)
\end{array}\right]=\operatorname{softmax}\left(t_{1}, \cdots, t_{k}\right)=\left[\begin{array}{c}
\frac{\exp \left(\theta^{\top} x\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{\top} x\right)} \\
\vdots \\
\frac{\exp \left(\theta_{i}^{\top} x\right)}{\sum_{j=1}^{=} \exp \left(\theta_{j}^{\top} x\right)}
\end{array}\right]
$$

Multi-Label Classification

Let $\left(t_{1}, \ldots, t_{k}\right)=\left(\theta_{1}^{\top} x, \cdots, \theta_{k}^{\top} x\right)$

$$
\begin{aligned}
& {\left[\begin{array}{c}
P(y=1 \mid x ; \theta) \\
\vdots \\
P(y=k \mid x ; \theta)
\end{array}\right]=\operatorname{softmax}\left(t_{1}, \cdots, t_{k}\right)=\left[\begin{array}{c}
\frac{\exp \left(\theta^{\top} x\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{\top} x\right)} \\
\vdots \\
\frac{\exp \left(\theta_{\theta^{\top} x}\right.}{\sum_{j=1}^{k=1} \exp \left(\theta_{j}^{\top} x\right)}
\end{array}\right]} \\
& P(y=i \mid x ; \theta)=\phi_{i}=\frac{\exp \left(t_{i}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}=\frac{\exp \left(\theta_{i}^{\top} x\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{\top} x\right)}
\end{aligned}
$$

Multi-Label Classification

Multi-Label Classification

$$
-\log p(y \mid x, \theta)=-\log \left(\frac{\exp \left(t_{y}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}\right)=-\log \left(\frac{\exp \left(\theta_{y}^{\top} x\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{\top} x\right)}\right)
$$

Multi-Label Classification

$$
\begin{gathered}
-\log p(y \mid x, \theta)=-\log \left(\frac{\exp \left(t_{y}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}\right)=-\log \left(\frac{\exp \left(\theta_{y}^{\top} x\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{\top} x\right)}\right) \\
\ell(\theta)=\sum_{i=1}^{n}-\log \left(\frac{\exp \left(\theta_{y^{(i)}}^{\top} x^{(i)}\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{\top} x^{(i)}\right)}\right)
\end{gathered}
$$

Multi-Label Classification

$$
\begin{array}{r}
-\log p(y \mid x, \theta)=-\log \left(\frac{\exp \left(t_{y}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}\right)=-\log \left(\frac{\exp \left(\theta_{y}^{\top} x\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{\top} x\right)}\right) \\
\ell(\theta)=\sum_{i=1}^{n}-\log \left(\frac{\exp \left(\theta_{y^{(i)}}^{\top} x^{(i)}\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{\top} x^{(i)}\right)}\right) \text { Negative log likelihood }
\end{array}
$$

Multi-Label Classification

$$
\begin{array}{r}
-\log p(y \mid x, \theta)=-\log \left(\frac{\exp \left(t_{y}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}\right)=-\log \left(\frac{\exp \left(\theta_{y}^{\top} x\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{\top} x\right)}\right) \\
\ell(\theta)=\sum_{i=1}^{n}-\log \left(\frac{\exp \left(\theta_{y^{(i)}}^{\top} x^{(i)}\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{\top} x^{(i)}\right)}\right) \text { Negative log likelihood }
\end{array}
$$

Cross-entropy loss $\quad \ell_{\text {ce }}: \mathbb{R}^{k} \times\{1, \ldots, k\} \rightarrow \mathbb{R}_{\geq 0}$

Multi-Label Classification

$$
\begin{array}{r}
-\log p(y \mid x, \theta)=-\log \left(\frac{\exp \left(t_{y}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}\right)=-\log \left(\frac{\exp \left(\theta_{y}^{\top} x\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{\top} x\right)}\right) \\
\ell(\theta)=\sum_{i=1}^{n}-\log \left(\frac{\exp \left(\theta_{y^{(i)}}^{\top} x^{(i)}\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{\top} x^{(i)}\right)}\right) \text { Negative log likelihood }
\end{array}
$$

Cross-entropy loss $\quad \ell_{\text {ce }}: \mathbb{R}^{k} \times\{1, \ldots, k\} \rightarrow \mathbb{R}_{\geq 0}$

$$
\ell_{\mathrm{ce}}\left(\left(t_{1}, \ldots, t_{k}\right), y\right)=-\log \left(\frac{\exp \left(t_{y}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}\right)
$$

Multi-Label Classification

$$
\begin{array}{r}
-\log p(y \mid x, \theta)=-\log \left(\frac{\exp \left(t_{y}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}\right)=-\log \left(\frac{\exp \left(\theta_{y}^{\top} x\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{\top} x\right)}\right) \\
\ell(\theta)=\sum_{i=1}^{n}-\log \left(\frac{\exp \left(\theta_{y^{(i)}}^{\top} x^{(i)}\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{\top} x^{(i)}\right)}\right) \text { Negative log likelihood }
\end{array}
$$

Cross-entropy loss $\quad \ell_{\text {ce }}: \mathbb{R}^{k} \times\{1, \ldots, k\} \rightarrow \mathbb{R}_{\geq 0}$

$$
\ell_{\mathrm{ce}}\left(\left(t_{1}, \ldots, t_{k}\right), y\right)=-\log \left(\frac{\exp \left(t_{y}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}\right) \quad \ell(\theta)=\sum_{i=1}^{n} \ell_{\mathrm{ce}}\left(\left(\theta_{1}^{\top} x^{(i)}, \ldots, \theta_{k}^{\top} x^{(i)}\right), y^{(i)}\right)
$$

The Derivative

The Derivative

$$
\frac{\partial \ell_{\mathrm{ce}}(t, y)}{\partial t_{i}}=\phi_{i}-1\{y=i\}
$$

The Derivative

$$
\frac{\partial \ell_{\mathrm{ce}}(t, y)}{\partial t_{i}}=\phi_{i}-1\{y=i\} \quad \phi_{i}=\frac{\exp \left(t_{i}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}
$$

The Derivative

$$
\frac{\partial \ell_{\mathrm{ce}}(t, y)}{\partial t_{i}}=\phi_{i}-1\{y=i\} \quad \phi_{i}=\frac{\exp \left(t_{i}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}
$$

Chain rule

$$
\frac{\partial \ell_{\mathrm{ce}}\left(\left(\theta_{1}^{\top} x, \ldots, \theta_{k}^{\top} x\right), y\right)}{\partial \theta_{i}}=\frac{\partial \ell(t, y)}{\partial t_{i}} \cdot \frac{\partial t_{i}}{\partial \theta_{i}}=\left(\phi_{i}-1\{y=i\}\right) \cdot x
$$

The Derivative

$$
\frac{\partial \ell_{\mathrm{ce}}(t, y)}{\partial t_{i}}=\phi_{i}-1\{y=i\} \quad \phi_{i}=\frac{\exp \left(t_{i}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}
$$

Chain rule

$$
\begin{aligned}
& \frac{\partial \ell_{\mathrm{ce}}\left(\left(\theta_{1}^{\top} x, \ldots, \theta_{k}^{\top} x\right), y\right)}{\partial \theta_{i}}=\frac{\partial \ell(t, y)}{\partial t_{i}} \cdot \frac{\partial t_{i}}{\partial \theta_{i}}=\left(\phi_{i}-1\{y=i\}\right) \cdot x \\
& \frac{\partial \ell(\theta)}{\partial \theta_{i}}=\sum_{j=1}^{n}\left(\phi_{i}^{(j)}-1\left\{y^{(j)}=i\right\}\right) \cdot x^{(j)}
\end{aligned}
$$

The Derivative

$$
\frac{\partial \ell_{\mathrm{ce}}(t, y)}{\partial t_{i}}=\phi_{i}-1\{y=i\} \quad \phi_{i}=\frac{\exp \left(t_{i}\right)}{\sum_{j=1}^{k} \exp \left(t_{j}\right)}
$$

Chain rule

$$
\frac{\partial \ell_{\mathrm{ce}}\left(\left(\theta_{1}^{\top} x, \ldots, \theta_{k}^{\top} x\right), y\right)}{\partial \theta_{i}}=\frac{\partial \ell(t, y)}{\partial t_{i}} \cdot \frac{\partial t_{i}}{\partial \theta_{i}}=\left(\phi_{i}-1\{y=i\}\right) \cdot x
$$

$$
\frac{\partial \ell(\theta)}{\partial \theta_{i}}=\sum_{j=1}^{n}\left(\phi_{i}^{(j)}-1\left\{y^{(j)}=i\right\}\right) \cdot x^{(j)} \quad \text { Intuitive explanation of the rule? }
$$

Another Optimization Method Newton's Method

Another Optimization Method Newton's Method

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ find x s.t. $f(x)=0$.

Another Optimization Method Newton's Method

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ find x s.t. $f(x)=0 . \quad \nabla_{\theta} l(\theta)=0$

Another Optimization Method Newton's Method

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ find x s.t. $f(x)=0 . \quad \nabla_{\theta} l(\theta)=0$

- This is the update rule in 1d

$$
x^{(t+1)}=x^{(t)}-\frac{f\left(x^{(t)}\right)}{f^{\prime}\left(x^{(t)}\right)}
$$

Another Optimization Method Newton's Method

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ find x s.t. $f(x)=0 . \quad \nabla_{\theta} l(\theta)=0$

- This is the update rule in 1d

$$
x^{(t+1)}=x^{(t)}-\frac{f\left(x^{(t)}\right)}{f^{\prime}\left(x^{(t)}\right)}
$$

Solution to a linear equation

$$
f^{\prime}\left(x^{(t)}\right) x^{(t+1)}+f\left(x^{(t)}\right)-x^{(t)} f^{\prime}\left(x^{(t)}\right)=0
$$

Another Optimization Method Newton's Method

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ find x s.t. $f(x)=0 . \quad \nabla_{\theta} l(\theta)=0$

- This is the update rule in 1d

$$
x^{(t+1)}=x^{(t)}-\frac{f\left(x^{(t)}\right)}{f^{\prime}\left(x^{(t)}\right)}
$$

Solution to a linear equation

$$
f^{\prime}\left(x^{(t)}\right) x^{(t+1)}+f\left(x^{(t)}\right)-x^{(t)} f^{\prime}\left(x^{(t)}\right)=0
$$

View it as a equation of $x^{(t+1)}$, and $x^{(t)}$ is a constant

Another Optimization Method -
 Newton's Method

$$
f^{\prime}\left(x^{(t)}\right) x+f\left(x^{(t)}\right)-x^{(t)} f^{\prime}\left(x^{(t)}\right)=y
$$

Another Optimization Method Newton's Method

$$
f^{\prime}\left(x^{(t)}\right) x+f\left(x^{(t)}\right)-x^{(t)} f^{\prime}\left(x^{(t)}\right)=y
$$

Another Optimization Method Newton's Method

$$
f^{\prime}\left(x^{(t)}\right) x+f\left(x^{(t)}\right)-x^{(t)} f^{\prime}\left(x^{(t)}\right)=y
$$

Another Optimization Method Newton's Method

$$
f^{\prime}\left(x^{(t)}\right) x+f\left(x^{(t)}\right)-x^{(t)} f^{\prime}\left(x^{(t)}\right)=y
$$

Another Optimization Method Newton's Method

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ find x s.t. $f(x)=0 . \quad \nabla_{\theta} l(\theta)=0$

- This is the update rule in 1d

$$
x^{(t+1)}=x^{(t)}-\frac{f\left(x^{(t)}\right)}{f^{\prime}\left(x^{(t)}\right)} \quad \theta:=\theta-\frac{\ell^{\prime}(\theta)}{\ell^{\prime \prime}(\theta)} .
$$

Another Optimization Method Newton's Method

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ find x s.t. $f(x)=0 . \quad \nabla_{\theta} l(\theta)=0$

- This is the update rule in 1d

$$
x^{(t+1)}=x^{(t)}-\frac{f\left(x^{(t)}\right)}{f^{\prime}\left(x^{(t)}\right)} \quad \theta:=\theta-\frac{\ell^{\prime}(\theta)}{\ell^{\prime \prime}(\theta)} .
$$

- It may converge very fast (quadratic local convergence!) Requires fewer iterations

Another Optimization Method Newton's Method

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ find x s.t. $f(x)=0 . \quad \nabla_{\theta} l(\theta)=0$

- This is the update rule in 1d

$$
x^{(t+1)}=x^{(t)}-\frac{f\left(x^{(t)}\right)}{f^{\prime}\left(x^{(t)}\right)} \quad \theta:=\theta-\frac{\ell^{\prime}(\theta)}{\ell^{\prime \prime}(\theta)} .
$$

- It may converge very fast (quadratic local convergence!) Requires fewer iterations
- For the likelihood, i.e., $f(\theta)=\nabla_{\theta} \ell(\theta)$ we need to generalize to a vector-valued function which has:

$$
\theta^{(t+1)}=\theta^{(t)}-\left(H\left(\theta^{(t)}\right)\right)^{-1} \nabla_{\theta} \ell\left(\theta^{(t)}\right) .
$$

in which $H_{i, j}(\theta)=\frac{\partial}{\partial \theta_{i} \partial \theta_{j}} \ell(\theta)$.

Another Optimization Method Newton's Method

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ find x s.t. $f(x)=0 . \quad \nabla_{\theta} l(\theta)=0$

- This is the update rule in 1d

$$
x^{(t+1)}=x^{(t)}-\frac{f\left(x^{(t)}\right)}{f^{\prime}\left(x^{(t)}\right)} \quad \theta:=\theta-\frac{\ell^{\prime}(\theta)}{\ell^{\prime \prime}(\theta)} .
$$

- It may converge very fast (quadratic local convergence!) Requires fewer iterations
- For the likelihood, i.e., $f(\theta)=\nabla_{\theta} \ell(\theta)$ we need to generalize to a vector-valued function which has:

$$
\theta^{(t+1)}=\theta^{(t)}-\left(H\left(\theta^{(t)}\right)\right)^{-1} \nabla_{\theta} \ell\left(\theta^{(t)}\right)
$$

When Newton's method is applied to maximize the logistic regression log likelihood function $I(\theta)$, the resulting method is also called Fisher scoring.
in which $H_{i, j}(\theta)=\frac{\partial}{\partial \theta_{i} \partial \theta_{j}} \ell(\theta)$.

Exponential Family

Exponential Family

- Exponential family unifies inference and learning for many important models

Exponential Family

Exponential Family

Rough Idea "If P has a a special form, then inference and learning come for free"

$$
P(y ; \eta)=b(y) \exp \left\{\eta^{T} T(y)-a(\eta)\right\} .
$$

Here $y, a(\eta)$, and $b(y)$ are scalars. $T(y)$ same dimension as η.

Exponential Family

Rough Idea "If P has a a special form, then inference and learning come for free"

$$
P(y ; \eta)=b(y) \exp \left\{\eta^{T} T(y)-a(\eta)\right\} .
$$

η : natural parameter or canonical parameter
Here $y, a(\eta)$, and $b(y)$ are scalars. $T(y)$ same dimension as η.

Exponential Family

Rough Idea "If P has a a special form, then inference and learning come for free"

$$
P(y ; \eta)=b(y) \exp \left\{\eta^{T} T(y)-a(\eta)\right\} .
$$

η : natural parameter or canonical parameter
Here $y, a(\eta)$, and $b(y)$ are scalars. $T(y)$ same dimension as η.
$T(y)$ is called the sufficient statistic.
$b(y)$ is called the base measure - does not depend on η.
$a(\eta)$ is called the log partition function - does not depend on y.

Exponential Family

Rough Idea "If P has a a special form, then inference and learning come for free"

$$
P(y ; \eta)=b(y) \exp \left\{\eta^{T} T(y)-a(\eta)\right\} .
$$

η : natural parameter or canonical parameter
Here $y, a(\eta)$, and $b(y)$ are scalars. $T(y)$ same dimension as η.
holds all information the data provides with regard
$T(y)$ is called the sufficient statistic. to the unknown parameter values
$b(y)$ is called the base measure - does not depend on η.
$a(\eta)$ is called the log partition function - does not depend on y.

Exponential Family

Rough Idea "If P has a a special form, then inference and learning come for free"

$$
P(y ; \eta)=b(y) \exp \left\{\eta^{T} T(y)-a(\eta)\right\} .
$$

η : natural parameter or canonical parameter
Here $y, a(\eta)$, and $b(y)$ are scalars. $T(y)$ same dimension as η.
holds all information the data provides with regard
$T(y)$ is called the sufficient statistic. to the unknown parameter values
$b(y)$ is called the base measure - does not depend on η.
$a(\eta)$ is called the log partition function - does not depend
on y.

$$
\begin{aligned}
1 & =\sum_{y} P(y ; \eta)=e^{-a(\eta)} \sum_{y} b(y) \exp \left\{\eta^{T} T(y)\right\} \\
\Longrightarrow a(\eta) & =\log \sum_{y} b(y) \exp \left\{\eta^{T} T(y)\right\}
\end{aligned}
$$

Example: Bernoulli

Bernoulli random variable is an event (say flipping a coin) then:

$$
p(y ; \phi)=\phi^{y}(1-\phi)^{1-y}
$$

Example: Bernoulli

Bernoulli random variable is an event (say flipping a coin) then:

$$
p(y ; \phi)=\phi^{y}(1-\phi)^{1-y}
$$

How do we put it in the required form?

$$
P(y ; \eta)=b(y) \exp \left\{\eta^{T} T(y)-a(\eta)\right\} .
$$

Example: Bernoulli

Bernoulli random variable is an event (say flipping a coin) then:

$$
p(y ; \phi)=\phi^{y}(1-\phi)^{1-y}
$$

How do we put it in the required form?

$$
\begin{aligned}
P(y ; \eta) & =b(y) \exp \left\{\eta^{T} T(y)-a(\eta)\right\} \\
p(y ; \phi) & =\phi^{y}(1-\phi)^{1-y} \\
& =\exp (y \log \phi+(1-y) \log (1-\phi)) \\
& =\exp \left(\left(\log \left(\frac{\phi}{1-\phi}\right)\right) y+\log (1-\phi)\right)
\end{aligned}
$$

Example: Bernoulli

$$
\begin{aligned}
p(y ; \phi) & =\phi^{y}(1-\phi)^{1-y} \\
& =\exp (y \log \phi+(1-y) \log (1-\phi)) \\
& =\exp \left(\left(\log \left(\frac{\phi}{1-\phi}\right)\right) y+\log (1-\phi)\right)
\end{aligned}
$$

Example: Bernoulli

$$
\begin{aligned}
p(y ; \phi) & =\phi^{y}(1-\phi)^{1-y} \\
& =\exp (y \log \phi+(1-y) \log (1-\phi)) \\
& =\exp \left(\left(\log \left(\frac{\phi}{1-\phi}\right)\right) y+\log (1-\phi)\right)
\end{aligned}
$$

So then:

$$
\begin{aligned}
& \eta=\log \frac{\phi}{1-\phi}, T(y)=y, a(\eta)=-\log (1-\phi) . \\
& b(y)=1
\end{aligned}
$$

Example: Bernoulli

$$
\begin{aligned}
p(y ; \phi) & =\phi^{y}(1-\phi)^{1-y} \\
& =\exp (y \log \phi+(1-y) \log (1-\phi)) \\
& =\exp \left(\left(\log \left(\frac{\phi}{1-\phi}\right)\right) y+\log (1-\phi)\right)
\end{aligned}
$$

So then:

$$
\begin{aligned}
& \eta=\log \frac{\phi}{1-\phi}, T(y)=y, a(\eta)=-\log (1-\phi) \\
& b(y)=1
\end{aligned}
$$

We need to show $a(\eta)$ is a function of $\log \frac{\phi}{1-\phi}$

Example: Bernoulli

Example: Bernoulli

We first observe that:

$$
\begin{aligned}
\eta & =\log \frac{\phi}{1-\phi} \\
e^{\eta} & \Longrightarrow e^{\eta}(1-\phi)=\phi \\
\eta & 1) \phi
\end{aligned}>\phi=\frac{1}{1+e^{-\eta}}
$$

Example: Bernoulli

We first observe that:

$$
\begin{aligned}
\eta=\log \frac{\phi}{1-\phi} & \Longrightarrow e^{\eta}(1-\phi)=\phi \\
e^{\eta} & =\left(e^{\eta}+1\right) \phi
\end{aligned} \quad \Longrightarrow=\frac{1}{1+e^{-\eta}}
$$

Now, we plug into $\log (1-\phi)$ and we verify:

$$
a(\eta)=\log (1-\phi)=\log \frac{e^{-\eta}}{1+e^{-\eta}}=-\log \left(1+e^{\eta}\right)
$$

Example: Bernoulli

We first observe that:

$$
\begin{aligned}
\eta=\log \frac{\phi}{1-\phi} & \Longrightarrow e^{\eta}(1-\phi)=\phi \\
e^{\eta} & =\left(e^{\eta}+1\right) \phi
\end{aligned} \quad \Longrightarrow=\frac{1}{1+e^{-\eta}}
$$

Now, we plug into $\log (1-\phi)$ and we verify:

$$
a(\eta)=\log (1-\phi)=\log \frac{e^{-\eta}}{1+e^{-\eta}}=-\log \left(1+e^{\eta}\right)
$$

We have verified Bernoulli distribution is in the exponential family

Example: Gaussian with Fixed Variance $\sigma^{2}=1$

Example: Gaussian with Fixed Variance $\sigma^{2}=1$

$$
P(y ; \mu)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}(y-\mu)^{2}\right\} .
$$

Can we put it in the exponential family form?

$$
P(y ; \eta)=b(y) \exp \left\{\eta^{T} T(y)-a(\eta)\right\} .
$$

Example: Gaussian with Fixed Variance $\sigma^{2}=1$

$$
P(y ; \mu)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}(y-\mu)^{2}\right\} .
$$

Can we put it in the exponential family form?

$$
P(y ; \eta)=b(y) \exp \left\{\eta^{T} T(y)-a(\eta)\right\} .
$$

Multiply out the square and group terms:

$$
P(y ; \mu)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-y^{2} / 2\right\} \exp \left\{\mu y-\frac{1}{2} \mu^{2}\right\} .
$$

Example: Gaussian with Fixed Variance $\sigma^{2}=1$

$$
P(y ; \mu)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}(y-\mu)^{2}\right\} .
$$

Can we put it in the exponential family form?

$$
P(y ; \eta)=b(y) \exp \left\{\eta^{T} T(y)-a(\eta)\right\} .
$$

Multiply out the square and group terms:

$$
\begin{aligned}
& P(y ; \mu)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-y^{2} / 2\right\} \exp \left\{\mu y-\frac{1}{2} \mu^{2}\right\} . \\
& \eta=\mu, T(y)=y, a(\eta)=\frac{1}{2} \eta^{2}
\end{aligned}
$$

An Observation

An Observation

Notice that for a Gaussian with mean μ we had

$$
\eta=\mu, T(y)=y, a(\eta)=\frac{1}{2} \eta^{2}
$$

An Observation

Notice that for a Gaussian with mean μ we had

$$
\eta=\mu, T(y)=y, a(\eta)=\frac{1}{2} \eta^{2}
$$

$$
\partial_{\eta} a(\eta)=\eta=\mu=\mathbb{E}[y] \text { and } \partial_{\eta}^{2} a(\eta)=1=\sigma^{2}=\operatorname{var}(y)
$$

An Observation

Notice that for a Gaussian with mean μ we had

$$
\eta=\mu, T(y)=y, a(\eta)=\frac{1}{2} \eta^{2}
$$

$$
\partial_{\eta} a(\eta)=\eta=\mu=\mathbb{E}[y] \text { and } \partial_{\eta}^{2} a(\eta)=1=\sigma^{2}=\operatorname{var}(y)
$$

Is this true for general?

Log Partition Function

Yes! Recall that

$$
a(\eta)=\log \sum_{y} b(y) \exp \left\{\eta^{T} T(y)\right\}
$$

Log Partition Function

Yes! Recall that

$$
a(\eta)=\log \sum_{y} b(y) \exp \left\{\eta^{T} T(y)\right\}
$$

Then, taking derivatives

$$
\nabla_{\eta} a(\eta)=\frac{\sum_{y} T(y) b(y) \exp \left\{\eta^{T} T(y)\right\}}{\sum_{y} b(y) \exp \left\{\eta^{T} T(y)\right\}}=\mathbb{E}[T(y) ; \eta]
$$

Many Other Exponential Models

- There are many canonical exponential family models:
- Binary \mapsto Bernoulli
- Multiple Classses \mapsto Multinomial
- Real \mapsto Gaussian
- Counts \mapsto Poisson
- $\mathbb{R}_{+} \mapsto$ Gamma, Exponential
- Distributions \mapsto Dirichlet

Thank You! Q \& A

