
Logis&c	Regression,	
Exponen&al	Family

Junxian	He	
Feb	9,	2024

1

COMP	5212	
Machine	Learning	
Lecture	3



Classifica(on

2

Labels	are	discrete
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There	are	many	op&ons	of	 ….	g

Link	Func&on

Logis&c	Func&on

Sigmoid	Func&on
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Gradient	Descent

6

Looks	iden&cal	to	LMS	update	rule	in	linear	regression

Is	this	coincidence?
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{Cat,	dog,	dragon,	fish,	pig}
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Given	a	training	set	 ,	 	,	
we	aim	to	model	the	distribu&on	

{(x(1), y(1)), ⋯, (x(n), y(n))} y(i) ∈ {1,2,⋯, k}
p(y |x; θ)

Categorical	distribu&on,		p(y = k |x; θ) = ϕk

s.t.	
k

∑
i=1

ϕi = 1

	?ϕi = θT
i x
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So^max:	ℝk → ℝk

The	denominator	is	a	normaliza&on	constant
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Mul(-Label	Classifica(on

Nega&ve	log	likelihood

Cross-entropy	loss	
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Intui&ve	explana&on	of	the	rule?

Chain	rule
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∇θl(θ) = 0

f′ (x(t))x(t+1) + f(x(t)) − x(t)f′ (x(t)) = 0

Solu&on	to	a	linear	equa&on

View	it	as	a	equa&on	of	 ,	and	 	is	a	constantx(t+1) x(t)
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f(x)

x*

(x(t), f(x(t)))

f′ (x(t))x + f(x(t)) − x(t)f′ (x(t)) = y
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∇θl(θ) = 0

Requires	fewer	itera&ons

When	Newton’s	method	is	applied	to	
maximize	the	logis&c	regression	log	
likelihood	func&on	l(θ),	the	resul&ng	
method	is	also	called	Fisher	scoring.		
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Exponen&al	family	unifies	inference	and	learning	for	many	
important	models
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b(y) = 1

We	need	to	show	 	is	a	func&on	of	a(η) log
ϕ

1 − ϕ
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Example:	Bernoulli

We	have	verified	Bernoulli	distribu&on	is	in	the	exponen&al	family



Example:	Gaussian	with	Fixed	Variance	 	σ2 = 1

22



Example:	Gaussian	with	Fixed	Variance	 	σ2 = 1

22



Example:	Gaussian	with	Fixed	Variance	 	σ2 = 1

22



Example:	Gaussian	with	Fixed	Variance	 	σ2 = 1

22



An	Observa(on

23



An	Observa(on

23



An	Observa(on

23



An	Observa(on

23

Is	this	true	for	general?



Log	Par((on	Func(on

24



Log	Par((on	Func(on

24



Many	Other	Exponen(al	Models

25



Thank	You!	
Q	&	A
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