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Labels	are	discrete
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There	are	many	options	of	 ….	g

Link	Function

Logistic	Function

Sigmoid	Function
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Looks	identical	to	LMS	update	rule	in	linear	regression

Is	this	coincidence?
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{Cat,	dog,	dragon,	fish,	pig}
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we	aim	to	model	the	distribution	

{(x(1), y(1)), ⋯, (x(n), y(n))} y(i) ∈ {1,2,⋯, k}
p(y |x; θ)

Categorical	distribution,		p(y = k |x; θ) = ϕk

s.t.	
k

∑
i=1

ϕi = 1

	?ϕi = θT
i x
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Softmax:	ℝk → ℝk

The	denominator	is	a	normalization	constant
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Multi-Label	Classification

Negative	log	likelihood

Cross-entropy	loss	
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Intuitive	explanation	of	the	rule?

Chain	rule
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∇θl(θ) = 0

f′￼(x(t))x(t+1) + f(x(t)) − x(t)f′￼(x(t)) = 0

Solution	to	a	linear	equation

View	it	as	a	equation	of	 ,	and	 	is	a	constantx(t+1) x(t)



Another	Optimization	Method	—	
Newton’s	Method

14

(x(t), f(x(t)))

f′￼(x(t))x + f(x(t)) − x(t)f′￼(x(t)) = y

x(t+1)



Another	Optimization	Method	—	
Newton’s	Method

14

(x(t), f(x(t)))

f′￼(x(t))x + f(x(t)) − x(t)f′￼(x(t)) = y

x(t+1)



Another	Optimization	Method	—	
Newton’s	Method

14

f(x)

(x(t), f(x(t)))

f′￼(x(t))x + f(x(t)) − x(t)f′￼(x(t)) = y

x(t+1)



Another	Optimization	Method	—	
Newton’s	Method

14

f(x)

x*

(x(t), f(x(t)))

f′￼(x(t))x + f(x(t)) − x(t)f′￼(x(t)) = y

x(t+1)
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∇θl(θ) = 0

Requires	fewer	iterations

When	Newton’s	method	is	applied	to	
maximize	the	logistic	regression	log	
likelihood	function	l(θ),	the	resulting	
method	is	also	called	Fisher	scoring.	
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Exponential	family	unifies	inference	and	learning	for	many	
important	models
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b(y) = 1

We	need	to	show	 	is	a	function	of	a(η) log
ϕ

1 − ϕ
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Example:	Bernoulli

We	have	verified	Bernoulli	distribution	is	in	the	exponential	family
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Is	this	true	for	general?
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Many	Other	Exponential	Models

25



Thank	You!

Q	&	A
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