

COMP 5212

Machine Learning

Lecture 4

Generalized Linear Models, Kernel Methods

Junxian He Feb 14, 2024

• Linear Regression $h_{\theta}(x) = \theta^T x$

• Logistic Regression $h_{\theta}(x) = g(\theta^T x)$

• Multi-class Classification Regression $h_{\theta}(x) = softmax(\theta_1^T x, \dots, \theta_k^T x)$

Linear Regression
$$h_{\theta}(x) = \theta^T x$$

$$\theta_j := \theta_j + \alpha \sum_{i=1}^n \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

- Logistic Regression $h_{\theta}(x) = g(\theta^T x)$
- Multi-class Classification Regression $h_{\theta}(x) = softmax(\theta_1^T x, \dots, \theta_k^T x)$

Linear Regression
$$h_{\theta}(x) = \theta^T x$$
 $\theta_j := \theta_j + \alpha \sum_{i=1}^n \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$

- Logistic Regression $h_{\theta}(x) = g(\theta^T x)$ $\theta_j := \theta_j + \alpha \sum_{i=1}^n \left(y^{(i)} h_{\theta}(x^{(i)}) \right) x_j^{(i)}$
- Multi-class Classification Regression $h_{\theta}(x) = softmax(\theta_1^T x, \dots, \theta_{\nu}^T x)$

• Linear Regression $h_{\theta}(x) = \theta^T x$

$$\theta_j := \theta_j + \alpha \sum_{i=1}^n (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$$

- Logistic Regression $h_{\theta}(x) = g(\theta^T x)$ $\theta_j := \theta_j + \alpha \sum_{i=1}^n \left(y^{(i)} h_{\theta}(x^{(i)}) \right) x_j^{(i)}$
- Multi-class Classification Regression $h_{\theta}(x) = softmax(\theta_1^T x, \dots, \theta_k^T x)$

$$\theta_k := \theta_k + \alpha \sum_{i=1}^n (1\{y^{(i)} = k\} - h_{\theta}(x)_k) x^{(i)}$$

• Linear Regression $h_{\theta}(x) = \theta^T x$

$$\theta_j := \theta_j + \alpha \sum_{i=1}^n (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$$

- Logistic Regression $h_{\theta}(x) = g(\theta^T x)$ $\theta_j := \theta_j + \alpha \sum_{i=1}^n \left(y^{(i)} h_{\theta}(x^{(i)}) \right) x_j^{(i)}$
- Multi-class Classification Regression $h_{\theta}(x) = softmax(\theta_1^T x, \dots, \theta_k^T x)$

$$\theta_k := \theta_k + \alpha \sum_{i=1}^n (1\{y^{(i)} = k\} - h_{\theta}(x)_k) x^{(i)}$$

Is this coincidence?

We're given features $x \in \mathbb{R}^{d+1}$ and a target y. We want a model. We first we pick a distribution based on y's type.

We're given features $x \in \mathbb{R}^{d+1}$ and a target y. We want a model. We first we pick a distribution based on y's type.

- We assume $y \mid x$; θ distributed as an exponential family.
 - ▶ Binary → Bernoulli
 - ► Multiple Classses → Multinomial
 - ▶ Real → Gaussian
 - Counts → Poisson
 - $ightharpoonup \mathbb{R}_+ \mapsto \mathsf{Gamma}$, Exponential
 - ▶ Distributions → Dirichlet

Exponential Family — Recap

Rough Idea "If P has a a special form, then inference and learning come for free"

$$P(y; \eta) = b(y) \exp \left\{ \eta^T T(y) - a(\eta) \right\}.$$

 η : natural parameter or canonical parameter

Here y, $a(\eta)$, and b(y) are scalars. T(y) same dimension as η .

holds all information the data provides with regard T(y) is called the **sufficient statistic**. to the unknown parameter values

b(y) is called the **base measure** – does *not* depend on η .

 $a(\eta)$ is called the **log partition function** – does *not* depend

$$1 = \sum_{y} P(y; \eta) = e^{-a(\eta)} \sum_{y} b(y) \exp\left\{\eta^{T} T(y)\right\}$$

$$\implies a(\eta) = \log \sum_{y} b(y) \exp \left\{ \eta^T T(y) \right\}$$

We're given features $x \in \mathbb{R}^{d+1}$ and a target y. We want a model. We first we pick a distribution based on y's type.

- We assume $y \mid x$; θ distributed as an exponential family.
 - ▶ Binary → Bernoulli
 - ► Multiple Classses → Multinomial
 - ▶ Real → Gaussian
 - Counts → Poisson
 - $ightharpoonup \mathbb{R}_+ \mapsto \mathsf{Gamma}$, Exponential
 - ▶ Distributions → Dirichlet

Our model is *linear* beacuse we make the natural parameter $\eta = \theta^T x$ in which $\theta, x \in \mathbb{R}^{d+1}$.

inference $h_{\theta}(x) = \mathbb{E}[y \mid x; \theta]$ is the output. learn $\max_{\theta} \log p(y \mid x; \theta)$ by maximum likelihood.

inference

learn

 $h_{\theta}(x) = \mathbb{E}[y \mid x; \theta]$ is the **output**. max log $p(y \mid x; \theta)$ by maximum likelihood.

$$P(y; \eta) = b(y) \exp \left\{ \eta^T T(y) - a(\eta) \right\}.$$
$$a(\eta) = \log \sum_{y} b(y) \exp \left\{ \eta^T T(y) \right\}$$

Then, taking derivatives

$$\nabla_{\eta} a(\eta) = \frac{\sum_{y} T(y)b(y) \exp\left\{\eta^{T} T(y)\right\}}{\sum_{y} b(y) \exp\left\{\eta^{T} T(y)\right\}} = \mathbb{E}[T(y); \eta]$$

inference

 $h_{\theta}(x) = \mathbb{E}[y \mid x; \theta]$ is the **output**.

learn

 $\max_{\theta} \log p(y \mid x; \theta)$ by maximum likelihood.

$$P(y; \eta) = b(y) \exp \left\{ \eta^T T(y) - a(\eta) \right\}.$$

$$a(\eta) = \log \sum_{y} b(y) \exp \left\{ \eta^{T} T(y) \right\}$$

Then, taking derivatives

$$\nabla_{\eta} a(\eta) = \frac{\sum_{y} T(y)b(y) \exp\left\{\eta^{T} T(y)\right\}}{\sum_{y} b(y) \exp\left\{\eta^{T} T(y)\right\}} = \mathbb{E}[T(y); \eta]$$

T(y) = y for most of the examples you will see in this course

inference $h_{\theta}(x) = \mathbb{E}[y \mid x; \theta]$ is the output. learn $\max_{\theta} \log p(y \mid x; \theta)$ by maximum likelihood.

inference $h_{\theta}(x) = \mathbb{E}[y \mid x; \theta]$ is the output.

learn $\max_{\theta} \log p(y \mid x; \theta)$ by maximum likelihood.

algorithm: SGD $\theta^{(t+1)} = \theta^{(t)} + \alpha \left(y^{(i)} - h_{\theta^{(t)}}(x^{(i)}) \right) x^{(i)}$

lacktriangle Pick an exponential family distribution given the type of y (Possion, Multinomial, Gaussian...)

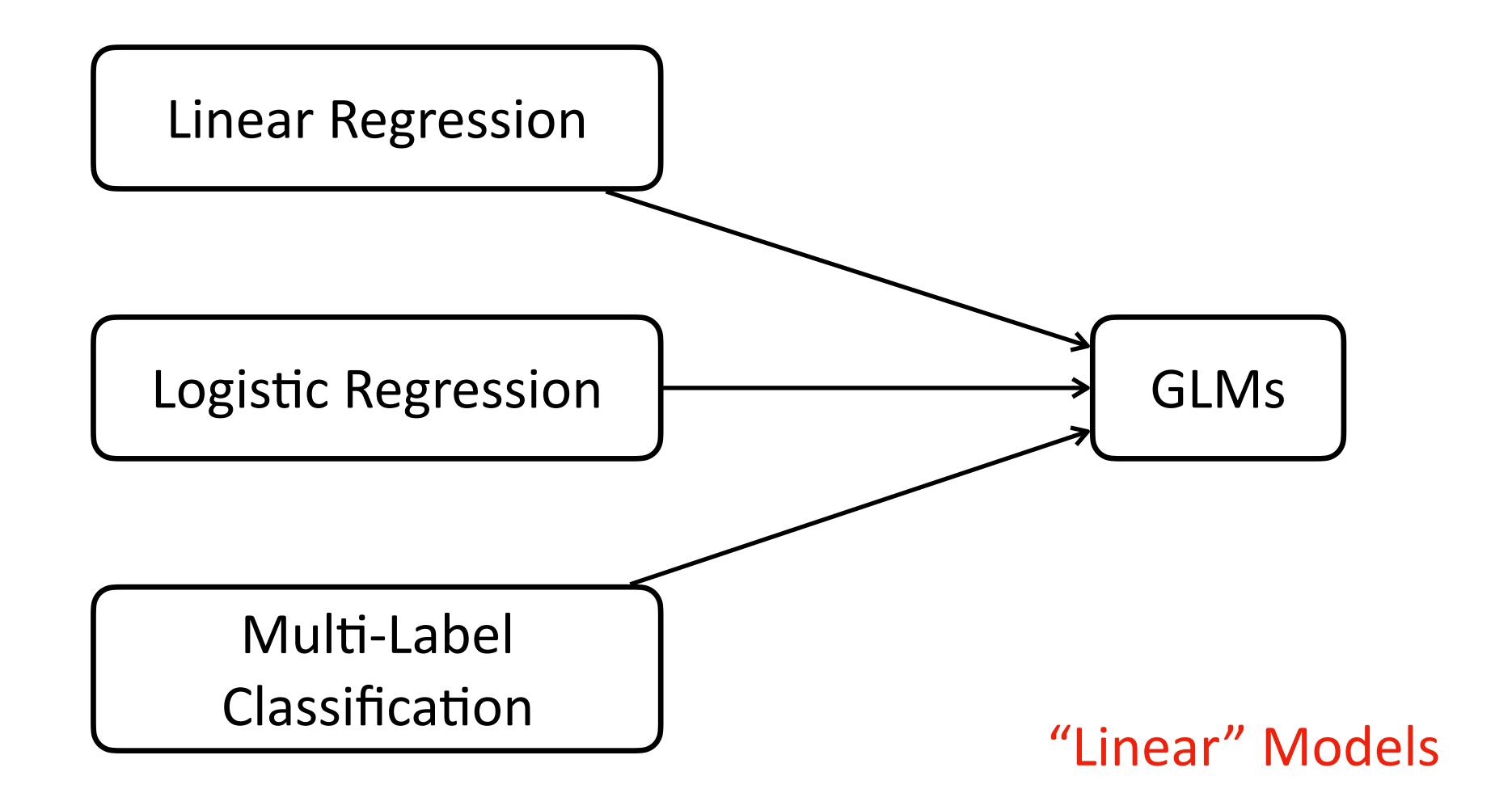
- lacktriangle Pick an exponential family distribution given the type of y (Possion, Multinomial, Gaussian...)

- lacksquare Pick an exponential family distribution given the type of y (Possion, Multinomial, Gaussian...)
- Training with maximum likelihood estimation

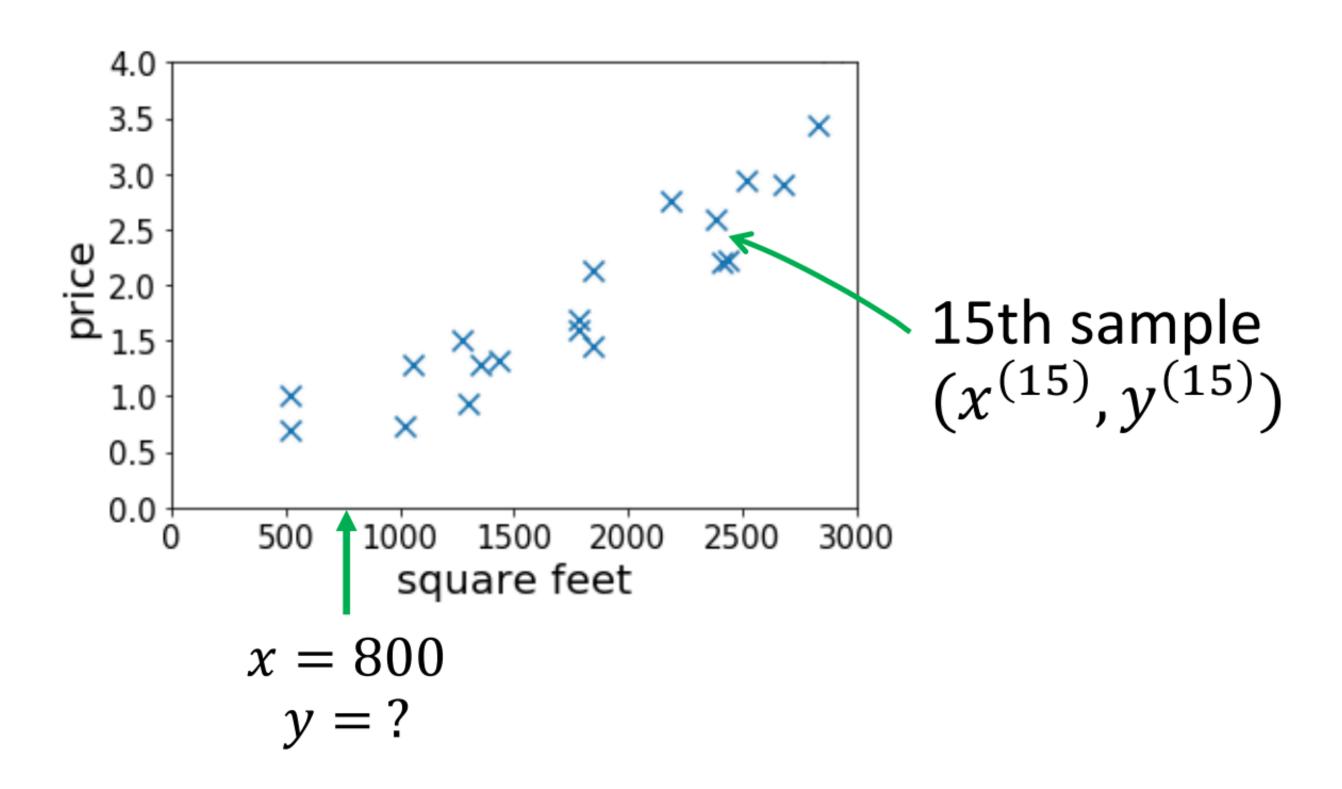
- lacktriangle Pick an exponential family distribution given the type of y (Possion, Multinomial, Gaussian...)
- Training with maximum likelihood estimation
- Inference: h(x) = E[y | x]

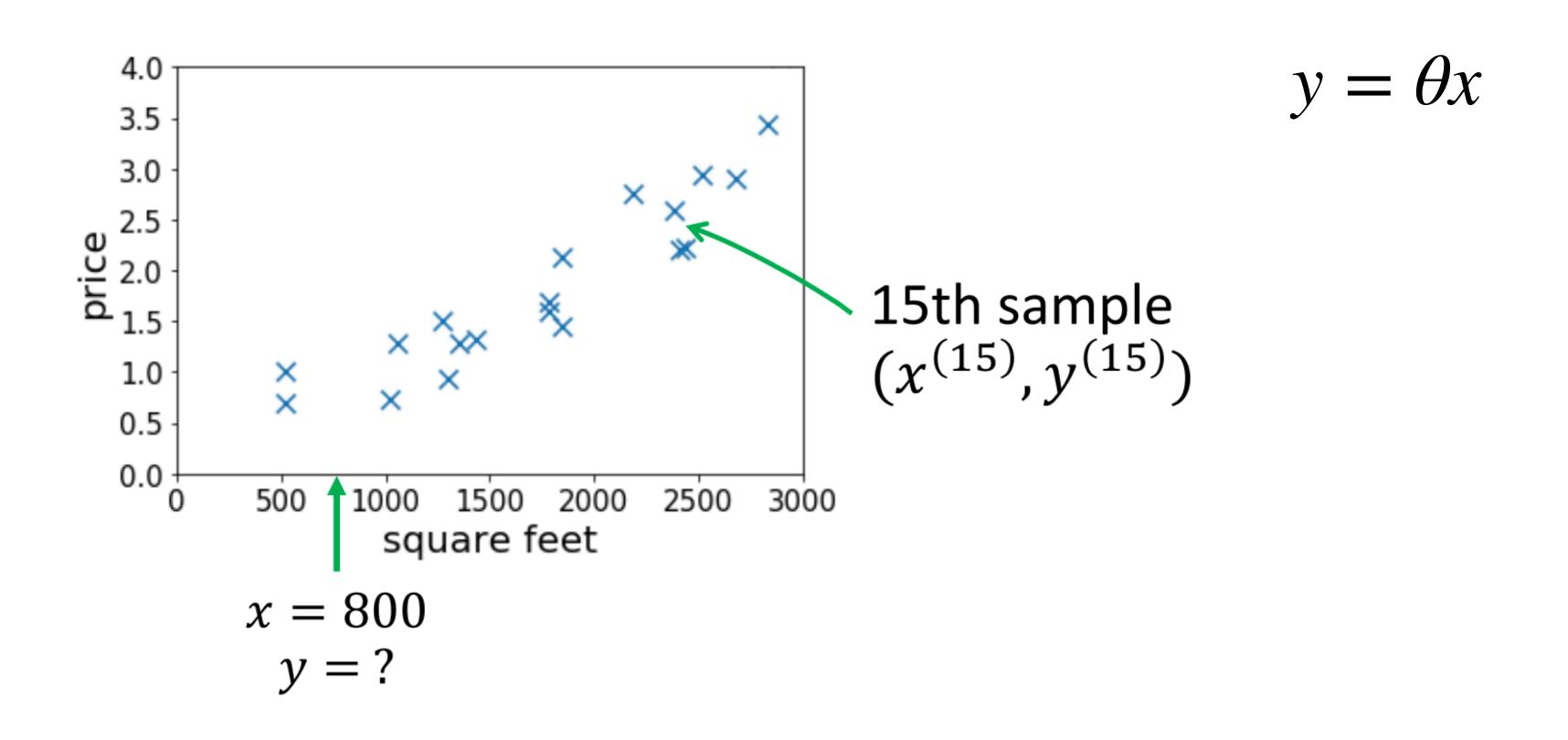
- lacksquare Pick an exponential family distribution given the type of y (Possion, Multinomial, Gaussian...)
- Training with maximum likelihood estimation
- Inference: h(x) = E[y | x]

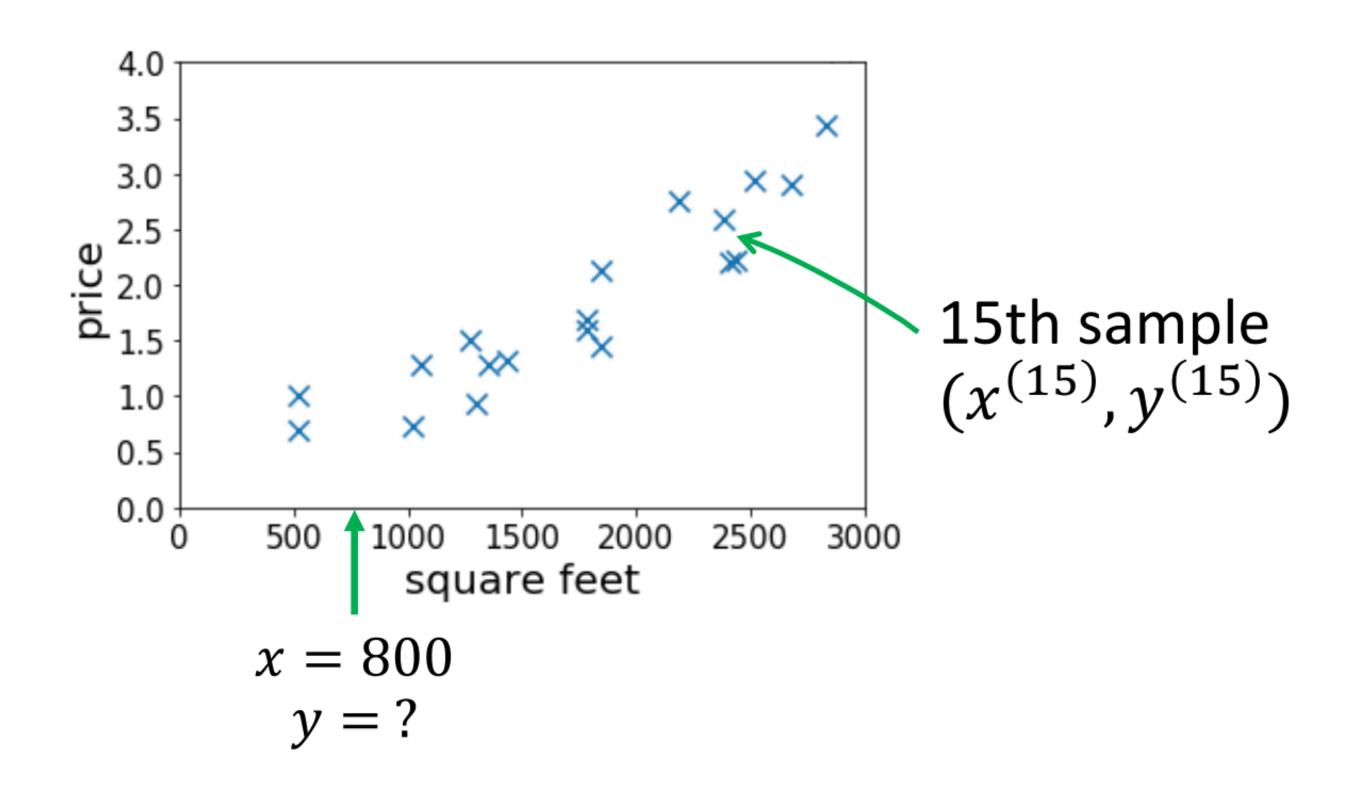
Enjoy closed-form solution for various statistics



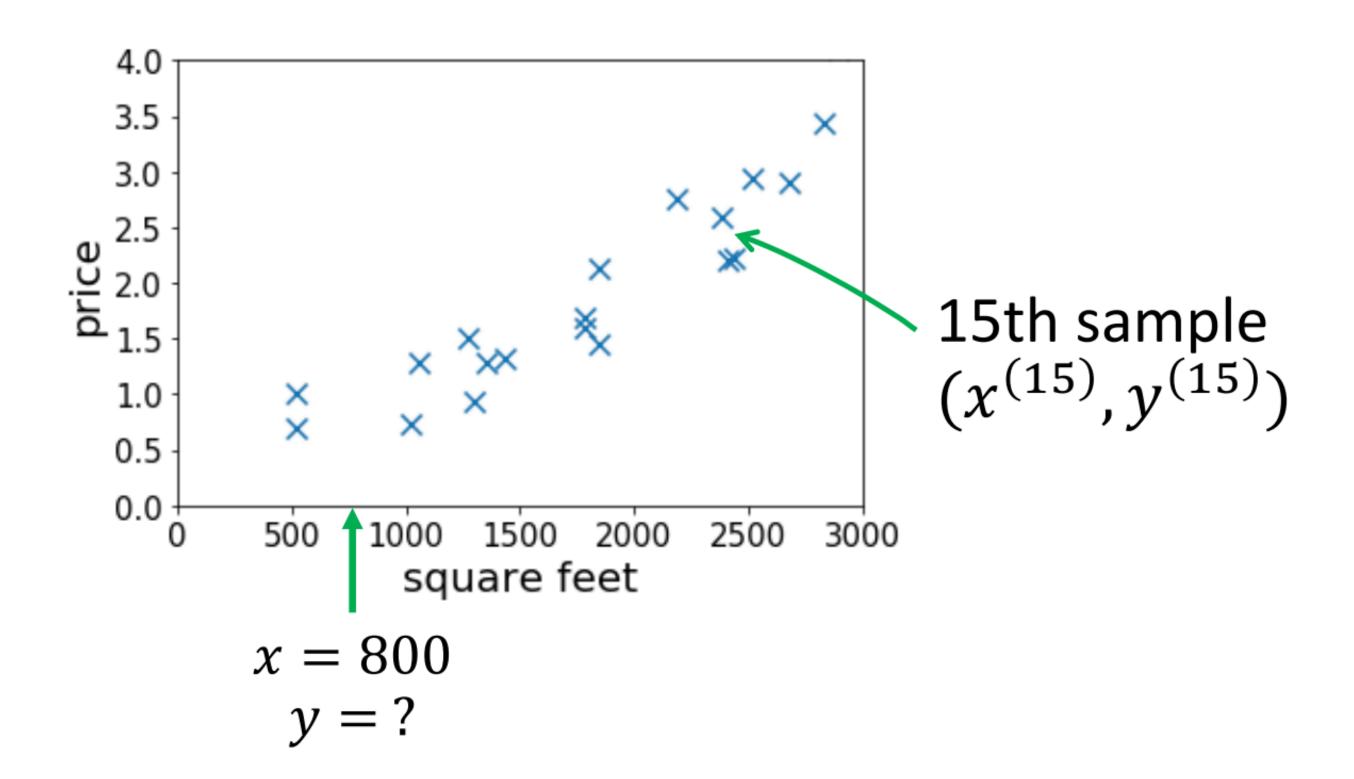
Kernel Methods





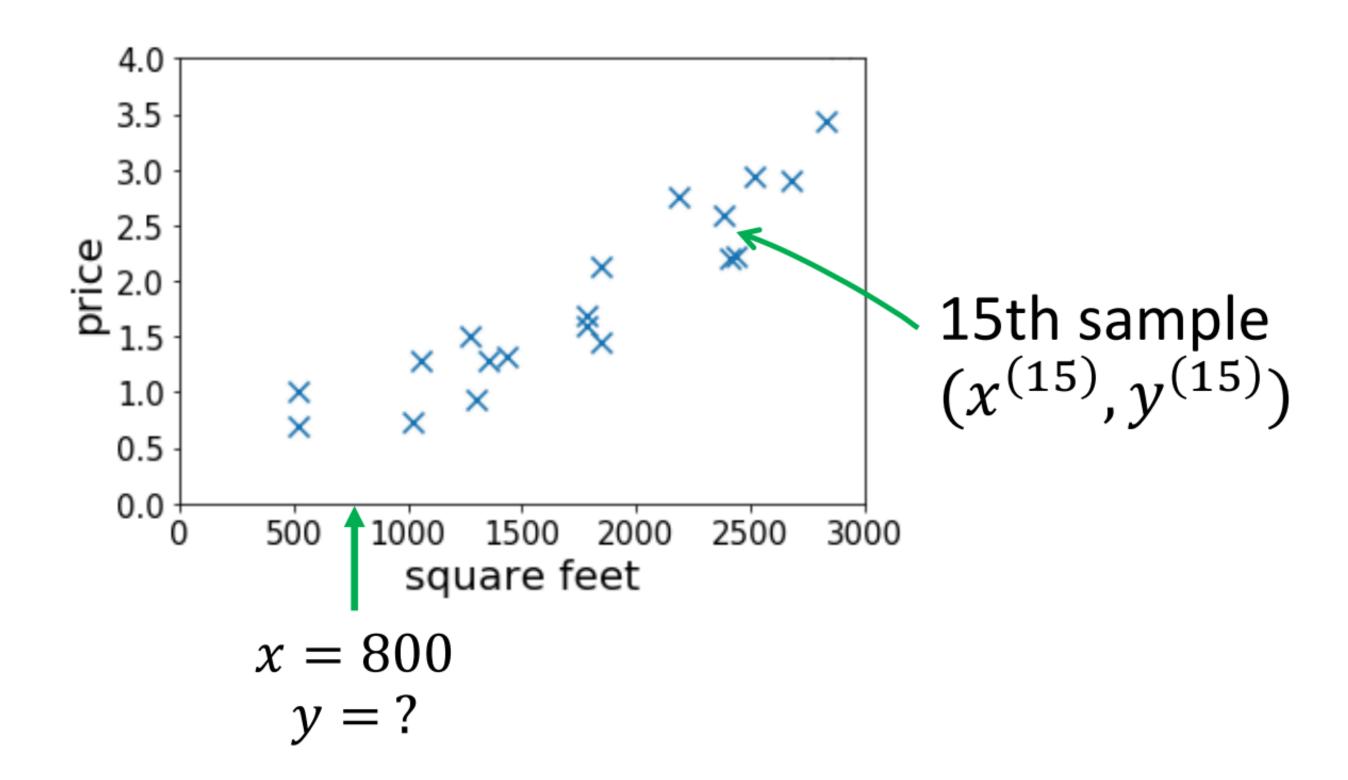


$$y = \theta x$$
$$y = \theta_3 x^3 + \theta_2 x^2 + \theta_1 x + \theta_0$$



$$y = \theta x$$
$$y = \theta_3 x^3 + \theta_2 x^2 + \theta_1 x + \theta_0$$

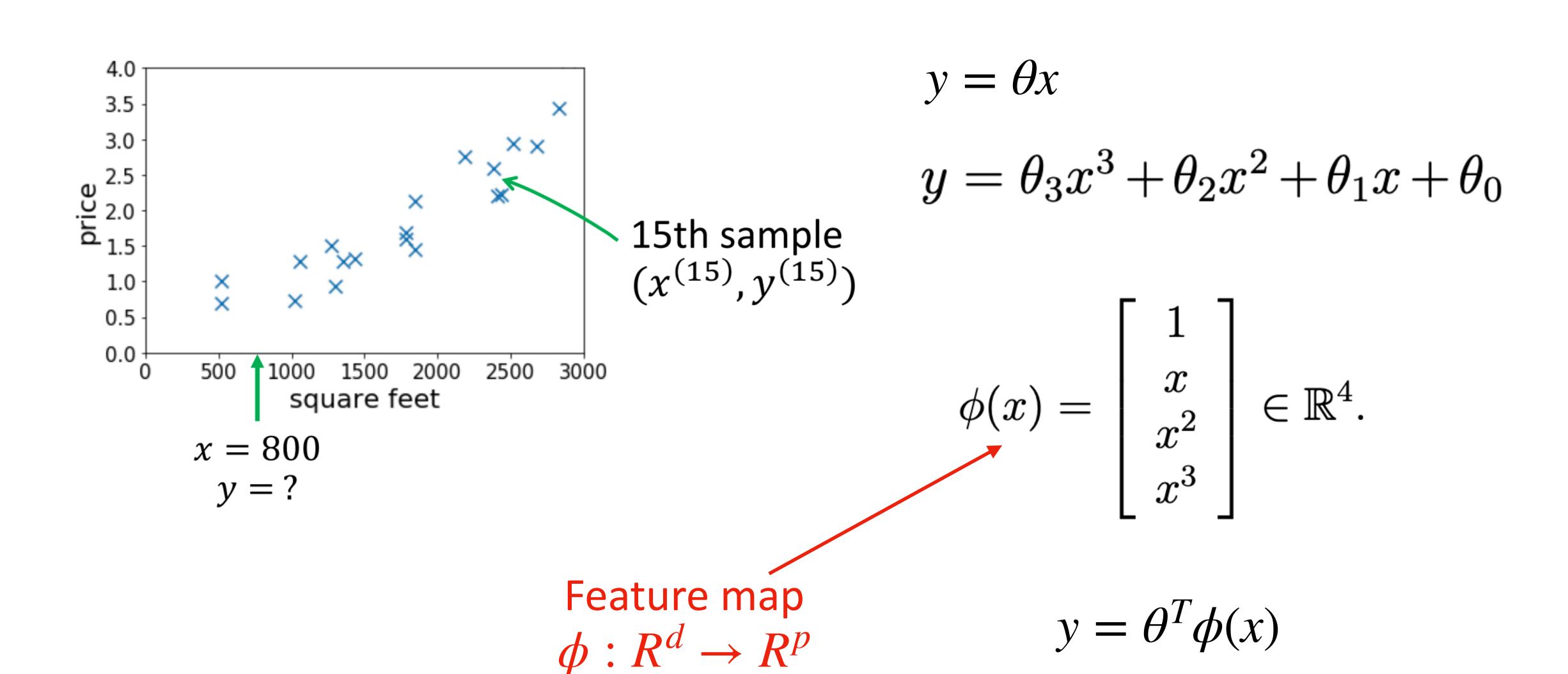
$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \end{bmatrix} \in \mathbb{R}^4.$$



$$y = \theta x$$
$$y = \theta_3 x^3 + \theta_2 x^2 + \theta_1 x + \theta_0$$

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \end{bmatrix} \in \mathbb{R}^4.$$

$$y = \theta^T \phi(x)$$



LMS Update Rule with Features

Linear Regression:

$$\theta := \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - h_{\theta}(x^{(i)})) x^{(i)}$$

$$:= \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - \theta^{T} x^{(i)}) x^{(i)}.$$

With Features:

LMS Update Rule with Features

Linear Regression:

$$extstyle heta := heta + lpha \sum_{i=1}^{n} \left(y^{(i)} - h_{ heta}(x^{(i)}) \right) x^{(i)} \ := heta + lpha \sum_{i=1}^{n} \left(y^{(i)} - heta^{T} x^{(i)} \right) x^{(i)}.$$

With Features:

$$\theta := \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - \theta^{T} \phi(x^{(i)})) \phi(x^{(i)})$$

LMS Update Rule with Features

Linear Regression:

$$extstyle heta := heta + lpha \sum_{i=1}^{n} \left(y^{(i)} - h_{ heta}(x^{(i)}) \right) x^{(i)} \ := heta + lpha \sum_{i=1}^{n} \left(y^{(i)} - heta^{T} x^{(i)} \right) x^{(i)}.$$

With Features:

$$\theta := \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - \theta^{T} \phi(x^{(i)})) \phi(x^{(i)})$$

How about Generalized Linear Models with Features?

New Feature Vector Can Be Very High-Dimensional

Computationally expensive

New Feature Vector Can Be Very High-Dimensional

Computationally expensive

Is the computation evitable given $\theta \in \mathbb{R}^p$?

Kernel Trick

lacktriangledown If heta is initialized as 0, then at any step of the gradient descent:

$$\theta = \sum_{i=1}^{n} \beta_i \phi(x^{(i)}) \qquad \beta_i \in R$$

Kernel Trick

lacktriangle If heta is initialized as 0, then at any step of the gradient descent:

$$\theta = \sum_{i=1}^{n} \beta_{i} \phi(x^{(i)}) \qquad \beta_{i} \in R$$

$$\theta := \theta + \alpha \sum_{i=1}^{n} \left(y^{(i)} - \theta^{T} \phi(x^{(i)}) \right) \phi(x^{(i)})$$

$$= \sum_{i=1}^{n} \beta_{i} \phi(x^{(i)}) + \alpha \sum_{i=1}^{n} \left(y^{(i)} - \theta^{T} \phi(x^{(i)}) \right) \phi(x^{(i)})$$

$$= \sum_{i=1}^{n} \underbrace{\left(\beta_{i} + \alpha \left(y^{(i)} - \theta^{T} \phi(x^{(i)}) \right) \right)}_{\text{new } \beta_{i}} \phi(x^{(i)})$$

 \blacksquare If θ is initialized as 0, then at any step of the gradient descent:

$$\theta = \sum_{i=1}^{n} \beta_{i} \phi(x^{(i)}) \qquad \beta_{i} \in R$$

$$\theta := \theta + \alpha \sum_{i=1}^{n} \left(y^{(i)} - \theta^{T} \phi(x^{(i)}) \right) \phi(x^{(i)})$$

$$= \sum_{i=1}^{n} \beta_{i} \phi(x^{(i)}) + \alpha \sum_{i=1}^{n} \left(y^{(i)} - \theta^{T} \phi(x^{(i)}) \right) \phi(x^{(i)})$$

$$= \sum_{i=1}^{n} \underbrace{\left(\beta_{i} + \alpha \left(y^{(i)} - \theta^{T} \phi(x^{(i)}) \right) \right)}_{\text{new } \beta_{i}} \phi(x^{(i)})$$

$$\beta_i := \beta_i + \alpha \left(y^{(i)} - \theta^T \phi(x^{(i)}) \right)$$

 \blacksquare If θ is initialized as 0, then at any step of the gradient descent:

$$\theta = \sum_{i=1}^{n} \beta_{i} \phi(x^{(i)}) \qquad \beta_{i} \in R$$

$$\theta := \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - \theta^{T} \phi(x^{(i)})) \phi(x^{(i)})$$

$$= \sum_{i=1}^{n} \beta_{i} \phi(x^{(i)}) + \alpha \sum_{i=1}^{n} (y^{(i)} - \theta^{T} \phi(x^{(i)})) \phi(x^{(i)})$$

$$= \sum_{i=1}^{n} (\beta_{i} + \alpha (y^{(i)} - \theta^{T} \phi(x^{(i)}))) \phi(x^{(i)})$$

$$\beta_{i} := \beta_{i} + \alpha (y^{(i)} - \theta^{T} \phi(x^{(i)}))$$

$$\beta_{i} := \beta_{i} + \alpha (y^{(i)} - \sum_{j=1}^{n} \beta_{j} \phi(x^{(j)})^{T} \phi(x^{(i)}))$$

$$\beta_i := \beta_i + \alpha \left(y^{(i)} - \sum_{j=1}^n \beta_j \phi(x^{(j)})^T \phi(x^{(i)}) \right)$$

$$\beta_i := \beta_i + \alpha \left(y^{(i)} - \sum_{j=1}^n \beta_j \phi(x^{(j)})^T \phi(x^{(i)}) \right)$$

Rewrite
$$\phi(x^{(j)})^T \phi(x^{(i)}) = \langle \phi(x^{(j)}), \phi(x^{(i)}) \rangle$$

$$\beta_i := \beta_i + \alpha \left(y^{(i)} - \sum_{j=1}^n \beta_j \phi(x^{(j)})^T \phi(x^{(i)}) \right)$$

Rewrite
$$\phi(x^{(j)})^T \phi(x^{(i)}) = \langle \phi(x^{(j)}), \phi(x^{(i)}) \rangle$$

We can precompute all pairwise $<\phi(x^{(j)}),\phi(x^{(i)})>$ beforehand, and reuse it for every gradient descent update

$$\beta_i := \beta_i + \alpha \left(y^{(i)} - \sum_{j=1}^n \beta_j \phi(x^{(j)})^T \phi(x^{(i)}) \right)$$

Kernel K(x,z) $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$ \mathcal{X} is the space of the input

$$K(x,z) \triangleq \langle \phi(x), \phi(z) \rangle$$

• Compute $K(\phi(x^{(i)}), \phi(x^{(j)})) = \langle \phi(x^{(i)}), \phi(x^{(j)}) \rangle$ for all i, j

• Compute $K(\phi(x^{(i)}), \phi(x^{(j)})) = \langle \phi(x^{(i)}), \phi(x^{(j)}) \rangle$ for all i, j

Loop
$$\beta_i := \beta_i + \alpha \left(y^{(i)} - \sum_{j=1}^n \beta_j K(x^{(i)}, x^{(j)}) \right) \quad \forall i \in \{1, \dots, n\}$$

• Compute $K(\phi(x^{(i)}), \phi(x^{(j)})) = \langle \phi(x^{(i)}), \phi(x^{(j)}) \rangle$ for all i, j

Loop
$$\beta_i := \beta_i + \alpha \left(y^{(i)} - \sum_{j=1}^n \beta_j K(x^{(i)}, x^{(j)}) \right) \quad \forall i \in \{1, \dots, n\}$$

Recall that *n* is the number of data samples

• Compute $K(\phi(x^{(i)}), \phi(x^{(j)})) = \langle \phi(x^{(i)}), \phi(x^{(j)}) \rangle$ for all i, j

Loop
$$\beta_i := \beta_i + \alpha \left(y^{(i)} - \sum_{j=1}^n \beta_j K(x^{(i)}, x^{(j)}) \right) \quad \forall i \in \{1, \dots, n\}$$

Recall that *n* is the number of data samples

Or in vector notation, letting K be the $n \times n$ matrix with $K_{ij} = K(x^{(i)}, x^{(j)})$, we have

$$\beta := \beta + \alpha(\vec{y} - K\beta)$$

We do not need to explicitly compute θ !

We do not need to explicitly compute θ !

$$\theta^{T} \phi(x) = \sum_{i=1}^{n} \beta_{i} \phi(x^{(i)})^{T} \phi(x) = \sum_{i=1}^{n} \beta_{i} K(x^{(i)}, x)$$

We do not need to explicitly compute θ !

$$\theta^{T} \phi(x) = \sum_{i=1}^{n} \beta_{i} \phi(x^{(i)})^{T} \phi(x) = \sum_{i=1}^{n} \beta_{i} K(x^{(i)}, x)$$

The Kernel function is all we need for training and inference!

Implicit Feature Map

Do we still need to define feature maps?

$$K(x,z) \triangleq \langle \phi(x), \phi(z) \rangle$$

Implicit Feature Map

Do we still need to define feature maps?

$$K(x,z) \triangleq \langle \phi(x), \phi(z) \rangle$$

What kinds of kernel functions K() can correspond to some feature map ϕ

$$K(x,z) = (x^T z)^2 \qquad x,z \in \mathbb{R}^d$$

$$K(x,z) = (x^T z)^2 \qquad x, z \in \mathbb{R}^d$$

$$K(x,z) = (x^T z)^2 \qquad x, z \in \mathbb{R}^d$$

$$K(x,z) = \left(\sum_{i=1}^{d} x_i z_i\right) \left(\sum_{j=1}^{d} x_j z_j\right)$$
$$= \sum_{i=1}^{d} \sum_{j=1}^{d} x_i x_j z_i z_j$$
$$= \sum_{i,j=1}^{d} (x_i x_j) (z_i z_j)$$

$$K(x,z) = (x^T z)^2 \qquad x, z \in \mathbb{R}^d$$

$$K(x,z) = \left(\sum_{i=1}^{d} x_i z_i\right) \left(\sum_{j=1}^{d} x_j z_j\right) = \begin{bmatrix} x_1 x_1 \\ x_1 x_2 \\ x_1 x_3 \\ x_2 x_1 \\ x_2 x_2 \\ x_2 x_3 \\ x_3 x_1 \\ x_3 x_2 \\ x_3 x_3 \end{bmatrix}$$

$$= \sum_{i,j=1}^{d} (x_i x_j) (z_i z_j)$$

$$\phi(x) = \begin{bmatrix} x_1 x_1 \\ x_1 x_2 \\ x_2 x_1 \\ x_2 x_2 \\ x_2 x_3 \\ x_3 x_1 \\ x_3 x_2 \\ x_3 x_3 \end{bmatrix}$$

$$K(x,z) = (x^T z)^2 \qquad x, z \in \mathbb{R}^d$$

$$K(x,z) = \left(\sum_{i=1}^{d} x_i z_i\right) \left(\sum_{j=1}^{d} x_j z_j\right)$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{d} x_i x_j z_i z_j$$

$$= \sum_{i,j=1}^{d} (x_i x_j) (z_i z_j)$$

$$\phi(x) = \begin{bmatrix} x_1 x_1 \\ x_1 x_2 \\ x_1 x_3 \\ x_2 x_1 \\ x_2 x_2 \\ x_2 x_3 \\ x_3 x_1 \\ x_3 x_2 \\ x_3 x_3 \end{bmatrix}$$
Requires O(d^2) compute for feature mapping

$$K(x,z) = (x^T z)^2 \qquad x, z \in \mathbb{R}^d$$

What is the feature map to make K a valid kernel function?

$$K(x,z) = \left(\sum_{i=1}^{d} x_i z_i\right) \left(\sum_{j=1}^{d} x_j z_j\right)$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{d} x_i x_j z_i z_j$$

$$= \sum_{i,j=1}^{d} (x_i x_j) (z_i z_j)$$

$$\phi(x) = \begin{bmatrix} x_1 x_1 \\ x_1 x_2 \\ x_2 x_1 \\ x_2 x_2 \\ x_2 x_3 \\ x_3 x_1 \\ x_3 x_2 \\ x_3 x_3 \end{bmatrix}$$
Requires O(d^2) compute for Kernel function

Kernel function

Next Lecture

What kinds of functions would make a kernel function?

Infinite dimensions of feature mapping?

Support Vector Machines

Thank You! Q&A