
Generalized	Linear	Models,	
Kernel	Methods

1

Junxian	He

Feb	14,	2024

COMP	5212

Machine	Learning

Lecture	4



Recap

2

Linear	Regression	hθ(x) = θTx

Logistic	Regression	hθ(x) = g(θTx)

Multi-class	Classification	Regression	hθ(x) = softmax(θT
1 x, ⋯, θT

k x)



Recap

2

Linear	Regression	hθ(x) = θTx

Logistic	Regression	hθ(x) = g(θTx)

Multi-class	Classification	Regression	hθ(x) = softmax(θT
1 x, ⋯, θT

k x)



Recap

2

Linear	Regression	hθ(x) = θTx

Logistic	Regression	hθ(x) = g(θTx)

Multi-class	Classification	Regression	hθ(x) = softmax(θT
1 x, ⋯, θT

k x)



Recap

2

Linear	Regression	hθ(x) = θTx

Logistic	Regression	hθ(x) = g(θTx)

Multi-class	Classification	Regression	hθ(x) = softmax(θT
1 x, ⋯, θT

k x)

θk := θk + α
n

∑
i=1

(1{y(i) = k} − hθ(x)k)x(i)



Recap

2

Linear	Regression	hθ(x) = θTx

Logistic	Regression	hθ(x) = g(θTx)

Multi-class	Classification	Regression	hθ(x) = softmax(θT
1 x, ⋯, θT

k x)

θk := θk + α
n

∑
i=1

(1{y(i) = k} − hθ(x)k)x(i)

Is	this	coincidence?
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:	natural	parameter	or	canonical	parameterη

holds	all	information	the	data	provides	with	regard	
to	the	unknown	parameter	values
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	for	most	of	the	examples	you	will	see	in	this	course	T(y) = y
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Constructing	GLMs
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Pick	an	exponential	family	distribution	given	the	type	of	 	(Possion,	
Multinomial,	Gaussian…)

y

or	 	η = θTx, ηi = θT
i x

Training	with	maximum	likelihood	estimation	

Inference:	h(x) = E[y |x]

Enjoy	closed-form	solution	for	various	statistics
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GLMs

Linear	Regression

Logistic	Regression

Multi-Label	
Classification

“Linear”	Models
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y = θx

y = θTϕ(x)
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y = θx

y = θTϕ(x)Feature	map
ϕ : Rd → Rp
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Linear	Regression:

With	Features:

How	about	Generalized	Linear	Models	with	Features?
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Computationally	expensive

Is	the	computation	evitable	given	 ?	θ ∈ Rp
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Rewrite	ϕ(x( j))Tϕ(x(i)) = < ϕ(x( j)), ϕ(x(i)) >

We	can	precompute	all	pairwise	
beforehand,	and	reuse	it	for	every	gradient	descent	update

< ϕ(x( j)), ϕ(x(i)) >
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Kernel	K(x, z)
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We	do	not	need	to	explicitly	compute	 	!θ

The	Kernel	function	is	all	we	need	for	training	and	inference!
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Do	we	still	need	to	define	feature	maps?

What	kinds	of	kernel	functions	K()	can	correspond	to	some	feature	map	ϕ
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What	is	the	feature	map	to	make	K	a	valid	kernel	function?	

Requires	O(d^2)	compute	
for	feature	mapping

Requires	O(d)	compute	for	
Kernel	function
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What	kinds	of	functions	would	make	a	kernel	function?


Infinite	dimensions	of	feature	mapping?


Support	Vector	Machines

Next	Lecture



Thank	You!

Q	&	A
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