

Kernel Methods, Support Vector Machine

Junxian He Feb 16, 2024 COMP 5212 Machine Learning Lecture 5

Please download HKUST iLearn in your devices, we are going to use iPRS for quizzes

Free

Attendance Recording

HKUST iLearn 4+

HKUST Learning The Hong Kong University of Science and Technology

Designed for iPad

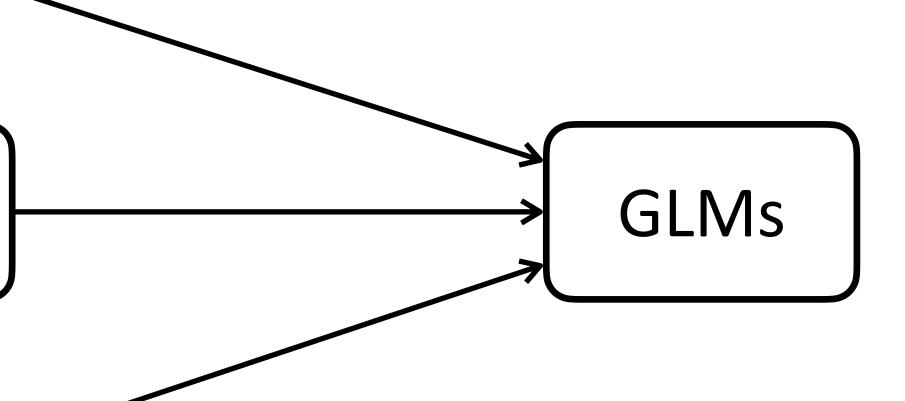
View in Mac App Store ↗

Recap: Generalized Linear Models

Linear Regression

Logistic Regression

Multi-Label Classification



Recap: Generalized Linear Models

inference

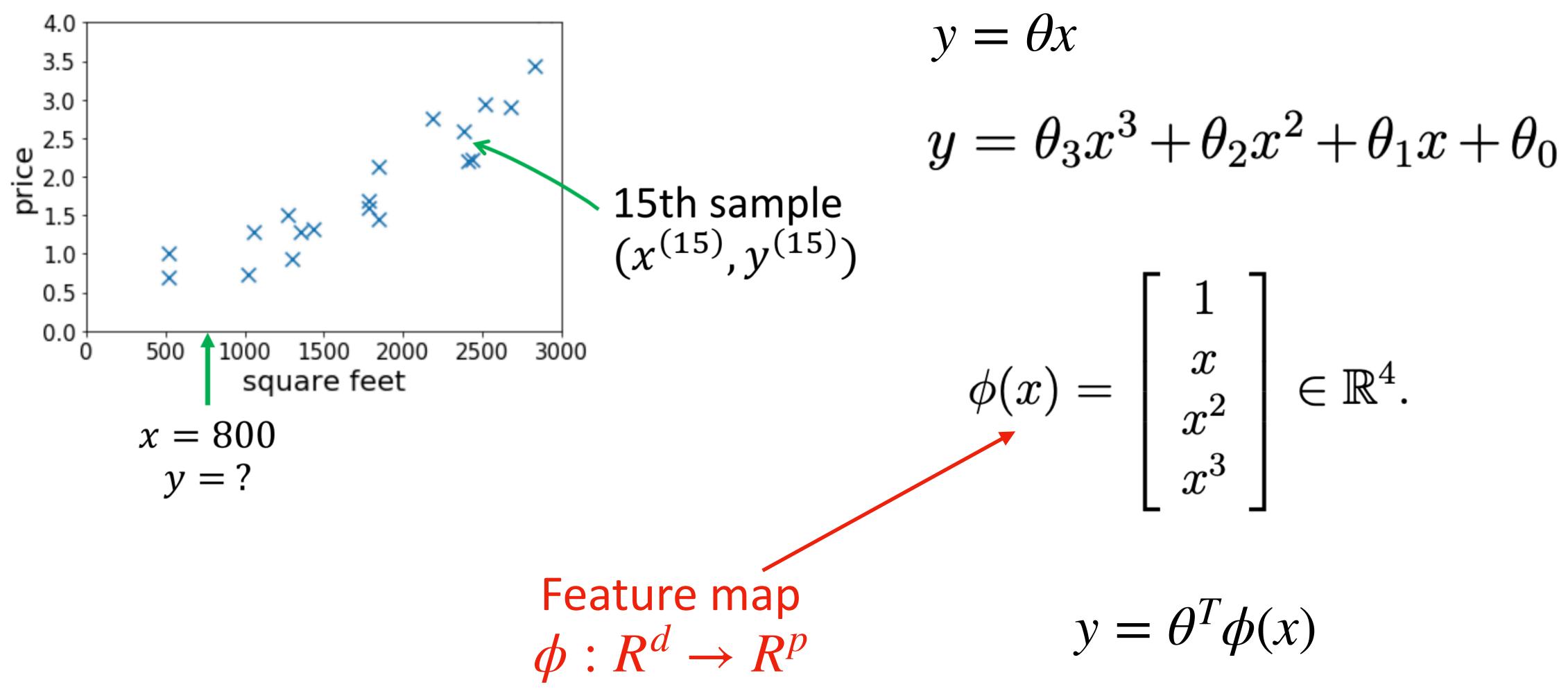
learn m

algorithm: SGD $\theta^{(t+1)}$ =

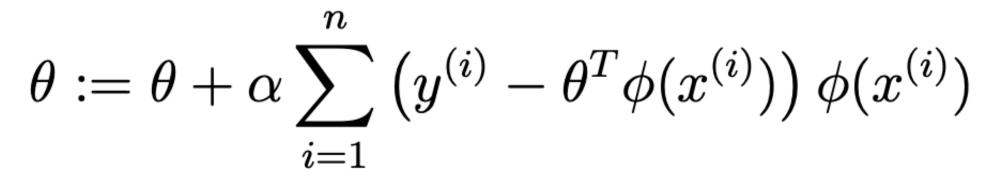
 $h_{\theta}(x) = \mathbb{E}[y \mid x; \theta] \text{ is the output.}$ max log $p(y \mid x; \theta)$ by maximum likelihood.

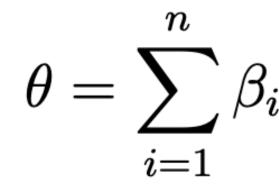
 $\theta^{(t+1)} = \theta^{(t)} + \alpha \left(y^{(i)} - h_{\theta^{(t)}}(x^{(i)}) \right) x^{(i)}$

Recap: Kernel Methods (Feature Map)



LMS Update Rule with Features





$$\beta_i := \beta_i + \alpha \left(y^{(i)} - \sum_{j=1}^n \beta_j \phi(x^{(j)})^T \phi(x^{(i)}) \right)$$

Kernel K(x, z) $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$ \mathcal{X} is the space of the input

K(x,

Recap: Kernel Trick

$$\beta_i \phi(x^{(i)}) \qquad \beta_i \in R$$

$$z) \triangleq \langle \phi(x), \phi(z) \rangle$$

Recap: Kernel Trick

Compute $K(\phi(x^{(i)}), \phi(x^{(j)})) = \langle \phi(x^{(i)}), \phi(x^{(j)}) \rangle$ for all *i*, *j*

• Loop $\beta_i := \beta_i + \alpha \left(y^{(i)} - \right)$

• Inference:
$$\theta^T \phi(x) = \sum_{i=1}^n \beta_i \phi(x^{(i)})^T \phi(x) = \sum_{i=1}^n \beta_i K(x^{(i)}, x)$$

The Kernel function is all we need for training and inference!

$$\left(\sum_{j=1}^{n} \beta_j K(x^{(i)}, x^{(j)})\right)$$

$$\forall i \in \{1, \dots, n\}$$

Recall that *n* is the number of data samples

Recap: Implicit Feature Map

Explicit Feature Map: first define feature map $\phi(x)$, then compute the Kernel according to $\phi(x)$

Implicit Feature Map: first define the Kernel Function K(), without knowing what the feature map is

Recap: Implicit Feature Map (Example)

 $K(x, z) = (x^T z)^2 \qquad x, z \in \mathbb{R}^d$

What is the feature map to make K a valid kernel function?

$$K(x,z) = \left(\sum_{i=1}^{d} x_i z_i\right) \left(\sum_{j=1}^{d} x_j z_j\right)$$
$$= \sum_{i=1}^{d} \sum_{j=1}^{d} x_i x_j z_i z_j$$
$$= \sum_{i,j=1}^{d} (x_i x_j) (z_i z_j)$$

$$\phi(x) = egin{array}{ccc} x_1 x_1 & & & \ x_1 x_2 & & & \ x_1 x_3 & & & \ x_2 x_1 & & & \ x_2 x_2 & & & \ x_2 x_2 & & & \ x_2 x_3 & & & \ x_3 x_1 & & & \ x_3 x_2 & & & \ x_3 x_3 & & \ x_3 x_3 & & \ \end{array}$$

Requires O(d^2) compute for feature mapping

Requires O(d) compute for **Kernel function**

Kernel as Similarity Metrics

close to each other

 $\phi(x)$ and $\phi(z)$, or of how similar are x and z

Generally $K(x, z) = \phi(x)^T \phi(z)$ is large when $\phi(x)$ and $\phi(z)$ are

We can think of K(x, z) as some measurement of how similar are

Example: Gaussian Kernel

$K(x,z) = \exp\left(\frac{1}{2}\right)$

Corresponds to infinite dimensional feature mapping

$$\exp\left(-\frac{||x-z||^2}{2\sigma^2}\right)$$

What Makes a Valid Kernel Function: Necessary Condition • Kernel Matrix $K_{ij} = K(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)})$

• *K* is symmetric

• *K* is positive semidefinite

$$z^{T}Kz = \sum_{i} \sum_{j} z_{i}K_{ij}z_{j}$$

$$= \sum_{i} \sum_{j} z_{i} \phi(x^{(i)})^{T} \phi(x^{(j)})z_{j}$$

$$= \sum_{i} \sum_{j} z_{i} \sum_{k} \phi_{k}(x^{(i)}) \phi_{k}(x^{(j)})z_{j}$$

$$= \sum_{k} \sum_{i} \sum_{j} z_{i} \phi_{k}(x^{(i)}) \phi_{k}(x^{(j)})z_{j}$$

$$= \sum_{k} \left(\sum_{i} z_{i} \phi_{k}(x^{(i)})\right)^{2}$$

$$\geq 0.$$

What Makes a Valid Kernel Function: Necessary and Sufficient Condition

Theorem (Mercer). Let $K : \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}$ be given. Then for K to be a valid (Mercer) kernel, it is necessary and sufficient that for any $\{x^{(1)}, \ldots, x^{(n)}\}, (n < \infty)$, the corresponding kernel matrix is symmetric positive semi-definite.

Application of Kernel Methods

In generalized linear models (which we have shown)

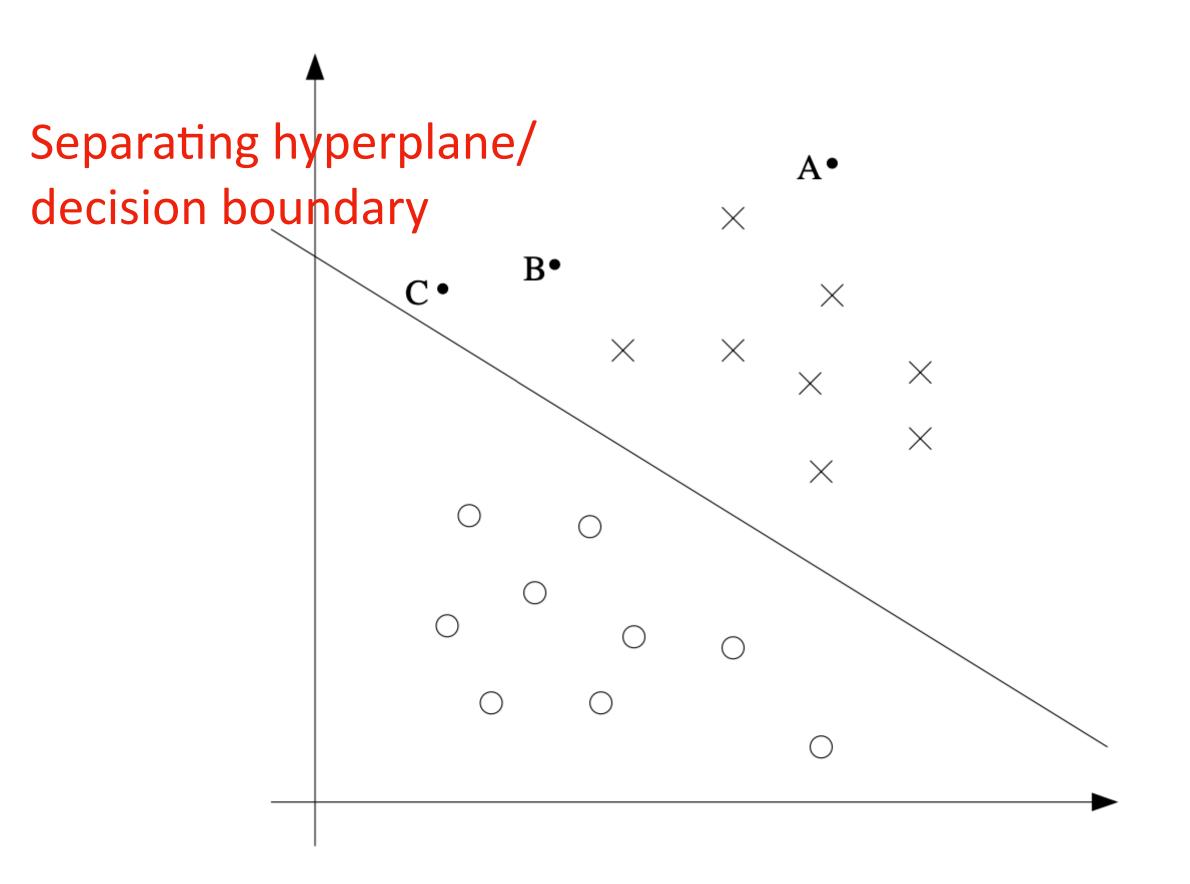
In support vector machines (which we will show next)

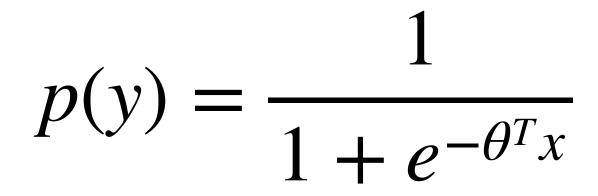
Any learning algorithm that you can write in terms of only <x, z>

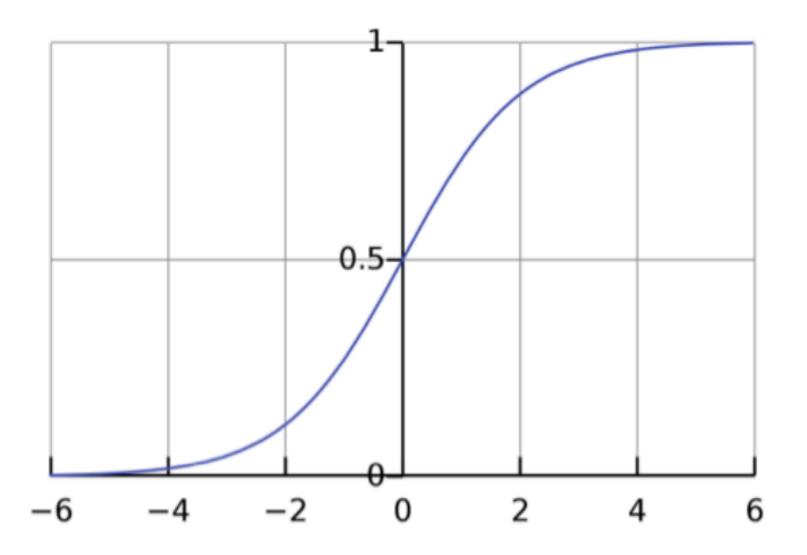
Just replace <x, z> with K(x, z), you magically transform the algorithm to work efficiently in the *implicit* high dimensional feature space

Support Vector Machines

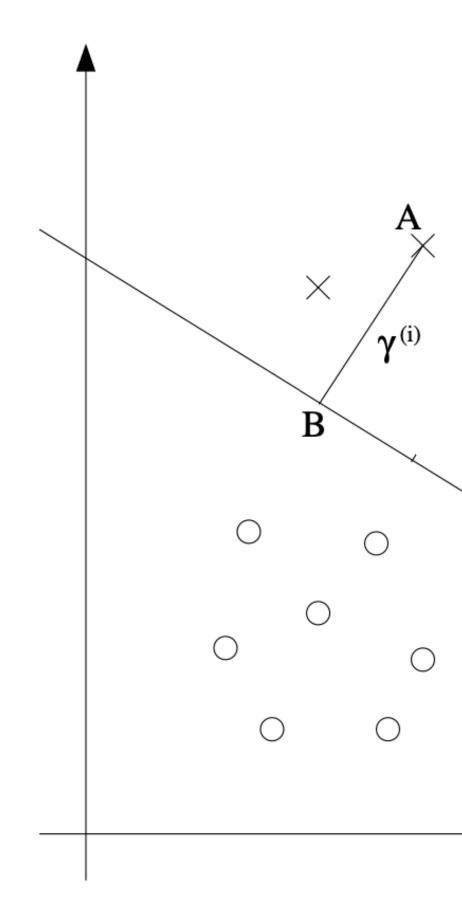
Confidence in Logistic Regression



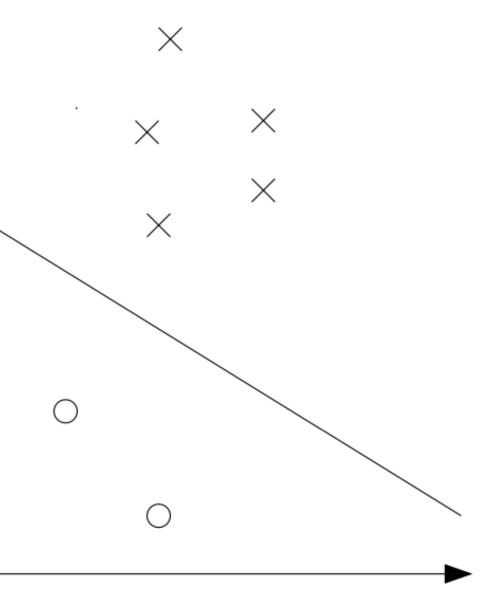




17



Margin



New Notations

Consider a binary classification problem, with the input feature x and $y \in \{-1,1\}$ (instead of $\{0,1\}$), the classifier is: $h_{w,b}(x) =$

g(z) = 1 if $z \ge 0$, and g(z) = -1

$$= g(w^T x + b)$$

Functional Margin

Given a training example $(x^{(i)}, y^{(i)})$ $\hat{\gamma}^{(i)} = y$

Given a training set $S = \{(x^{(i)}, y^{(i)})$ $\hat{\gamma} =$

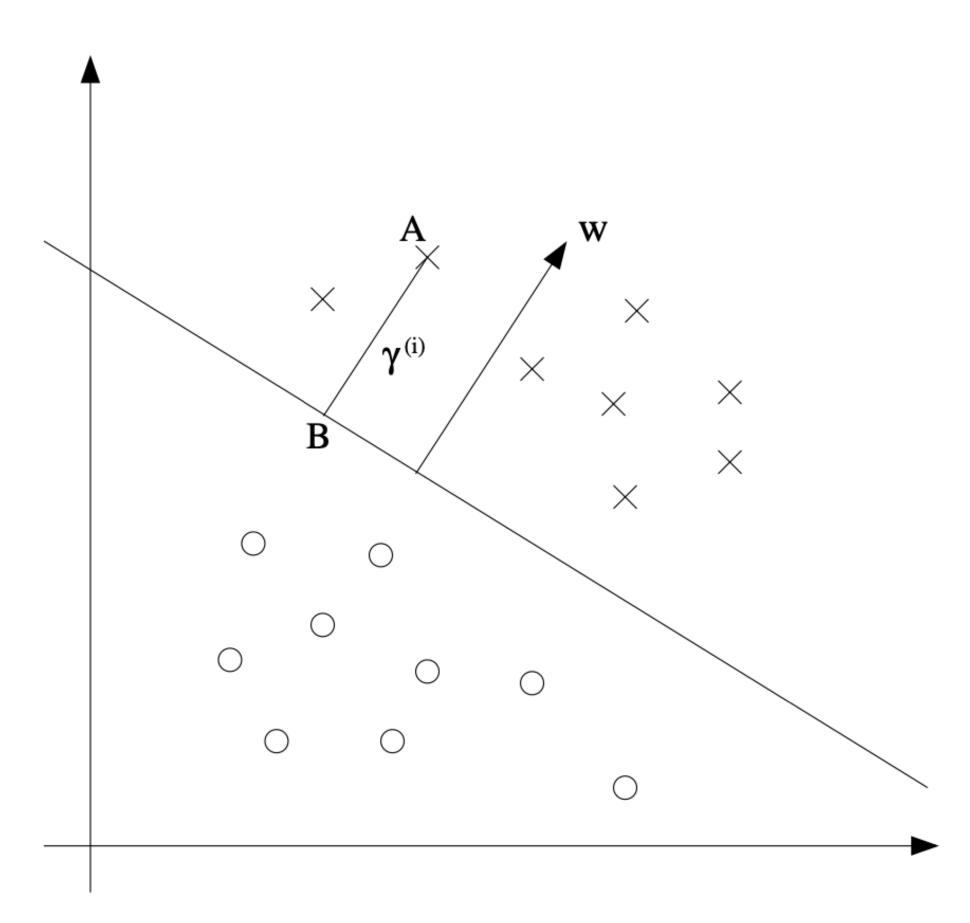
Functional margin changes rescaling parameters, making it a bad objective, e.g. when w->2w, b->2b, the functional margin changes while the separating plane does not really change

$$w^{(i)}(w^T x^{(i)} + b).$$

$$; i = 1,...,n$$

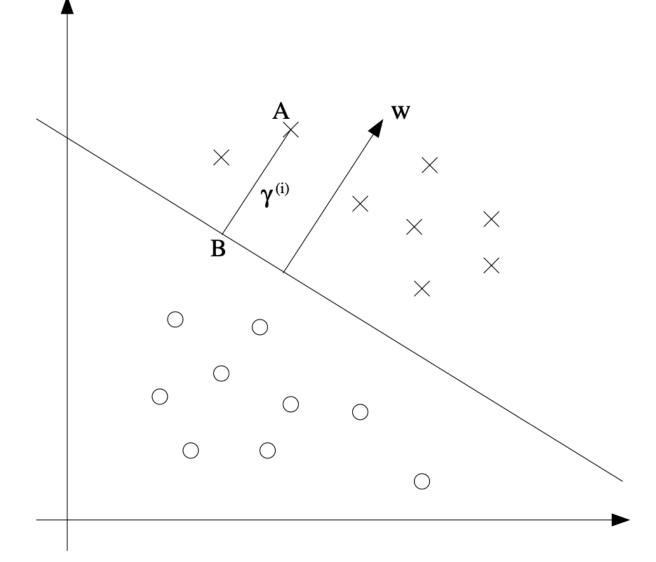
$$\min_{i=1,...,n} \hat{\gamma}^{(i)}$$

Geometric Margin



What is the geometric margin?

Geometric Margin



 $w^T \left(x^{(i)} - \right)$

 $\gamma^{(i)} = \frac{w^T x^{(i)} + \frac{w^T x^{(i)}}{||w||}}{||w||}$

Generally

 $\gamma^{(i)} = y^{(i)} \left(\right. \right)$

$$\left(\gamma^{(i)} \frac{w}{||w||}\right) + b = 0.$$

$$\frac{\mathbf{b}}{\mathbf{b}} = \left(\frac{w}{||w||}\right)^T x^{(i)} + \frac{b}{||w||}$$

$$\left(\frac{w}{||w||}\right)^T x^{(i)} + \frac{b}{||w||}\right)$$

Given a training set $S = \{(x^{(i)}, y^{(i)}); i = 1, ..., n\}$

Geometric Margin

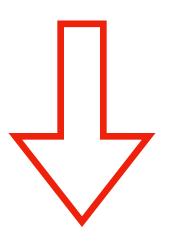
 $\gamma = \min_{i=1,...,n} \gamma^{(i)}$

The Optimization Problem

$$egin{array}{lll} \max_{\hat{\gamma},w,b} & rac{\hat{\gamma}}{||w||} \ ext{ s.t. } & y^{(i)}(w^Tx) \end{array}$$

changing the classifier

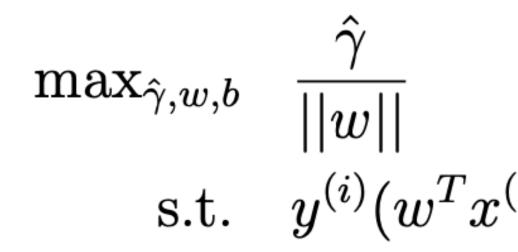
 $\max_{w,b} \min_{i=1,\dots,n} \gamma^{(i)}$

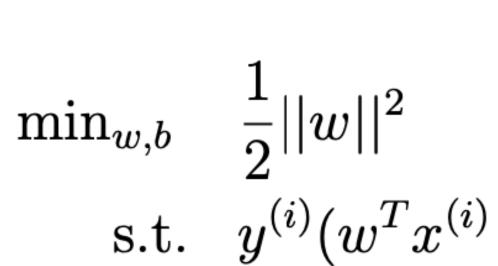


$z^{(i)}+b) \geq \hat{\gamma}, \ i=1,\ldots,n$ Infinite solutions, as $\hat{\gamma}$ can be at any scale without

||w|| is not easy to deal with, non-convex objective 24

The Optimization Problem





$$\hat{\gamma}^{(i)} + b) \ge \hat{\gamma}, \quad i = 1, \dots, n$$

Add constraint $\hat{\gamma} = \hat{\gamma}$

s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1, i = 1, ..., n$

Assumption: the training dataset is linearly separable

Lagrange Duality — Lagrange Multiplier

 $\min_w f(x)$ s.t. $h_i(x)$

 $\mathcal{L}(w,\beta) =$

Solve w, β

 $rac{\partial \mathcal{L}}{\partial w_i} =$

$$(w)$$

 $(w) = 0, i = 1, ..., l.$

=
$$f(w) + \sum_{i=1}^l \beta_i h_i(w)$$

$$0; \quad \frac{\partial \mathcal{L}}{\partial \beta_i} = 0,$$

Thank You! Q&A