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A"endance	Recording
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Please	download	HKUST	iLearn	in	your	devices,	we	are	going	to	use	
iPRS	for	quizzes



Recap:	Generalized	Linear	Models
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GLMs

Linear	Regression

LogisPc	Regression

MulP-Label	
ClassificaPon



Recap:	Generalized	Linear	Models
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Recap:	Kernel	Methods	(Feature	Map)
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y = θx

y = θTϕ(x)Feature	map
ϕ : Rd → Rp



LMS	Update	Rule	with	Features
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Recap:	Kernel	Trick
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βi ∈ R

Kernel	K(x, z)



Recap:	Kernel	Trick
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Compute	 for	all	K(ϕ(x(i)), ϕ(x( j))) = < ϕ(x(i)), ϕ(x( j)) > i, j

Loop

Recall	that	 	is	the	
number	of	data	samples

n

The	Kernel	funcPon	is	all	we	need	for	training	and	inference!

Inference:



9

Explicit	Feature	Map:	first	define	feature	map	 ,	then	compute	
the	Kernel	according	to	

ϕ(x)
ϕ(x)

Recap:	Implicit	Feature	Map

Implicit	Feature	Map:	first	define	the	Kernel	FuncPon	K(),	without	
knowing	what	the	feature	map	is



Recap:	Implicit	Feature	Map	(Example)
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What	is	the	feature	map	to	make	K	a	valid	kernel	funcPon?	

Requires	O(d^2)	compute	
for	feature	mapping

Requires	O(d)	compute	for	
Kernel	funcPon



Kernel	as	Similarity	Metrics
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Generally	 	is	large	when	 	and	 	are	
close	to	each	other

K(x, z) = ϕ(x)Tϕ(z) ϕ(x) ϕ(z)

We	can	think	of	 	as	some	measurement	of	how	similar	are	
	and	 ,	or	of	how	similar	are	 	and	

K(x, z)
ϕ(x) ϕ(z) x z



Example:	Gaussian	Kernel
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Corresponds	to	infinite	dimensional	feature	mapping
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Kernel	Matrix	Kij = K(x(i), x( j)) = ϕ(x(i))Tϕ(x( j))

What	Makes	a	Valid	Kernel	
FuncIon:	Necessary	CondiIon

	is	symmetricK

	is	posiPve	semidefiniteK



What	Makes	a	Valid	Kernel	FuncIon:	
Necessary	and	Sufficient	CondiIon
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In	generalized	linear	models	(which	we	have	shown)

ApplicaIon	of	Kernel	Methods

In	support	vector	machines	(which	we	will	show	next)

Any	learning	algorithm	that	you	can	write	in	terms	of	only	<x,	z>

Just	replace	<x,	z>	with	K(x,	z),	you	magically	transform	the	algorithm	
to	work	efficiently	in	the	implicit	high	dimensional	feature	space



Support	Vector	Machines
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Confidence	in	LogisIc	Regression
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p(y) =
1

1 + e−θTx
SeparaPng	hyperplane/
decision	boundary



Margin
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New	NotaIons
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Consider	a	binary	classificaPon	problem,	with	the	input	feature	 	and	
	(instead	of	 ),	the	classifier	is:

x
y ∈ {−1,1} {0,1}



FuncIonal	Margin
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Given	a	training	example	(x(i), y(i))

Given	a	training	set	S = {(x(i), y(i)); i = 1,...,n}

FuncPonal	margin	changes	rescaling	parameters,	making	it	a	bad	
objecPve,	e.g.	when	w->2w,	b->2b,	the	funcPonal	margin	changes	
while	the	separaPng	plane	does	not	really	change



Geometric	Margin
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What	is	the	geometric	margin?



Geometric	Margin
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Generally



Geometric	Margin
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Given	a	training	set	S = {(x(i), y(i)); i = 1,...,n}



The	OpImizaIon	Problem
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maxw,b

||w||	is	not	easy	to	deal	with,	non-convex	objecPve

Infinite	soluPons,	as	 	can	be	at	any	scale	without	
changing	the	classifier	

̂γ



The	OpImizaIon	Problem
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Add	constraint	 ̂γ = 1

AssumpPon:	the	training	dataset	is	linearly	separable



Lagrange	Duality	—	Lagrange	MulIplier
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Solve	w, β



Thank	You!	
Q	&	A
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