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Recap: Support Vector Machines

A

Separating hyperplane/

decision boglndary %




Recap: Notations

Consider a binary classification problem, with the input feature x and
y € {—1,1} (instead of {0,1}), the classifier is:

hoo(z) = g(w' = +b).

g(z) =1if 2z > 0, and g(z) = —1



Recap: Geometric Margin

What is the geometric margin?



Recap: Geometric Margin

’Y = =  EEE— T I
[|wl| [|lw|

Generally




Recap: Geometric Margin

Given a training set S = {(x¥, y");i = 1,...,n)

Y = min y(i)

1=1,...,n



Recap: Functional Margin

Given a training example (x¥, y()

Given a training set § = {(x(i),y(i));i =1,....,n}

§= min 40

1=1,....,n

Functional margin changes rescaling parameters, making it a bad
objective, e.g. when w->2w, b->2b, the functional margin changes
while the separating plane does not really change

3



Recap: The Optimization Problem

Rewrite maX, wp ¥

|w]

max,,, min " ———————> A w N\ b |
i=1,...,n st. 4 ( ) @) i1

Linear constraint o

— S [

st yD(wlz® +b) >4, i=1,...,n

Infinite solutions, as ¥ can be at any scale without
changing the classifier
| lw| | is not easy to deal with, non-convex objective



Recap: The Optimization Problem

@ Add constrainty = 1

This is a standard quadratic
1 problem that can be directly solved

. - 2
b 2Her with quadratic problem solvers
s.t. yP(wlz@ +b0)>1, i=1,...,n

Assumption: the training dataset is linearly separable
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min,, p §HwH2

s.t. yWD(wlz® +b)>1, ¢
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Lagrange Duality — Lagrange Multiplier

min, f(w)
S.t. hz('IU) — O, ] = ].,...,l.

Solve w, b
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Lagrange Multiplier: Example

min ox — 3Y
z,Y

s.t. x° 4+ vy = 136
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Generalized Lagrangian

Primal optimization problem
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Generalized Lagrangian

[
‘C’(w a, B _l_ Z azgz _|_ Z 6zhz(w)

Op(w) = max f(w)+ Z a;gi(w) + Z Bihi(w)

Oé,,B - Oy ZO

0p (1) = (w) if w satisfies primal constraints
P71 oo otherwise.
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Generalized Lagrangian

Consider this optimization problem

min fp(w) = min max L(w,a,f)
W w o,B:0;>0

It has exactly the same solution as our original problem

p* = min,, Op(w)
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The Dual Problem in Optimization

In optimization, sometimes the primal optimization is hard to
solve, then we may find a related alternative optimization
problem that can be solved more easily, to solve the orignal
problem in an indirect way
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The Dual Problem

Op(a, B) = mmﬁ(w a, [3)

The dual optimization problem

a,g}gfcz()e pl@,f) = agngxwmu}nﬁ(w @, B)

The primal optimization problem

minfp(w) =min max L(w,a )

What is the relation of the two problems?
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The Dual Problem

a,g:laiczomlgnﬁ(w, ,B) < o X (w,a, ) =p

max min f(x,y) < minmax f(z,y)
xT Y Yy L

Under certain conditions: d* =p"  Zero-duality Gap

What are the conditions?
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Slater’s Condition

f(w) and g(w) are convex
h(w) is affine (i.e. linear)

g:(w) are strictly feasible for all i, which means there
exists some w so that g.(w) < O for all i

If slater’s condition holds, then d* = p*

The primal optimization problem of SVM satisfies the slater’s condition
20



KKT Conditions

Zero duality gap is sufficient and necessary (i.e. equivalent) to
satisfy KKT Conditions:

[
L(w, o, f) = f(w) + Z cigi(w) + ) _ Biki(w)
1=1

Normal Lagrange
multiplier equations

The original constraints




KKT Conditions

Zero duality gap is sufficient and necessary (i.e. equivalent) to
satisfy KKT Conditions:

[
L(w, o, f) = f(w) + Z cigi(w) + ) _ Biki(w)
1=1

) 0
If al.* > (), then ) 0 Lk
g (w¥) = 0, the inequality ~ gi(w™) < 0, i=1,...,k
is actually equality a" > 0, i1=1,...,k



Supporting Vectors

a g (w*) = 0, i=1,...,k

Only the 3 points have non-zero «;, and
they are called supporting vectors
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Lagrangian for SVM

1 - | |
L(w,b,0) = olw]? = 3 s [y @ s® +5) - 1
1=1

The dual optimization problem

a’g:lgzizo (92)((17 B) = a,g;lgchO mu%n ,C(w, Q, ﬁ)




The Dual Problem of SVM

max, Z Qi — - Z Dy Dy (2, 20))

2,7=1
s.t. a; >0, 2—1,...,

Zn: azy(Z) — 07
1=1

Kernel is all we need!

After solving a (we’ll talk about how later)

& . “T () 4 min,. o _, w*Tz®
. . § max;.,()—_q1 W T/ + M., )—q W T
W = E iy Mz b” = S > —

From KKT Conditions From the original constraints
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Inference

T

whz +b Z oy Dz® | x4+ b
i=1

Z oy (29 x) + b.
i=1

We never need to really compute w

a;gi(w*) = 0, i=1,...,k

Most a; are 0, only the supporting examples will
influence the final prediction
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. Review of the High-Level Logic

L hwo(z) = g(w' z + b)

Finding a related

. Problem : optimization problem
Maximize rewriting Quadratic [, .. ... Dual
geometric —> | Optimization | ——— | optimization
margin Problem problem
1 max,  — = Oy g, (zD, 2
(@) — @ [ [ Y Tx(v:). b min,, |w||* Wie) z; Zy >
L AN "l 2
s.t. y(’)(wT:c(z) +b)>1, i=1,...,n .t O‘n>0 v=1,..., n
Zaiy(i):(),
Not suitable for non-linear i=1

cases (high-dim feature map) Kernel makes it very flexible in

non-linear cases!
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The Non-Separable Case

Linearly Separable Linearly Non-Separable
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The Non-Separable Case

Primal opt problem:
1. -
Sl +C 306

s.t. yD(wlz® +b6)>1-¢, i=1,...,n
>0, 1=1,...,n.

Dual opt problem

max. Zaz _ 2 Z Oy D (2@ 7))

zyl
S.t. O<aZ<C' 1=1,...,n

Z iy =
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Thank You!
Q& A
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