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HW1 is Out on Canvas

Start Early
Due in 2 weeks on Friday

No submissions will be accepted more than 3 days late



Update of the Website

Lecture Schedule

The lecture schedule below is tentative and subject to change.

Slides Date Topic Readings Assignments
Lecture O 31/01 Wed Introduction

Lecture 1 02/02 Fri Math basics

Lecture 2, draft2 07/02 Wed Linear Regression

L ecture 3, draft3 09/02 Fri Logistic regression, Exponential Family

Lecture 4, draft4 14/02 Wed Generalized linear models, Kernel Methods Section 3 of Notes

Lecture 5, draftb 16/02 Fri Kernel methods, SVM Section 5 of Notes

Lecture 6, draft6 21/02 Wed SVM Section 6 of Notes

The Stanford CS229 Notes by Andrew Ng is the most important reading material

| will post the lecture handwritings after each lecture (very unstructured)
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Recap: Support Vector Machines




Recap: The Optimization Problem

Rewrite maX, wp ¥

|w]

max,,, min " ———————> A w N\ b |
i=1,...,n st. 4 ( ) @) i1

Linear constraint o

— S [

st yD(wlz® +b) >4, i=1,...,n

Infinite solutions, as ¥ can be at any scale without
changing the classifier
| lw| | is not easy to deal with, non-convex objective



Recap: The Optimization Problem

@ Add constrainty = 1

This is a standard quadratic
1 problem that can be directly solved

. - 2
b 2Her with quadratic problem solvers
s.t. yP(wlz@ +b0)>1, i=1,...,n

Assumption: the training dataset is linearly separable



Lagrange Duality — Lagrange Multiplier

min, f(w)
S.t. hz('IU) — O, ] = ].,...,l.

Solve w, b




Lagrange Multiplier: Example

min ox — 3Y
z,Y

s.t. x° 4+ vy = 136



Recap: Generalized Lagrangian

Primal optimization problem

This is a general concept in

Generalized Lagrangian optimization, beyond SVMs

k [

L(w,a,B) = f(w) + Z a;gi(w) + Z Bihi(w)



Recap: Generalized Lagrangian

[
,C(’LU a, 6 + Z azgz + Z ﬁzhz(w)

Op(w) = max f(w)+ Z a;g;(w) + Z Bihi(w)

Oé,,B : 0y >0

Op (1) = (w) if w satisfies primal constraints
P77 1 oo otherwise.
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Recap: Generalized Lagrangian

Consider this optimization problem

min fp(w) = min max L(w,a,f)
W w o,B:0;>0

It has exactly the same solution as our original problem

p* = min,, Op(w)
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The Dual Problem in Optimization

In optimization, sometimes the primal optimization is hard to
solve, then we may find a related alternative optimization
problem that can be solved more easily, to solve the orignal
problem in an indirect way
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The Dual Problem

Op(a, B) = mmﬁ(w a, [3)

The dual optimization problem

a,g}giizo 191) (047 IB) N glgx>0 mu}n E(w Q, /6)

These are a general concepts in
optimization, beyond SVMs

The primal optimization problem

mlinep( w) = ngnaéngxwﬁ(w « P)

What is the relation of the two problems?
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The Dual Problem

d* = max minL(w,qa,f) <min max L(w,a,fB)=7p"
a,,@Oj{ZO w ( , , /6) - W 04:,3&220 ( ) , /8) p

max min f(x,y) < minmax f(z,y)
xT Y Yy L

Under certain conditions: d* =p"  Zero-duality Gap (Strong Duality)

What are the conditions?
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Slater’s Condition

f(w) and g(w) are convex
h(w) is affine (i.e. linear)

g:(w) are strictly feasible for all i, which means there
exists some w so that g.(w) < O for all i

If slater’s condition holds, then d* = p*

The primal optimization problem of SVM satisfies the slater’s condition
15



KKT Conditions

Zero duality gap is sufficient and necessary (i.e. equivalent) to
satisfy KKT Conditions:

[
L(w, o, f) = f(w) + Z cigi(w) + ) _ Biki(w)
1=1

Normal Lagrange
multiplier equations

The original constraints




KKT Conditions

Zero duality gap is sufficient and necessary (i.e. equivalent) to
satisfy KKT Conditions:

[
L(w, o, f) = f(w) + Z cigi(w) + ) _ Biki(w)
1=1

) 0
If al.* > (), then ) 0 Lk
g (w¥) = 0, the inequality ~ gi(w™) < 0, i=1,...,k
is actually equality a" > 0, i1=1,...,k



Supporting Vectors

a g (w*) = 0, i=1,...,k

Only the 3 points have non-zero «;, and
they are called supporting vectors

18



Lagrangian for SVM

1 - | |
L(w,b,0) = olw]? = 3 s [y @ s® +5) - 1
1=1

The dual optimization problem

a’g:lgzizo (92)((17 B) = a,g;lgchO mu%n ,C(w, Q, ﬁ)




The Dual Problem of SVM

max, Zaz — - Z Dy Dy (2, 20))

231
S.t. az>0 z—l

Z O‘zy(z) —

Kernel is all we need!

After solving a (coordinate ascent with clipping, 6.8.2 of the C5229 Notes)

& . “T () 4 min,. o _, w*Tz®
. . § max;.,()—_q1 W T/ + M., )—q W T
W = E iy Mz b” = S > S

From KKT Conditions From the original constraints
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Inference

T

whz +b Z oy Dz® | x4+ b
i=1

Z oy (29 x) + b.
i=1

We never need to really compute w

a;gi(w*) = 0, i=1,...,k

Most a; are 0, only the supporting examples will
influence the final prediction
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. Review of the High-Level Logic

L hwo(z) = g(w' z + b)

Finding a related

. Problem : optimization problem
Maximize rewriting Quadratic [, .. ... Dual
geometric —> | Optimization | ——— | optimization
margin Problem problem
1 max,  — = Oy g, (zD, 2
(@) — @ [ [ Y Tx(v:). b min,, |w||* Wie) z; Zy >
L AN "l 2
s.t. y(’)(wT:c(z) +b)>1, i=1,...,n .t O‘n>0 v=1,..., n
Zaiy(i):(),
Not suitable for non-linear i=1

cases (high-dim feature map) Kernel makes it very flexible in

non-linear cases!
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The Non-Separable Case

Linearly Separable Linearly Non-Separable
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The Non-Separable Case

Primal opt problem:
1. -
Sl +C 306

s.t. yD(wlz® +b6)>1-¢, i=1,...,n
>0, 1=1,...,n.

You will prove this in your hw

max.. ZO‘Z _ 2 Z Oy D (2@ 7))

zyl
S.t. O<aZ<C’ 1=1,...,n

Dual opt problem

Z iy =
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Thank You!
Q& A
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